Abstract

During the last few years, the method of DNA directed enzyme synthesis in vitro has become a powerful tool in the study of gene expression.

Keywords

Magnesium Codon Arginine Half Life Methionine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M. H., Wade, E.: Classification of bacterial viruses: The relationship of two Serratia phages to Coli-dysentery phages T3, T7 and D44. J. Bact. 68, 320–325 (1954).PubMedGoogle Scholar
  2. Adesnik, M., Levinthal, C.: The synthesis and degradation of lactose Operon messenger RNA in E. coli. Cold Spr. Harb. Symp. quant. Biol. 35, 451–459 (1970).Google Scholar
  3. Argetsinger-Steitz, J., Dube, S. K., Rudland, P. S.: Control of translation by T4 phage. Altered ribosome binding at R 17 initiation sites. Nature (Lond.) 226, 824–827 (1970).CrossRefGoogle Scholar
  4. Baldi, M. I., Haselkorn, R.: Ribosome-bound messenger RNA in T4-infected bacteria. J. molec. Biol. 27, 193–195 (1967).PubMedCrossRefGoogle Scholar
  5. Beckwith, J. R.: Restoration of Operon activity by suppressors. Biochim. biophys. Acta (Amst.) 76, 162–164 (1963).CrossRefGoogle Scholar
  6. Beckwith, J. R.: Lac: The genetic system. In: J. R. Beckwith and D. Zipser (eds.), The lactose Operon, p. 5–26. Cold Spring Harbor Laboratory 1970.Google Scholar
  7. Beckwith, J., Grodzicker, T., Arditti, R.: Evidence for two sites in the lac promotor region. J. molec. Biol. 69, 155–160 (1972).PubMedCrossRefGoogle Scholar
  8. Berger, T., Bruner, R.: Late gene function in bacteriophage T4 in the absence of phage DNA replication. J. molec. Biol. 74, 743–747 (1973).PubMedCrossRefGoogle Scholar
  9. Black, L. W., Gold, L. M.: Pre-replicative development of the bacteriophage T4: RNA and protein synthesis in vivo and in vitro. J. molec. Biol. 60, 365–388 (1971).PubMedCrossRefGoogle Scholar
  10. Blattner, F. R., Dahlberg, J. E., Boettiger, J. K., Fiandt, M., Szybalski, W.: Distance from a promoter mutation to an RNA synthesis startpoint on bacteriophage λ DNA. Nature (Lond.) New Biol. 237, 232–236 (1972).CrossRefGoogle Scholar
  11. Bolle, A., Epstein, R. H., Salser, W., Geiduschek, E. P.: Transcription during bacteriophage T4 development: Synthesis and relative stability of early and late RNA. J. molec. Biol. 31, 325–348 (1968a).PubMedCrossRefGoogle Scholar
  12. Bolle, A., Epstein, R. H., Salser, W., Geiduschek, E. P.: Transcription during bacteriophage T4 development: Requirements for late messenger synthesis. J. molec. Biol. 33, 339–362 (1968b).PubMedCrossRefGoogle Scholar
  13. Bräutigam, A. R., Sauerbier, W.: Transcription unit mapping in bacteriophage T7. I. In vivo transcription by Escherichia coli RNA polymerase. J. Virol., 12, 882–886 (1973).PubMedGoogle Scholar
  14. Brody, E., Sederoff, R., Bolle, A, Epstein, R. H.: Early transcription in T4-infected cells. Cold Spr. Harb. Symp. quant. Biol. 35, 203–211 (1970).Google Scholar
  15. Brody, E. N., Gold, L. M., Black, L. W.: Transcription and translation of sheared bacteriophage T4 DNA in vitro. J. molec. Biol. 60, 389–393 (1971).PubMedCrossRefGoogle Scholar
  16. Bruenn, J.: Characterization of a recessive-lethal amber suppressor strain of Salmonella typhimurium by in vitro synthesis of T4 lysozyme. Biochim. biophys. Acta (Amst.) 269, 162–169 (1972).Google Scholar
  17. Brunovskis, L, Summers, W. C.: The process of infection with coliphage T7. V. Shutoff of host RNA synthesis by an early phage function. Virology 45, 224–231 (1971).PubMedCrossRefGoogle Scholar
  18. Brunovskis, I., Summers, W. C.: The process of infection with coliphage T7. VI. A phage gene controlling shutoff of host RNA synthesis. Virology 50, 322–327 (1972).PubMedCrossRefGoogle Scholar
  19. Buettner, M. J., Spitz, E., Rickenberg, H. V.: Cyclic Adenosine 3′,5′-Monophosphate in Escherichia coli. J. Bact., 114, 1068–1073 (1973).PubMedGoogle Scholar
  20. Burchall, J. J., Hitchings, G. H.: Inhibitor binding analysis of dihydrofolate reductases from various species. Molec. Pharmacol. 1, 126–136 (1965).Google Scholar
  21. Burgess, R. R., Travers, A. A., Dunn, J. J., Bautz, E. K. F.: Factor stimulating transcription by RNA polymerase. Nature (Lond.) 221, 43–46 (1969).CrossRefGoogle Scholar
  22. Calendar, R.: The regulation of phage development. Ann. Rev. Microbiol. 24, 241–296 (1970).CrossRefGoogle Scholar
  23. Callahan, R., Leder, P.: In vitro initiation of coliphage T7 mRNA. Arch. Biochem. Biophys. 153, 802–813 (1972).PubMedCrossRefGoogle Scholar
  24. Cascino, A., Geiduschek, E. P., Cafferata, R. L., Haselkorn, R.: T4 DNA replication and viral gene expression. J. molec. Biol. 61, 357–367 (1971).PubMedCrossRefGoogle Scholar
  25. Celis, T. F. R., Maas, W. K.: Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. IV. Further studies on the role of arginine transfer RNA repression of the enzymes of arginine biosynthesis. J. molec. Biol. 62, 179–188 (1971).PubMedCrossRefGoogle Scholar
  26. Chamberlin, M., McGrath, J., Waskell, L.: New RNA polymerase from Escherichia coli infected with bacteriophage T7. Nature (Lond.) 228, 227–231 (1970).CrossRefGoogle Scholar
  27. Chamberlin, M., Ring, J.: Studies of the binding of Escherichia coli RNA polymerase to DNA. V. T7 RNA chain initiation by enzyme-DNA complexes. J. molec. Biol. 70, 221–237 (1972).PubMedCrossRefGoogle Scholar
  28. Chamberlin, M., Ring, J.: Characterization of T7-specific ribonucleic acid polymerase. I. General properties of the enzymatic reaction and the template specificity of the enzyme. J. biol. Chem. 248, 2235–2244 (1973a).PubMedGoogle Scholar
  29. Chamberlin, M., Ring, J.: Characterization of T7-specific ribonucleic acid polymerase. II. Inhibitors of the enzyme and their application to the study of the enzymatic reaction. J. biol. Chem. 248, 2245–2250 (1973b).PubMedGoogle Scholar
  30. Chambers, D. A., Manley, J. L.: On the nature of β-galactosidase synthesized by the DNA-directed cell-free system. Molec. gen. Genet. 120, 301–308 (1973).PubMedGoogle Scholar
  31. Chambers, D. A., Zubay, G.: The stimulatory effect of cyclic adenosine 3′,5′-monophosphate on DNA-directed synthesis of β-galactosidase in a cell-free system. Proc. nat. Acad. Sci. (Wash.) 63, 118–122 (1969).CrossRefGoogle Scholar
  32. Chen, B., Crombrugghe, B. de, Anderson, W. B., Gottesman, M. E., Pastan, I., Perlman, R. L.: On the mechanism of action of lac repressor. Nature (Lond.) New Biol. 233, 67–70 (1971).CrossRefGoogle Scholar
  33. Chrispeels, M. J., Boyd, R. F., Williams, L. S., Neidhardt, F. C.: Modification of valyl tRNA synthetase by bacteriophage in Escherichia coli. J. molec. Biol. 31, 463–475 (1968).PubMedCrossRefGoogle Scholar
  34. Clark, J. M., Jr., Chang, A. Y., Spiegelman, S., Reichmann, M. E.: The in vitro translation of a monocistronic message. Proc. nat. Acad. Sci. (Wash.) 54, 1193–1197 (1965).CrossRefGoogle Scholar
  35. Crawford, L. V., Gesteland, R. F.: Synthesis of polyoma proteins in vitro. J. molec. Biol. 74, 627–634 (1973).PubMedCrossRefGoogle Scholar
  36. Crawford, L. V., Gesteland, R. F., Rubin, G. M., Hirt, B.: The use of mammalian DNAs to direct protein synthesis in extracts from E. coli, p. 104–109. In: L. G. Silvestri (ed.), The biology of oncogenic viruses. Proc. 2nd Lepetit Colloquium, Paris 1970. Amsterdam: North Holland 1971.Google Scholar
  37. Crombrugghe, B. de, Adhya, S., Gottesman, M., Pastan, I.: Effect of rho on transcription of bacterial operons. Nature (Lond.) New Biol. 241, 260–264 (1973).CrossRefGoogle Scholar
  38. Crombrugghe, B. de, Chen, B., Anderson, W., Nissley, P., Gottesman, M., Pastan, L, Perlman, R.: Lac DNA, RNA polymerase and cyclic AMP receptor protein, cyclic AMP, lac repressor and inducer are the essential elements for controlled lac transcription. Nature (Lond.) New Biol. 231, 139–142 (1971b).Google Scholar
  39. Crombrugghe, B. de, Chen, B., Gottesman, M., Pastan, I., Varmus, H. E., Emmer, M., Perlman, R. L.: Regulation of lac mRNA synthesis in a soluble cell-free system. Nature (Lond.) New Biol. 230, 37–40 (1971a).Google Scholar
  40. Crombrugghe, B. de, Varmus, H. E., Perlman, R. L., Pastan, I. H.: Stimulation of lac mRNA synthesis by cyclic AMP in cell-free extracts of Escherichia coli. Biochem. biophys. Res. Commun. 38, 894–901 (1970).PubMedCrossRefGoogle Scholar
  41. Cunin, R., Elseviers, D., Sand, G., Freundlich, G., Glansdorff, N.: On the functional organization of the arg ECBH cluster of genes in Escherichia coli K-12. Molec. gen. Genet. 106, 32–47 (1969).PubMedCrossRefGoogle Scholar
  42. Cuzin, F.: Un bactériophage spécifique du type sexuel F- d’Escherichia coli K12. C. R. Acad. Sci. (Paris) 260, 6482–6485 (1965).Google Scholar
  43. Dambly, C.,Couturier, M., Thomas, R.: Control of development in temperate bacteriophages. II. Control of lysozyme synthesis. J. molec. Biol. 32, 67–81 (1968).PubMedCrossRefGoogle Scholar
  44. Davis, R. W., Hyman, R. W.: Physical locations of the in vitro RNA initiation site and termination sites of T7M DNA. Cold Spr. Harb. Symp. quant. Biol. 35, 269–281 (1970).Google Scholar
  45. De Vries, J. K., Zubay, G.: DNA-directed peptide synthesis. II. The synthesis of the α-fragment of the enzyme β-galactosidase. Proc. nat. Acad. Sci. (Wash.) 57, 1010–1012 (1967).CrossRefGoogle Scholar
  46. De Vries, J. K., Zubay, G.: Characterization of a β-galactosidase formed between a complementary protein and a peptide synthesized de novo. J. Bact. 97, 1419–1425 (1969).Google Scholar
  47. Doerfler, W., Zillig, W., Fuchs, E., Albers, M.: Untersuchungen zur Biosynthese der Proteine. V. Die Funktion von Nukleinsäuren beim Einbau von Aminosäuren in einem zellfreien System aus Escherichia coli. Hoppe-Seylers Z. physiol. Chem. 330, 96–123 (1962).PubMedCrossRefGoogle Scholar
  48. Dohan, F. C., Jr., Rubman, R. H., Torriani, A.: In vitro synthesis of alkaline phosphatasa monomers directed by F. Coli messenger. Cold Spr. Harb. Symp. quant. Biol. 34, 768–770 (1969).Google Scholar
  49. Dottin, R. P., Pearson, M. L.: Regulation by N gene protein of phage lambda of anthranilate synthetase synthesis in vitro. Proc. nat. Acad. Sci. (Wash.) 70, 1078–1082 (1973).CrossRefGoogle Scholar
  50. Dube, S. K., Rudland, P. S.: Control of translation by T4 phage: Altered binding of disfavoured messengers. Nature (Lond.) 226, 820–823 (1970).CrossRefGoogle Scholar
  51. Duckworth, D.H.: Inhibition of translation of preformed lac messenger ribonucleic acid by T4 bacteriophage. J. Virol. 5, 653–655 (1970).PubMedGoogle Scholar
  52. Duckworth, D. H., Bessman, M. J.: Assay for the killing properties of T2 bacteriophage and their “ghosts”. J. Bact. 90, 724–728 (1965).PubMedGoogle Scholar
  53. Dunn, J. J., McAllister, W. T., Bautz, E. K. F.: Transcription in vitro of T3 DNA by Escherichia coli and T3 RNA polymerases. Analysis of the products in cell-free protein-synthesizing system. Europ. J. Biochem. 29, 500–508 (1972).PubMedCrossRefGoogle Scholar
  54. Dunn, J. J., Studier, F. W.: T7 early RNAs are generated by site-specific cleavages Proc. nat. Acad. Sci. (Wash.) 70, 1559–1563 (1973).CrossRefGoogle Scholar
  55. Egberts, E., Traub, P., Herrlich, P., Schweiger, M.: Functional integrity of Escherichia coli 30 S ribosomes reconstituted from RNA and protein: in vitro synthesis of S-adenosylmethionine cleaving enzyme. Biochim. biophys. Acta (Amst.) 277, 681–684 (1972).Google Scholar
  56. Emmer, M., Crombrugghe, B. de, Pastan, I., Perlman, R.: Cyclic AMP receptor protein of E. coli: Its role in the synthesis of inducible enzymes. Proc. nat. Acad. Sci. (Wash.) 66, 480–487 (1970).CrossRefGoogle Scholar
  57. Englesberg, E.: Regulation in the L-arabinose system, p. 257–296. In: D. Greenberg, H. Vogel (ed.), Metabolic pathways, vol. V. New York: Academic Press 1971.Google Scholar
  58. Englesberg, E., Squires, C., Meronk, F., Jr.: The L-Arabinose Operon in Escherichia coli B/r: A genetic demonstration of two functional states of the product of a regulator gene. Proc. nat. Acad. Sci. (Wash.) 62, 1100–1107 (1969).CrossRefGoogle Scholar
  59. Ennis, H. L.: Protein synthesis and the inhibition of host messenger ribonucleic acid production in bacteriophage T4-infected Escherichia coli. Virology 40, 727–733 (1970).PubMedCrossRefGoogle Scholar
  60. Ennis, H. L., Kievitt, K. D.: Association of the rIIA protein with the bacterial membrane. Proc. nat. Acad. Sci. (Wash.) 70, 1468–1472 (1973).CrossRefGoogle Scholar
  61. Epstein, R. H., Bolle, A., Steinberg, C. M., Kellenberger, E., Boy de la Tour, E., Chevalley, R., Edgar, R. S., Susman, M., Denhardt, G. H., Lielausis, A.: Physiological studies of conditional lethal mutants of bacteriophage T4 D. Cold Spr. Harb. Symp. quant. Biol. 28, 375–394 (1963).Google Scholar
  62. Eron, L., Arditti, R., Zubay, G., Connaway, S., Beckwith, J. R.: An adenosine 3′,5′-cyclic monophosphate-binding protein that acts on the transcription process. Proc. nat. Acad. Sci. (Wash.) 68, 215–218 (1971).CrossRefGoogle Scholar
  63. Eron, L., Block, R.: Mechanism of initiation and repression of in vitro transcription of the lac operon of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 68, 1828–1832 (1971).CrossRefGoogle Scholar
  64. Fiandt, M., Szybalski, W., Malamy, M. H.: Polar mutations in lac, gal, and phage λ consist of a few IS-DNA sequences inserted with either orientation. Molec. gen. Genet. 119, 223–231 (1972).PubMedCrossRefGoogle Scholar
  65. Franklin, N. C.: The N operon of lambda: Extent and regulation as observed in fusions to the tryptophan operon of Escherichia coli. In: A. D. Hershey (ed.), The bacteriophage lambda, p. 621–638. Cold Spring Harbor Laboratory 1971.Google Scholar
  66. Franklin, N. C., Luria, S. E.: Transduction by bacteriophage P1 and the properties of the lac genetic region of E. coli and S. dysenteriae. Virology 15, 299–311 (1961).PubMedCrossRefGoogle Scholar
  67. French, R. C., Siminovitch, L.: The action of T2 bacteriophage ghosts on Escherichia coli B. Canad. J. Microbiol. 1, 757–774 (1955).CrossRefGoogle Scholar
  68. Friesen, J. D., Dale, B., Bode, W.: Presence of T4 “early” messenger RNA on polysomes late in infection. J. molec. Biol. 28, 413–422 (1967).PubMedCrossRefGoogle Scholar
  69. Fuchs, E., Millette, R. L., Zillig, W., Walter, G.: Influence of salts on RNA synthesis by DNA-dependent RNA-polymerase from Escherichia coli. Europ. J. Biochem. 3, 183–193 (1967).CrossRefGoogle Scholar
  70. Furrow, M. H., Pizer, L. I.: Phospholipid synthesis in Escherichia coli infected with T4 bacteriophages. J. Virol. 2, 594–605 (1968).PubMedGoogle Scholar
  71. Gesteland, R. F., Kahn, C.: Synthesis of bacteriophage λ proteins in vitro. Nature (Lond.) New Biol. 240, 3–6 (1972).CrossRefGoogle Scholar
  72. Gesteland, R. F., Salser, W., Bolle, A.: In vitro synthesis of T4 lysozyme by suppression of amber mutations. Proc. nat. Acad. Sci. (Wash.) 58, 2036–2042 (1967).CrossRefGoogle Scholar
  73. Gilbert, W., Müller-Hill, B.: Isolation of the lac repressor. Proc. nat. Acad. Sci. (Wash.) 56, 1891–1898 (1966).CrossRefGoogle Scholar
  74. Gilbert, W., Müller-Hill, B.: The lac operator is DNA. Proc. nat. Acad. Sci. (Wash.) 58, 2415–2421 (1967).CrossRefGoogle Scholar
  75. Gillespie, D.: The formation and detection of DNA-RNA hybrids. Methods in Enzymology 12, part B, 641–668 (1968).CrossRefGoogle Scholar
  76. Glansdorff, N., Sand, G.: Coordination of enzyme synthesis in the arginine pathway of Escherichia coli K12. Biochim. biophys. Acta (Amst.) 108, 308–311 (1965).Google Scholar
  77. Godson, G. N., Sinsheimer, R. L.: Lysis of Escherichia coli with a neutral detergent. Biochim. biophys. Acta (Amst.) 149, 476–488 (1967).Google Scholar
  78. Goff, C. G., Minkley, E. G.: The RNA polymerase sigma factor: A specificity determinant, p. 124–147. In: L. Silvestri (ed.), RNA polymerase and transcription. First Lepetit Colloquium. Amsterdam: North Holland 1970.Google Scholar
  79. Gold, L. M., Schweiger, M.: Synthesis of phage-specific α- and β-glucosyltransferases directed by T-even DNA in vitro. Proc. nat. Acad. Sci. (Wash.) 62, 892–898 (1969a).CrossRefGoogle Scholar
  80. Gold, L. M., Schweiger, M.: The initiation of T4 deoxyribonucleic acid-dependent β-glucosyltransferase synthesis in vitro. J. biol. Chem. 244, 5100–5104 (1969b).PubMedGoogle Scholar
  81. Gold, L. M., Schweiger, M.: Control of β-glucosyltransferase and lysozyme synthesis during T4 deoxyribonucleic acid-dependent ribonucleic acid and protein synthesis in vitro. J. biol. Chem. 245, 2255–2258 (1970).PubMedGoogle Scholar
  82. Gold, L. M., Schweiger, M.: Synthesis of bacteriophage-specific enzymes directed by DNA in vitro. Methods in Enzymology 20, 537–542 (1971).CrossRefGoogle Scholar
  83. Goldman, E., Lodish, H. F.: Specificity of protein synthesis by bacterial ribosomes and initiation factors. Absence of change after phage T4 infection. J. molec. Biol. 67, 35–47 (1972).PubMedCrossRefGoogle Scholar
  84. Gorini, L., Gundersen, W., Burger, M.: Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 26, 173–182 (1961).Google Scholar
  85. Grasso, R. J., Buchanan, J. M.: Synthesis of early RNA in bacteriophage T4-infected Escherichia coli B. Nature (Lond.) 224, 882–885 (1969).CrossRefGoogle Scholar
  86. Greenblatt, J.: Positive control of endolysin synthesis in vitro by the gene N protein of phage λ. Proc. nat. Acad. Sci. (Wash.) 69, 3606–3610 (1972).CrossRefGoogle Scholar
  87. Greenblatt, J., Schleif, R.: Arabinose C Protein: Regulation of the Arabinose Operon in vitro. Nature (Lond.) New Biol. 233, 166–170 (1971).Google Scholar
  88. Groner, Y., Pollack, Y., Berissi, H., Revel, M.: Cistron specific translation control protein in Escherichia coli. Nature (Lond.) New Biol. 239, 16–19 (1972).Google Scholar
  89. Guha, A., Szybalski, W.: Fractionation of the complementary strands of coliphage T4 DNA based on the asymmetric distribution of the poly U and poly U,G binding sites. Virology 34, 608–616 (1968).PubMedCrossRefGoogle Scholar
  90. Hall, B.D., Nygaard, A. P., Green, M. H.: Control of T2-specific RNA synthesis. J. molec. Biol. 9, 143–153 (1964).PubMedCrossRefGoogle Scholar
  91. Hall, B.D., Spiegelman, S.: Sequence complementarity of T2-DNA and T2-specific RNA. Proc. nat. Acad. Sci. (Wash.) 47, 137–146 (1961).CrossRefGoogle Scholar
  92. Haselkorn, R., Vogel, M., Brown, R. D.: Conservation of the rifamycin sensitivity of transcription during T4 development. Nature (Lond.) 221, 836–838 (1969).CrossRefGoogle Scholar
  93. Hattman, S.: Influence of T4 superinfection on the formation of RNA bacteriophage coat protein. J. molec. Biol. 47, 599–603 (1970).PubMedCrossRefGoogle Scholar
  94. Hattman, S., Hofschneider, P. H.: Interference of bacteriophage T4 in the reproduction of RNA-phage M12. J. molec. Biol. 29, 173–190 (1967).PubMedCrossRefGoogle Scholar
  95. Hattman, S., Hofschneider, P. H.: Influence of T4 on the formation of RNA phagespecific polyribosomes and polymerase. J. molec. Biol. 35, 513–522 (1968).PubMedCrossRefGoogle Scholar
  96. Hausmann, R.: Synthesis of an S-adenosylmethionine-cleaving enzyme in T3-infected Escherichia coli and its disturbance by coinfection with enzymatically incompetent bacteriophage. J. Virol. 1, 57–63 (1967).PubMedCrossRefGoogle Scholar
  97. Hausmann, R.: Sedimentation analysis of phage T7-directed DNA synthesized in the presence of a dominant conditional lethal phage gene. Biochem. biophys. Res. Commun. 31, 609–615 (1968).PubMedCrossRefGoogle Scholar
  98. Hausmann, R.: The genetics of T-odd phages. Ann. Rev. Microbiol. 27, 51–67 (1973).CrossRefGoogle Scholar
  99. Hausmann, R. L., Almeida-Magalhães, E. P., Araujo, C.: Isolation and characterization of hybrids between bacteriophages T3 and T7. An. Microbiol. (Rio de J.) 9, 511–526(1961).Google Scholar
  100. Hausmann, R. L., Almeida-Magalhães, E. P., Araujo, C.: Serological properties of two related coliphages, T7 and Cro. An. Microbiol. (Rio de J.) 10, 35–42 (1962).Google Scholar
  101. Hausmann, R., Gomez, B.: Amber mutants of bacteriophages T3 and T7 defective in phage-directed deoxyribonucleic acid synthesis. J. Virol. 1, 779–792 (1967).PubMedGoogle Scholar
  102. Hausmann, R., Härle, E.: Expression of the genomes of the related bacteriophages T3 and T7. Proc. First European Biophysics Congress, vol. I, p. 467–488, Wiener Mediz. Akad. 1971.Google Scholar
  103. Hayashi, M.: DNA-dependent, RNA-directed protein synthesis. In: J. A. Last, A. I. Laskin (eds.), Methods in molecular biology, vol. 1, p. 111–120. New York: Marcel Dekker 1971.Google Scholar
  104. Heil, A., Zillig, W.: Reconstitution of bacterial DNA-dependent RNA-polymerase from isolated subunits as a tool for the elucidation of the role of the subunits in transcription. FEBS letters 11, 165–168 (1970).PubMedCrossRefGoogle Scholar
  105. Hercules, K., Sauerbier, W.: Transcription units in bacteriophage T4. J. Virol. 12, 872–881 (1973).PubMedGoogle Scholar
  106. Hercules, K., Schweiger, M., Sauerbier, W.: Cleavage by RNase III converts T3 and T7 early precursor RNA into translatable message. Proc. Nat. Acad. Sci. (Wash.) 71, 840–844 (1974).CrossRefGoogle Scholar
  107. Herrlich, P., Rahmsdorf, H. J., Pai, S. H., Schweiger, M.: Translational control induced by bacteriophage T7. Proc. nat. Acad. Sci. (Wash.) 71, 1088–1092 (1974).CrossRefGoogle Scholar
  108. Herrlich, P., Rahmsdorf, H. J., Schweiger, M.: Regulation of macromolecular synthesis by membrane changes. In: S. Bernhard (ed.), Immunopathology. Adv. in the biosciences, vol. 12, Braunschweig: Pergamon Press, Vieweg 1973.Google Scholar
  109. Herrlich, P., Scherzinger, E., Schweiger, M.: Differential influence of spermidine on DNA directed enzyme synthesis in vitro. Molec. gen. Genet. 114, 31–34 (1971b).CrossRefGoogle Scholar
  110. Herrlich, P., Scherzinger, E., Schweiger, M., Trautner, T. A.: Identification of the “sense” strand of T7 DNA through heteroduplex directed in vitro enzyme synthesis. Molec. gen. Genetics 118, 61–65 (1972).CrossRefGoogle Scholar
  111. Herrlich, P., Schweiger, M.: T3 and T7 Bacteriophage deoxyribonucleic acid-directed enzyme synthesis in vitro. J. Virol. 6, 750–753 (1970).PubMedGoogle Scholar
  112. Herrlich, P., Schweiger, M.: RNA polymerase synthesis in vitro directed by T7 phage DNA. Molec. gen. Genet. 110, 31–35 (1971a).PubMedCrossRefGoogle Scholar
  113. Herrlich, P., Schweiger, M.: Regulation of T7 and T3 protein synthesis. Proc. First European Biophysics Congress, vol. I, p. 489–493, Wiener Mediz. Akad. 1971b.Google Scholar
  114. Herrlich, P., Schweiger, M.: DNA- and RNA-directed synthesis in vitro of phage enzymes. Methods in Enzymology 30, 654–669 (1974).PubMedCrossRefGoogle Scholar
  115. Herrlich, P., Schweiger, M., Sauerbier, W.: Host- and Phage-RNA polymerase mediated synthesis of T7 lysozyme in vivo. Molec. gen. Genet. 112, 152–160 (1971a).PubMedCrossRefGoogle Scholar
  116. Herrlich, P., Schweiger, M., Zillig, W., Lang, N.: Klassenspezifität bei der Bildung von aktiven Polysomen aus Ribosomen und Matrizen-Ribonucleinsäuren. Hoppe-Seylers Z. physiol. Chem. 348, 1207–1210 (1967).PubMedCrossRefGoogle Scholar
  117. Hershey, A. D. (editor): The bacteriophage lambda. Cold Spring Harbor Laboratory 1971.Google Scholar
  118. Herskowitz, I., Signer, E.: Control of transcription from the r strand of bacteriophage lambda. Cold Spr. Harb. Symp. quant. Biol. 35, 355–368 (1970).Google Scholar
  119. Hinkle, D. C., Chamberlin, M.: The role of sigma subunit in template site selection by E. coli RNA polymerase. Cold Spr. Harb. Symp. quant. Biol. 35, 65–72 (1970).Google Scholar
  120. Hiraga, S.: Operator mutants of the tryptophan operon in Escherichia coli. J. molec. Biol. 39, 159–179 (1969).PubMedCrossRefGoogle Scholar
  121. Hiraga, S., Yanofsky, C.: Hyper-labile messenger RNA in polar mutants of the tryptophan operon of Escherichia coli. J. molec. Biol. 72, 103–110 (1972).PubMedCrossRefGoogle Scholar
  122. Hirsch, H.-J., Starlinger, P., Brachet, P.: Two kinds of insertions in bacterial genes. Molec. gen. Genet. 119, 191–206 (1972).PubMedCrossRefGoogle Scholar
  123. Hosoda, J., Levinthal, C.: Protein synthesis by Escherichia coli infected with bacteriophage T4D. Virology 34, 709–727 (1968).PubMedCrossRefGoogle Scholar
  124. Hsu, W.-T., Weiss, S. B.: Selective translation of T4 template RNA by ribosomes from T4-infected Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 64, 345–351 (1969).CrossRefGoogle Scholar
  125. Imamoto, F.: Diversity of regulation of genetic transcription. I. Effect of antibiotics which inhibit the process of translation on RNA metabolism in Escherichia coli. J. molec. Biol. 74, 113–136 (1973a).PubMedCrossRefGoogle Scholar
  126. Imamoto, F.: Effect of a block in translation on transcription, p. 398. In: F. Imamoto, Translation and transcription of the tryptophan operon. Proc. Nucl. Acid Res. 13, 339–407 (1973b).Google Scholar
  127. Imamoto, F., Ito, J., Yanofsky, C.: Polarity in the tryptophan operon of E. coli. Cold Spr. Harb. Symp. quant. Biol. 31, 235–249 (1966).Google Scholar
  128. Imamoto, F., Kano, Y.: Inhibition of transcription of the tryptophan operon in Escherichia coli by a block in initiation of translation. Nature (Lond.) New Biol. 232, 169–173 (1971).Google Scholar
  129. Ippen, K., Miller, J. H., Scaife, J., Beckwith, J.: New controlling element in the lac operon of E. coli. Nature (Lond.) 217, 825–827 (1968).CrossRefGoogle Scholar
  130. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J. molec. Biol. 3, 318–356 (196la).CrossRefGoogle Scholar
  131. Jacob, F., Monod, J.: On the regulation of gene activity. Cold Spr. Harb. Symp. quant. Biol. 26, 193–211 (1961b).Google Scholar
  132. Jacoby, G. A.: Control of the arg ECBH cluster in Escherichia coli. Molec. gen. Genet. 117, 337–348 (1972).PubMedGoogle Scholar
  133. Jacquet, M., Kepes, A.: The step sensitive to catabolite repression and its reversal by 3′–5′ cyclic AMP during induced synthesis of β-galactosidase in E. coli. Biochem. biophys. Res. Commun. 36, 84–92 (1969).PubMedCrossRefGoogle Scholar
  134. Jobe, A., Bourgeois, S.: Lac repressor-operator interaction. VI. The natural inducer of the lac operon. J. molec. Biol. 69, 397–408 (1972).PubMedCrossRefGoogle Scholar
  135. Jobe, A., Bourgeois, S.: Lac Repressor-Operator interaction. VIII. Lactose is an anti-inducer of the lac operon. J. molec. Biol. 75, 303–313 (1973).PubMedCrossRefGoogle Scholar
  136. Kaempfer, R. O. R., Magasanik, B.: Effect of infection with T-even phage on the inducible synthesis of β-galactosidase in Escherichia coli. J. molec. Biol. 27, 453–468 (1967).PubMedCrossRefGoogle Scholar
  137. Kaempfer, R. O. R., Sarkar, S.: Effect of infection with T-even phage on the constitutive synthesis of β-galactosidase in Escherichia coli. J. molec. Biol. 27, 469–474 (1967).CrossRefGoogle Scholar
  138. Kamen, R.: Infectivity of bacteriophage R17 RNA after sequential removal of 3′-terminal nucleotides. Nature (Lond.) 221, 321–325 (1969).CrossRefGoogle Scholar
  139. Kano-Sueoka, T., Sueoka, N.: Leucine-tRNA and cessation of Escherichia coli protein synthesis upon phage T2 infection. Proc. nat. Acad. Sci. (Wash.) 62, 1229–1236 (1969).CrossRefGoogle Scholar
  140. Kennell, D.: Inhibition of host protein synthesis during infection of Escherichia coli by bacteriophage T4. I. Continued synthesis of host ribonucleic acid. J. Virol. 2, 1262–1271 (1968).PubMedGoogle Scholar
  141. Kerr, C., Sadowski, P. D.: Gene 6 exonuclease of bacteriophage T7. II. Mechanism of the reaction. J. biol. Chem. 247, 311–318 (1972).PubMedGoogle Scholar
  142. Klem, E. B., Hsu, W.-T., Weiss, S. B.: The selective inhibition of protein initiation by T4 phage-induced factors. Proc. nat. Acad. Sci. (Wash.) 67, 696–701 (1970).CrossRefGoogle Scholar
  143. Kozloff, L. M.: Biochemistry of viruses. Ann. Rev. Biochem. 29, 475–502 (1960).PubMedCrossRefGoogle Scholar
  144. Kutter, E. M., Wiberg, J. S.: Biological effects of substituting cytosine for 5-hydroxy-methylcytosine in the deoxyribonucleic acid of bacteriophage T4. J. Virol. 4, 439–453 (1969).PubMedGoogle Scholar
  145. Kuwano, M., Schlessinger, D., Morse, D. E. : Loss of dispensable endonuclease activity in relief of polarity by suA. Nature (Lond.) New Biol. 231, 214–217 (1971).Google Scholar
  146. Labaw, L. W.: The origin of phosphorus in the T1, T5, T6 and T7 bacteriophages of Escherichia coli. J. Bact. 66, 429–436 (1953).PubMedGoogle Scholar
  147. Landy, A., Spiegelman, S.: Exhaustive hybridization and its application to an analysis of the ribonucleic acid synthesized in T4-infected cells. Biochemistry 7, 585–591 (1968).PubMedCrossRefGoogle Scholar
  148. Laycock, D. G., Hunt, J. A.: Synthesis of rabbit globin by a bacterial cell-free system. Nature (Lond.) 221, 1118–1122 (1969).CrossRefGoogle Scholar
  149. Leder, P., Skogerson, L. S., Callahan, R.: Translational initiation: Defects arising in Escherichia coli infected with phage T7, λ, and Qβ. Arch. Biochem. Biophys. 153, 814–822 (1972).PubMedCrossRefGoogle Scholar
  150. Lederman, M., Zubay, G.: DNA-directed peptide synthesis. I. A comparison of T2 and Escherichia coli DNA directed peptide synthesis in two cell-free systems. Biochim. biophys. Acta (Amst.) 149, 253–258 (1967).Google Scholar
  151. Lederman, M., Zubay, G.: DNA-directed peptide synthesis. V. The cell-free synthesis of a polypeptide with β-galactosidase activity. Biochem. biophys. Res. Commun. 32, 710–714 (1968).PubMedCrossRefGoogle Scholar
  152. Lee-Huang, S., Ochoa, S.: Messenger discriminating species of initiation factor F3. Nature (Lond.) New Biol. 234, 236–239 (1971).Google Scholar
  153. Lee-Huang, S., Ochoa, S.: Specific inhibitors of MS2 and late T4 RNA translation in E. coli. Biochem. biophys. Res. Commun. 49, 371–376 (1972).PubMedCrossRefGoogle Scholar
  154. Lembach, K. J., Buchanan, J. M.: The relationship of protein synthesis to early transcriptive events in bacteriophage T4-infected Escherichia coli B. J. biol. Chem. 245, 1575–1587 (1970).PubMedGoogle Scholar
  155. Lembach, K. J., Kuninaka, A., Buchanan, J. M.: The relationship of DNA replication to the control of protein synthesis in protoplasts of T4-infected Escherichia coli B. Proc. nat. Acad. Sci. (Wash.) 62, 446–453 (1969).CrossRefGoogle Scholar
  156. Leppla, S. H., Bjoraker, B., Bock, R. H.: Borohydride reduction of periodate-oxidized chain ends. Methods in Enzymology 12b, 236–240 (1968).CrossRefGoogle Scholar
  157. Leutgeb, W., Schwarz, U.: Zur Biosynthese des formgebenden Elements der Bakterienzellwand. I. Abbau des Mureins als erster Schritt beim Wachstum des Sacculus. Z. Naturforsch. 22b, 545–549 (1967).Google Scholar
  158. Levinthal, C., Hosoda, J., Shub, D.: The control of protein synthesis after phage infection. In: J. S. Colter and W. Paranchych (eds.), The molecular biology of viruses, p. 71–87. New York: Academic Press 1967.Google Scholar
  159. Lipmann, F.: What do we know about protein synthesis? In: F. T. Kenney, B. A. Hamkalo, G. Favelukes, and J. T. August (eds.), Gene expression and its regulation, p. 1–12. New York: Plenum 1973.Google Scholar
  160. Lodish, H. F.: Bacteriophage f2 RNA: Control of translation and gene order. Nature (Lond.) 220, 345–350 (1968).CrossRefGoogle Scholar
  161. Losick, R.: In vitro transcription. Ann. Rev. Biochem. 41, 409–446 (1972).PubMedCrossRefGoogle Scholar
  162. Lucas-Lenard, J., Lipmann, F.: Protein Biosynthesis. Ann. Rev. Biochem. 40, 409–448 (1971).PubMedCrossRefGoogle Scholar
  163. Maas, W. K.: Studies on repression of arginine biosynthesis in Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 26, 183–191 (1961).Google Scholar
  164. Magasanik, B.: Catabolite repression. Cold Spr. Harb. Symp. quant. Biol. 26, 249–256 (1961).Google Scholar
  165. Magasanik, B.: Glucose effects: Inducer exclusion and repression. In: J. R. Beckwith and D. Zipser (eds.), The lactose Operon, p. 189–219. Cold Spring Harbor Laboratory 1970.Google Scholar
  166. Maitra, U., Lockwood, A. H., Dubnoff, J. S., Guha, A.: Termination, release, and reinitiation of RNA chains from DNA templates by Escherichia coli RNA polymerase. Cold Spr. Harb. Symp. quant. Biol. 35, 143–156 (1970).Google Scholar
  167. Makman, R. S., Sutherland, E. W.: Adenosine 3′, 5′-phosphate in Escherichia coli. J. biol. Chem. 240, 1309–1314 (1965).PubMedGoogle Scholar
  168. Maniatis, T., Ptashne, M.: Multiple repressor binding at the operators in bacteriophage λ. Proc. nat. Acad. Sci. (Wash.) 70, 1531–1535 (1973).CrossRefGoogle Scholar
  169. Marrs, B. L., Yanofsky, C.: Host and bacteriophage specific messenger RNA degradation in T7-infected Escherichia coli. Nature (Lond.) New Biol. 234, 168–170 (1971).Google Scholar
  170. Mathews, C. K.: Bacteriophage biochemistry, p. 34. New York: Van Nostrand Reinhold Co. 1971.Google Scholar
  171. Matthaei, J. H., Nirenberg, M. W.: Characteristics and stabilization of DNAsesensitive protein synthesis in E. coli extracts. Proc. nat. Acad. Sci. (Wash.) 47, 1580–1588 (1961).CrossRefGoogle Scholar
  172. McClain, W. H.: UAG suppressor coded by bacteriophage T4. FEBS Letters 6, 99–101 (1970).PubMedCrossRefGoogle Scholar
  173. McFall, E., Mandelstam, J.: Specific metabolic repression of three induced enzymes in Escherichia coli. Biochem. J. 89, 391–398 (1963).PubMedGoogle Scholar
  174. Milanesi, G., Brody, E. N., Grau, O., Geiduschek, E. P.: Transcriptions of the bacteriophage T4 template in vitro: Separation of “delayed early” from “immediate early” transcription. Proc. nat. Acad. Sci. (Wash.) 66, 181–188 (1970).CrossRefGoogle Scholar
  175. Millette, R. L., Trotter, C. D.: Initiation and release of RNA by DNA-dependent RNA polymerase. Proc. nat. Acad. Sci. (Wash.) 66, 701–708 (1970).CrossRefGoogle Scholar
  176. Millette, R. L., Trotter, C. D., Herrlich, P., Schweiger, M.: In vitro synthesis, termination, and release of active messenger RNA. Cold Spr. Harb. Symp. quant. Biol. 35, 135–142 (1970).Google Scholar
  177. Minkley, E. G., Pribnow, D.: Transcription of the early region of bacteriophage T7: Selective initiation with dinucleotides. J. molec. Biol. 77, 255–277 (1973).PubMedCrossRefGoogle Scholar
  178. Monod, J.: The phenomenon of enzymatic adaptation. Growth 11, 223–289 (1947).Google Scholar
  179. Monod, J., Wollman, E. L.: L’ inhibition de la croissance et de l’adaptation enzymatique chez les bacteries infectées par le bactériophage. Ann. Inst. Pasteur 73, 937–956 (1947).Google Scholar
  180. Morrison, T. G., Lodish, H. F.: Translation of bacteriophage Qβ RNA by cytoplasmic extracts of mammalian cells. Proc. nat. Acad. Sci. (Wash.) 70, 315–319 (1973).CrossRefGoogle Scholar
  181. Morrison, T. G., Malamy, M. H.: T7 translational control mechanisms and their inhibition by F factors. Nature (Lond.) New Biol. 231, 37–41 (1971).CrossRefGoogle Scholar
  182. Morse, D. E.: “Delayed-early” mRNA for the tryptophan operon? An effect of chloramphenicol. Cold Spr. Harb. Symp. quant. Biol. 35, 495–496 (1970).Google Scholar
  183. Morse, D. E., Cohen: Abstr. Cold Spring Harbor Bacteriophage Meeting 1972.Google Scholar
  184. Morse, D. E., Guertin, M.: Regulation of mRNA utilization and degradation by amino-acid starvation. Nature (Lond.) New Biol. 232, 165–169 (1971).CrossRefGoogle Scholar
  185. Morse, D. E., Mosteller, R., Baker, R. F., Yanofsky, C.: Direction of in vivo degradation of tryptophan messenger RNA—a correction. Nature (Lond.) 223, 40–43 (1969).CrossRefGoogle Scholar
  186. Morse, D. E., Mosteller, R. D., Yanofsky, C.: Dynamics of synthesis, translation, and degradation of trp operon messenger RNA in E. coli. Cold Spr. Harb. Symp. quant. Biol. 34, 725–740 (1969).Google Scholar
  187. Morse, D. E., Primakoff, P.: Relief of polarity in E. coli by “suA”. Nature (Lond.) 226, 28–31 (1970).CrossRefGoogle Scholar
  188. Morse, D. E., Yanofsky, C.: Amber mutants of the trpR regulatory gene. J. molec. Biol. 44, 185–193 (1969).PubMedCrossRefGoogle Scholar
  189. Nakada, D., Magasanik, B.: The roles of inducer and catabolite repressor in the synthesis of β-galactosidase by Escherichia coli. J. molec. Biol. 8, 105–127 (1964).PubMedCrossRefGoogle Scholar
  190. Naono, S., Tokuyama, K.: On the mechanism of λDNA transcription in vitro. Cold Spr. Harb. Symp. quant. Biol. 35, 375–381 (1970).Google Scholar
  191. Natale, P. J., Buchanan, J. M.: DNA-directed synthesis in vitro of T4 phage-specific enzymes. Proc. nat. Acad. Sci. (Wash.) 69, 2513–2517 (1972).CrossRefGoogle Scholar
  192. Newton, W. A., Beckwith, J. R., Zipser, D., Brenner, S.: Nonsense mutants and polarity in the lac operon of Escherichia coli. J. molec. Biol. 14, 290–296 (1965).PubMedCrossRefGoogle Scholar
  193. Nisman, B., Pelmont, J.: De novo protein synthesis in vitro. Progr. Nucleic Acid Research and Molecular Biology 3, 235–297 (1964).CrossRefGoogle Scholar
  194. Nissley, P., Anderson, W. B., Gallo, M., Pastan, I., Perlman, R. L.: The binding of cyclic adenosine monophosphate receptor to deoxyribonucleic acid. J. biol. Chem. 247, 4264–4269 (1972).PubMedGoogle Scholar
  195. Noll, M., Noll, H., Lingrel, J. B.: Initiation factor IF-3-dependent binding of Escherichia coli ribosomes and N-formylmethionine transfer-RNA to rabbit globin messenger. Proc. nat. Acad. Sci. (Wash.) 69, 1843–1847 (1972).CrossRefGoogle Scholar
  196. Nomura, M., Erdmann, V. A.: Reconstitution of 50S ribosomal subunits from dissociated molecular components. Nature (Lond.) 228, 744–748 (1970).CrossRefGoogle Scholar
  197. Nomura, M., Witten, C., Mantei, N., Echols, H.: Inhibition of host nucleic acid synthesis by bacteriophage T4: Effect of chloramphenicol at various multiplicities of infection. J. molec. Biol. 17, 273–278 (1966).PubMedCrossRefGoogle Scholar
  198. Ohnishi, Y., Silengo, L., Kuwano, M., Schlessinger, D.: 3′,5′-cyclic adenosine monophosphate-requiring mutants of Escherichia coli. J. Bact. 111, 745–749 (1972).Google Scholar
  199. Ohshima, Y., Horiuchi, T., Iida, Y., Kameyama, T.: Transcription and repression of the lac operon in vitro. Cold Spr. Harb. Symp. quant. Biol. 35, 425–432 (1970).Google Scholar
  200. Olson, K. C., Deeney, A. O’C., Beaudreau, G. S.: Inhibition of protein synthesis by an RNA fraction from myeloblastosis virus. Biochim. biophys. Acta (Amst.) 161, 532–547 (1968).Google Scholar
  201. Pardee, A. B. Jacob, F., Monod, J.: The genetic control and cytoplasmic expression of “inducibility” in the synthesis of β-galactosidase by E. coli. J. molec. Biol. 1, 165–178 (1959).CrossRefGoogle Scholar
  202. Parkinson, J. S., Huskey, R. J.: Deletion mutants of bacteriophage lambda. I. Isolation and initial characterization. J. molec. Biol. 56, 369–384 (1971).PubMedCrossRefGoogle Scholar
  203. Parks, J. S., Gottesman, M., Perlman, R. L., Pastan, I.: Regulation of galactokinase synthesis by cyclic adenosine 3′, 5 ′-monophosphate in cell-free extracts of Escherichia coli. J. biol. Chem. 246, 2419–2424 (1971).PubMedGoogle Scholar
  204. Pastan, I., Perlman, R.: Cyclic adenosine monophosphate in bacteria. Science 169, 339–344 (1970).PubMedCrossRefGoogle Scholar
  205. Perlman, R., Pastan, I.: Cyclic 3′,5′-AMP: Stimulation of β-galactosidase and tryptophanase induction in E. coli. Biochem. biophys. Res. Commun. 30, 656–664 (1968a).PubMedCrossRefGoogle Scholar
  206. Perlman, R. L., Pastan, I: Regulation of β-galactosidase synthesis in Escherichia coli by cyclic adenosine-3′,5′-monophosphate. J. biol. Chem. 243, 5420–5427 (1968b).PubMedGoogle Scholar
  207. Perlman, R. L., Crombrugghe, B. de, Pastan, I.: Cyclic AMP regulates catabolite and transient repression in E. coli. Nature (Lond.) 223, 810–812 (1969).CrossRefGoogle Scholar
  208. Platt, T., Weber, K., Ganem, D., Miller, J. H.: Translational restarts: AUG reinitiation of a lac repressor fragment. Proc. nat. Acad. Sci. (Wash.) 69, 897–901 (1972).CrossRefGoogle Scholar
  209. Pollack, Y., Groner, Y., Aviv (Greenshpan), H., Revel, M.: Role of initiation factor B (F3) in the preferential translation of T4 late messenger RNA in T4 infected E. coli. FEBS Letters 9, 218–221 (1970).PubMedCrossRefGoogle Scholar
  210. Ponta, H., Rahmsdorf, H. J., Pai, S. H., Herrlich, P., Schweiger, M.: Control of gene expression in T7. T7 transcriptional inhibitor: Isolation of a new control protein and mechanism of action. In prep. (1974).Google Scholar
  211. Pouwels, P. H., Rotterdam, J. van: In vitro synthesis of enzymes of the tryptophan operon of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 69, 1786–1790 (1972).CrossRefGoogle Scholar
  212. Primosigh, J., Pelzer, H., Maass, D., Weidel, W.: Chemical characterization of mucopeptides released from the E. coli B cell wall by enzymic action. Biochim. biophys. Acta (Amst.) 46, 68–80 (1961).CrossRefGoogle Scholar
  213. Ptashne, M.: Repressor and its action. In: A. D. Hershey (ed.), The bacteriophage lambda, p. 221–237 Cold Spring Harbor Laboratory 1971.Google Scholar
  214. Puck, T. T., Lee, H. H.: Mechanism of cell wall penetration by viruses. II. Demonstration of cyclic permeability change accompanying virus infection of Escherichia coli B cells. J. exp. Med. 101, 151–175 (1955).PubMedCrossRefGoogle Scholar
  215. Pulitzer, J. F.: Function of T4 gene 55. I. Characterization of temperature-sensitive mutations in the “maturation” gene 55. J. molec. Biol. 49, 473–488 (1970).PubMedCrossRefGoogle Scholar
  216. Rabussay, D., Herrlich, P., Schweiger, M., Zillig, W.: More evidence for bacteria-like protein synthesizing apparatus in chloroplasts and mitochondria. FEBS Letters 4, 55–56 (1969).PubMedCrossRefGoogle Scholar
  217. Rabussay, D., Zillig, W.: A rifampicin resistant RNA-polymerase from E. coli altered in the β-subunit. FEBS Letters 5, 104–106 (1969).PubMedCrossRefGoogle Scholar
  218. Rabussay, D., Zillig, W., Herrlich, P.: Characterization of the Bacillus stearothermophilus phage Φμ-4 and its DNA. Virology 41, 91–100 (1970).PubMedCrossRefGoogle Scholar
  219. Rahmsdorf, H. J., Herrlich, P., Tao, M., Schweiger, M.: Interference of phage with host DNA, RNA, and protein synthesis. In G. Raspé and S. Bernhard (eds.), Virus-cell interactions. Advances in the Biosciences, vol. 11, p. 219–232. Braunschweig: Pergamon Press, Vieweg 1973.Google Scholar
  220. Rahmsdorf, H. J., Pai, S. H., Ponta, H., Herrlich, P., Roskoski, R., Jr., Schweiger, M., Studier, F. W.: Protein kinase induction in Escherichia coli by bacteriophage T7. Proc. nat. Acad. Sci. (Wash.) 71, 586–589 (1974).CrossRefGoogle Scholar
  221. Ravenswaay Claasen, J. C. van, Leeuwen, A. B. J. van, Duijts, G. A. H., Bosch, L.: In vitro translation of alfalfa mosaic virus RNA. J. molec. Biol. 23, 535–544 (1967).CrossRefGoogle Scholar
  222. Rekosh, D. M., Lodish, H. F., Baltimore, D.: Protein synthesis in Escherichia coli extracts programmed by poliovirus RNA. J. molec. Biol. 54, 327–340 (1970).PubMedCrossRefGoogle Scholar
  223. Reznikoff, W. S., Miller, J. H., Scaife, J. G., Beckwith, J. R.: A mechanism for repressor action. J. molec. Biol. 43, 201–213 (1969).PubMedCrossRefGoogle Scholar
  224. Rice, R., Fraenkel-Conrat, H.: Fidelity of translation of satellite tobacco necrosis virus ribonucleic acid in a cell-free Escherichia coli system. Biochemistry 12, 181–187 (1973).PubMedCrossRefGoogle Scholar
  225. Richardson, J. P.: Rates of bacteriophage T4 RNA chain growth in vitro. J. molec. Biol. 49, 235–240 (1970).PubMedCrossRefGoogle Scholar
  226. Richter, D., Herrlich, P., Schweiger, M.: Phage DNA directed enzyme synthesis in in vitro system from yeast mitochondria. Nature (Lond.) New Biol. 238, 74–76 (1972).Google Scholar
  227. Riggs, A. D., Bourgeois, S.: On the assay, isolation and characterization of the lac repressor. J. molec. Biol. 34, 361–364 (1968).PubMedCrossRefGoogle Scholar
  228. Riggs, A. D., Bourgeois, S., Newby, R. F., Cohn, M.: DNA binding of the lac repressor. J. molec. Biol. 34, 365–368 (1968).PubMedCrossRefGoogle Scholar
  229. Riggs, A. D., Reiness, G., Zubay, G.: Purification and DNA-binding properties of the catabolite gene activator protein. Proc. nat. Acad. Sci. (Wash.) 68, 1222–1225 (1971).CrossRefGoogle Scholar
  230. Riggs, A. D., Suzuki, H., Bourgeois, S.: lac repressor-operator interaction. I. Equilibrium studies. J. molec. Biol. 48, 67–83 (1970).PubMedCrossRefGoogle Scholar
  231. Riley, P. A.: A suggested mechanism for DNA transcription. Nature (Lond.) 228, 522–525 (1970).CrossRefGoogle Scholar
  232. Ritchie, D. A., Thomas, C. A., Jr., MacHattie, L. A., Wensink, P.C.: Terminal repetition in non-permuted T3 and T7 bacteriophage DNA molecules. J. molec. Biol. 23, 365–376 (1967).PubMedCrossRefGoogle Scholar
  233. Riva, S., Cascino, A., Geiduschek, E. P.: Coupling of late transcription to viral replication in bacteriophage T4 development. J. molec. Biol. 54, 85–102 (1970).PubMedCrossRefGoogle Scholar
  234. Roberts, J. W.: Termination factor for RNA synthesis. Nature (Lond.) 224, 1168–1174 (1969).CrossRefGoogle Scholar
  235. Robertson, H. D., Webster, R. E., Zinder, N. D.: Purification and properties of ribonuclease III from Escherichia coli. J. biol. Chem. 243, 82–91 (1968).PubMedGoogle Scholar
  236. Rose, J. K., Mosteller, R. D., Yanofsky, C.: Tryptophan messenger ribonucleic acid elongation rates and steady-state levels of tryptophan operon enzymes under various growth conditions. J. molec. Biol. 51, 541–550 (1970).PubMedCrossRefGoogle Scholar
  237. Rose, J. K., Squires, C. L., Yanofsky, C., Yang, H.-L., Zubay, G.: Regulation of in vitro transcription of the tryptophan operon by purified RNA polymerase in the presence of partially purified repressor and tryptophan. Nature (Lond.) New Biology 245, 133–137 (1973).CrossRefGoogle Scholar
  238. Rouvière, J., Wyngaarden, J., Cantoni, J., Gros, F., Kepes, A.: Effect of T4 infection on messenger RNA synthesis in Escherichia coli. Biochim. biophys. Acta (Amst.) 166, 94–114 (1968).Google Scholar
  239. Sadowski, P. D., Kerr, C.: Degradation of Escherichia coli B deoxyribonucleic acid after infection with deoxyribonucleic acid-defective amber mutants of bacteriophage T7. J. Virol. 6, 149–155 (1970).PubMedGoogle Scholar
  240. Sakiyama, S., Buchanan, J. M.: In vitro synthesis of deoxynucleotide kinase programmed by T4-RNA. Proc. nat. Acad. Sci. (Wash.) 68, 1376–1380 (1971).CrossRefGoogle Scholar
  241. Sakiyama, S., Buchanan, J. M.: Relationship between molecular weight of T4 phage-induced deoxynucleotide kinase and the size of its messenger ribonucleic acid. J. biol. Chem. 248, 3150–3154 (1973).PubMedGoogle Scholar
  242. Salser, W., Bolle, A., Epstein, R.: Transcription during bacteriophage T4 development: A demonstration that distinct subclasses of the “early” RNA appear at different times and that some are “turned off” at late times. J. molec. Biol. 49, 271–295 (1970).PubMedCrossRefGoogle Scholar
  243. Salser, W.,Gesteland, R. F., Bolle, A.: In vitro synthesis of bacteriophage lysozyme. Nature (Lond.) 215, 588–591 (1967).CrossRefGoogle Scholar
  244. Sauerbier, W., Bräutigam, A. R.: Control of gene function in bacteriophage T4. II. Synthesis of messenger ribonucleic acid and protein after interrupting deoxyribonucleic acid replication and glucosylation. J. Virol. 5, 179–187 (1970).PubMedGoogle Scholar
  245. Sauerbier, W., Hercules, K.: Control of gene function in bacteriophage T4. IV. Post-transcriptional shutoff of expression of early genes. J. Virol. 12, 538–547 (1973).PubMedGoogle Scholar
  246. Sauerbier, W., Millette, R. L., Hackett, P. B., Jr.: The effects of ultraviolet irradiation on the transcription of T4 DNA. Biochim. biophys. Acta (Amst.) 209, 368–386 (1970).Google Scholar
  247. Sauerbier, W., Schweiger, M., Herrlich, P.: Control of gene function in bacteriophage T4. III. Preventing the shutoff of early enzyme synthesis. J. Virol. 8, 613–618 (1971).PubMedGoogle Scholar
  248. Scaife, J., Beckwith, J. R.: Mutational alteration of the maximal level of lac operon expression. Cold. Spr. Harb. Symp. quant. Biol. 31, 403–408 (1966).Google Scholar
  249. Schäfer, R.: Über Mechanismen der Initiation, Elongation und Termination in der Transcription. Thesis, München 1972.Google Scholar
  250. Schäfer, R., Zillig, W.: Kappa, a novel factor for the arrest of transcription in vitro by DNA-dependent RNA polymerase from Escherichia coli at specific sites of natural templates. Europ. J. Biochem. 33, 201–206 (1973a).PubMedCrossRefGoogle Scholar
  251. Schäfer, R., Zillig, W.: The effects of ionic strength on termination of transcription of DNAs from bacteriophages T4, T5 and T7 by DNA-dependent RNA polymerase from Escherichia coli and the nature of termination by factor ϱ. Europ. J. Biochem. 33, 215–226 (1973 b).PubMedCrossRefGoogle Scholar
  252. Schäfer, R., Zillig, W., Zechel, K.: A model for the initiation of transcription by DNA-dependent RNA polymerase from Escherichia coli. Europ. J. Biochem. 33, 207–217 (1973).PubMedCrossRefGoogle Scholar
  253. Schedl, P. D., Singer, R. E., Conway, Th. W.: A factor required for the translation of bacteriophage f2 RNA in extracts of T4-infected cells. Biochem. biophys. Res. Commun. 38, 631–637 (1970).PubMedCrossRefGoogle Scholar
  254. Schell, J., Glover, S. W., Stacey, K. A., Broda, P. M. A., Symonds, N.: The restriction of phage T3 by certain strains of E. coli. Genet. Res. 4, 483–484 (1963).CrossRefGoogle Scholar
  255. Scheps, R., Zeller, H., Revel, M.: Deficiency in initiation factors of protein synthesis induced by phage T7 in E. coli F+ strains. FEBS Letters 27, 1–4 (1972).PubMedCrossRefGoogle Scholar
  256. Scherzinger, E., Herrlich, P., Schweiger, M., Schuster, H.: The early region of the DNA of bacteriophage T7. Europ. J. Biochem. 25, 341–348 (1972a).PubMedCrossRefGoogle Scholar
  257. Scherzinger, E.,Herrlich, P., Schweiger, M.: Transcription of T3 and T7 early genes by T3 and T7 RNA polymerases. Molec. gen. Genet. 118, 67–77 (1972b).PubMedGoogle Scholar
  258. Schmidt, D. A., Mazaitis, A. J., Kasai, T., Bautz, E. K. F.: Involvement of a phage T4 σ factor and an anti-terminator protein in the transcription of early T4 genes in vivo. Nature (Lond.) 225, 1012–1016 (1970).CrossRefGoogle Scholar
  259. Schumacher, G., Ehring, R.: RNA-directed cell-free synthesis of the galactose enzymes of Escherichia coli. Molec. gen. Genet, in press (1973).Google Scholar
  260. Schwartz, D., Beckwith, J. R.: Mutants missing a factor necessary for the expression of catabolite-sensitive operons in E. coli. In: J. R. Beckwith and D. Zipser (eds.), The lactose operon, p. 417–422. Cold Spring Harbor Laboratory 1970.Google Scholar
  261. Schwartz, J. H.: Initiation of protein synthesis under the direction of tobacco mosaic virus RNA in cell-free extracts of Escherichia coli. J. molec. Biol. 30, 309–322 (1967).PubMedGoogle Scholar
  262. Schweiger, M.: Die DNA-abhängige in vitro-Synthese von Enzymen. Presentation at the Frühjahrstagung der Gesellschaft für Biologische Chemie, Tübingen, April 1967.Google Scholar
  263. Schweiger, M.: Gen- (DNA-)abhängige Proteinsynthese in vitro. Thesis, Univ. München 1968.Google Scholar
  264. Schweiger, M., Gold, L. M.: Bacteriophage T4 DNA-dependent in vitro synthesis of lysozyme. Proc. nat. Acad. Sci. (Wash.) 63, 1351–1358 (1969a).CrossRefGoogle Scholar
  265. Schweiger, M., Gold, L. M.: DNA-dependent in vitro synthesis of bacteriophage enzymes. Cold Spr. Harb. Symp. quant. Biol. 34, 763–766 (1969b).Google Scholar
  266. Schweiger, M., Gold, L. M.: Escherichia coli and Bacillus subtilis phage deoxyribonucleic acid-directed deoxycytidylate deaminase synthesis in Escherichia coli extracts. J. biol. Chem. 245, 5022–5025 (1970).PubMedGoogle Scholar
  267. Schweiger, M., Herrlich, P., Millette, R. L.: Gene expression in vitro from deoxyribonucleic acid of bacteriophage T7. J. biol. Chem. 6707–6712 (1971).Google Scholar
  268. Schweiger, M., Herrlich, P., Scherzinger, E., Rahmsdorf, H.-J.: Negative control of protein synthesis after infection with bacteriophage T7. Proc. nat. Acad. Sci. (Wash.) 69, 2203–2207 (1972).CrossRefGoogle Scholar
  269. Schweiger, M., Herrlich, P., Zillig, W.: Group specificity in protein synthesis. Hoppe-Seylers Z. physiol. Chem. 350, 775–783 (1969).PubMedCrossRefGoogle Scholar
  270. Sethi, V. S.: Structure and function of DNA-dependent RNA-polymerase. Progr. Biophys. molec. Biol. 23, 67–101 (1971).CrossRefGoogle Scholar
  271. Sheppard, D., Englesberg, E.: Positive control in the L-arabinose Gene-Enzyme Complex of Escherichia coli B/r as exhibited with stable merodiploids. Cold Spr. Harb. Symp. quant. Biol. 31, 345–347 (1966).Google Scholar
  272. Siegel, R. B., Summers, W. C.: The process of infection with coliphage T7. III. Control of phage-specific RNA synthesis in vivo by an early phage gene. J. molec. Biol. 49, 115–123 (1970).PubMedCrossRefGoogle Scholar
  273. Siegert, W., Konings, R. N. H., Bauer, H., Hofschneider, P. H.: Translation of avian myeloblastosis virus RNA in a cell-free lysate of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 69, 888–891 (1972).CrossRefGoogle Scholar
  274. Silver, S.: Acriflavine resistance: A bacteriophage mutation affecting the uptake of dye by the infected bacterial cells. Proc. nat. Acad. Sci. (Wash.) 53, 24–30 (1965).CrossRefGoogle Scholar
  275. Silverstone, A. E., Goman, M., Scaife, J. G.: ALT: a new factor involved in the synthesis of RNA by Escherichia coli. Molec. gen. Genet. 118, 223–234 (1972).PubMedCrossRefGoogle Scholar
  276. Silverstone, A. E., Magasanik, B., Reznikoff, W. S., Miller, J. H., Beckwith, J. R.: Catabolite sensitive site of the lac operon. Nature (Lond.) 221, 1012–1014 (1969).CrossRefGoogle Scholar
  277. Simon, M. N., Studier, F. W.: Physical mapping of the early region of bacteriophage T7 DNA. J. molec. Biol. 79, 249–265 (1973).PubMedCrossRefGoogle Scholar
  278. Starlinger, P., Saedler, H., Rak, B., Tillmann, E., Venkov, P., Waltschewa, L.: mRNA distal to polar nonsense and insertion mutations in the gal Operon of E. coli. Molec. gen. Genet., 122, 279–286 (1973).PubMedCrossRefGoogle Scholar
  279. Steinberg, R. A., Ptashne, M.: In vitro repression of RNA synthesis by purified λ phage repressor. Nature (Lond.) New Biol. 230, 76–80 (1971).Google Scholar
  280. Stent, G. S.: Mating in the reproduction of bacterial viruses, see Fig. 4, p. 138. Advanc. Virus Res. 5, 95–149 (1958).CrossRefGoogle Scholar
  281. Stevens, A.: An isotopic study of DNA-dependent RNA polymerase of E. coli following T4 phage infection. Biochem. biophys. Res. Commun. 41, 367–373 (1970).PubMedCrossRefGoogle Scholar
  282. Studier, F. W.: Sedimentation studies of the size and shape of DNA. J. molec. Biol. 11, 373–390 (1965).PubMedCrossRefGoogle Scholar
  283. Studier, F. W.: The genetics and physiology of bacteriophage T7. Virology 39, 562–574 (1969).PubMedCrossRefGoogle Scholar
  284. Studier, F. W.: Bacteriophage T7. Science 176, 367–376 (1972).PubMedCrossRefGoogle Scholar
  285. Studier, F. W.: Genetic Analysis of non-essential bacteriophage T7 genes. J. molec. Biol. 79, 227–236 (1973).PubMedCrossRefGoogle Scholar
  286. Studier, F. W., Maizel, J. V., Jr.: T7-directed protein synthesis. Virology 39, 575–586 (1969).PubMedCrossRefGoogle Scholar
  287. Sueoka, N., Kano-Sueoka, T.: A specific modification of leucyl-sRNA of Escherichia coli after phage T2 infection. Proc. nat. Acad. Sci. (Wash.) 52, 1535–1540 (1964).CrossRefGoogle Scholar
  288. Summers, W. C.: The process of infection with coliphage T7. I. Characterization of T7 RNA by polyacrylamide gel electrophoretic analysis. Virology 39, 175–182 (1969).PubMedCrossRefGoogle Scholar
  289. Summers, W. C.: The process of infection with coliphage T7. IV. Stability of RNA in bacteriophage-infected cells. J. molec. Biol. 51, 671–678 (1970).PubMedCrossRefGoogle Scholar
  290. Summers, W. C., Siegel, R. B.: Regulation of coliphage T7 RNA metabolism in vivo and in vitro. Cold Spr. Harb. Symp. quant. Biol. 35, 253–257 (1970a).Google Scholar
  291. Summers, W. C., Siegel, R. B.: Transcription of late phage RNA by T7 RNA polymerase. Nature (Lond.) 228, 1160–1162 (1970b).CrossRefGoogle Scholar
  292. Summers, W. C., Szybalski, W.: Totally asymmetric transcription of coliphage T7 in vivo: correlation with poly G binding sites. Virology 34, 9–16 (1968).PubMedCrossRefGoogle Scholar
  293. Szybalski, W., Bøvre, K., Fiandt, M., Hayes, S., Hradecna, Z., Kumar, S., Lozeron, H. A., Nijkamp, H. J. J., Stevens, W. F.: Transcriptional units and their controls in Escherichia coli phage λ: Operons and scriptons. Cold. Spr. Harb. Symp. quant. Biol. 35, 341–353 (1970).Google Scholar
  294. Tao, M., Schweiger, M.: Stimulation of galactokinase synthesis in Escherichia coli by adenosine-3′,5′-cyclic monophosphate. J. Bact. 102, 138–141 (1970).PubMedGoogle Scholar
  295. Terzi, M.: Studies on the mechanism of bacteriophage T4 interference with host metabolism. J. molec. Biol. 28, 37–44 (1967).PubMedCrossRefGoogle Scholar
  296. Thomas, R.: Control circuits, p. 211–220. In: A. D. Hershey (ed.), The bacteriophage lambda. Cold Spring Harbor Laboratory 1971.Google Scholar
  297. Traub, P., Nomura, M.: Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc. nat. Acad. Sci. (Wash.) 59, 777–784 (1968).CrossRefGoogle Scholar
  298. Traub, P., Zillig, W.: Untersuchungen zur Biosynthese der Proteine. VI. Eine neue Methode zur Darstellung eines zellfreien Systems aus Escherichia coli und deren Eigenschaften in der nucleinsäureabhängigen Proteinsynthese. Hoppe-Seylers Z. physiol. Chem. 343, 246–260 (1966).CrossRefGoogle Scholar
  299. Traub, P. Zillig, W., Millette, R. L., Schweiger, M.: Untersuchungen zur Biosynthese der Proteine. VII. Aktivität verschiedener Desoxyribonucleinsäuren und eines Ribonucleaseinhibitors aus Kaninchenreticulocyten in einem zellfreien Protein-synthese-System aus Escherichia coli. DNA-abhängige in vitro-Synthese „früher Proteine“des E. coli-Phagen T4. Hoppe-Seylers Z. physiol. Chemie 343, 261–275 (1966).CrossRefGoogle Scholar
  300. Trimble, R. B., Galivan, J., Maley, F.: The temporal expression of T2r+ bacteriophage genes in vivo and in vitro. Proc. nat. Acad. Sci. (Wash.) 69, 1659–1663 (1972a).CrossRefGoogle Scholar
  301. Trimble, R. B., Maley, G. F., Maley, F.: The in vitro synthesis of T2 bacteriophage-induced deoxycytidylate deaminase and its regulation by allosteric effectors. Arch. Biochem. Biophys. 153, 515–525 (1972b).PubMedCrossRefGoogle Scholar
  302. Tsugita, A., Fraenkel-Conrat, H., Nirenberg, M. W., Matthaei, J. H.: Demonstration of the messenger role of viral RNA. Proc. nat. Acad. Sci. (Wash.) 48, 846–853 (1962).CrossRefGoogle Scholar
  303. Tyler, B., Magasanik, B.: Molecular basis of transient repression of β-galactosidase in Escherichia coli. J. Bact. 97, 550–556 (1969).PubMedGoogle Scholar
  304. Ullmann, A., Monod, J.: Cyclic AMP as an antagonist of catabolite repression in Escherichia coli. FEBS Letters 2, 57–60 (1968).PubMedCrossRefGoogle Scholar
  305. Urm, E., Yang, H., Zubay, G., Kelker, N., Maas, W.: In vitro repression of N-α-acetyl-L-ornithinase synthesis in Escherichia coli. Molec. gen. Genet. 121, 1–7 (1973).PubMedCrossRefGoogle Scholar
  306. Waters, L. C., Novelli, G. D.: A new change in leucine transfer RNA observed in Escherichia coli infected with bacteriophage T2. Proc. nat. Acad. Sci. (Wash.) 57, 979–985 (1967).CrossRefGoogle Scholar
  307. Weiss, S. B., Hsu, W.-T., Foft, J. W., Scherberg, N. H.: Transfer RNA coded by the T4 bacteriophage genome. Proc. nat. Acad. Sci. (Wash.) 61, 114–121 (1968).CrossRefGoogle Scholar
  308. Wetekam, W.: Identification of template strand in heteroduplex DNA directing cell-free enzyme synthesis. Molec. gen. Genet. 118, 57–60 (1972).PubMedCrossRefGoogle Scholar
  309. Wetekam, W., Ehring, R.: Coordinate regulation of DNA-dependent cell-free synthesis of uridyltransferase and galactokinase. FEBS Letters 18, 271–273 (1971).PubMedCrossRefGoogle Scholar
  310. Wetekam, W., Ehring, R.: A role for the product of gene suA in restoration of polarity in vitro. Molec. gen. Genet. 124, 345–358 (1973).PubMedCrossRefGoogle Scholar
  311. Wetekam, W., Staack, K., Ehring, R.: DNA-dependent in vitro synthesis of enzymes of the galactose operon of Escherichia coli. Molec. gen. Genet. 112, 14–27 (1971).PubMedCrossRefGoogle Scholar
  312. Wetekam, W., Staack, K., Ehring, R.: Relief of polarity in DNA-dependent cell-free synthesis of enzymes of the galactose operon of Escherichia coli. Molec. gen. Genet. 116, 258–276 (1972).PubMedCrossRefGoogle Scholar
  313. Wiberg, J. S., Mendelsohn, S., Warner, V., Hercules, K., Aldrich, C., Munro, J. L.: SP 62, a viable mutant of bacteriophage T4 D defective in regulation of phage enzyme synthesis. J. Virol. 12, 775–792 (1973).PubMedGoogle Scholar
  314. Wilhelm, J. M., Haselkorn, R.: The chain growth rate of T4 lysozyme in vitro. Proc. nat. Acad. Sci. (Wash.) 65, 388–394 (1970).CrossRefGoogle Scholar
  315. Wilson, J. H.: Function of the bacteriophage T4 transfer RNA’s. J. molec. Biol. 74, 753–757 (1973).PubMedCrossRefGoogle Scholar
  316. Woese, C. R.: The present status of the genetic code. Progr. Nucleic Acid Research and Molecular Biology 7, 107–172 (1967).CrossRefGoogle Scholar
  317. Wood, W. B., Berg, P.: The effect of enzymatically synthesized ribonucleic acid on amino acid incorporation by a soluble protein-ribosome system from Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 48, 94–104 (1962).CrossRefGoogle Scholar
  318. Wu, A. M., Gosh, S., Echols, H.: Repression by the cI protein of phage λ: Interaction with RNA polymerase. J. molec. Biol. 67, 423–432 (1972).PubMedCrossRefGoogle Scholar
  319. Wu, A. M., Gosh, S., Willard, M., Davison, J., Echols, H.: Negative regulation by lambda: Repression of lambda RNA synthesis in vitro and host enzyme synthesis in vivo. In: A. D. Hershey (editor), The bacteriophage lambda, p. 589–598. Cold Spring Harbor Laboratory 1971.Google Scholar
  320. Yang, H.-L., Zubay, G.: Synthesis of the arabinose operon regulator protein in a cell-free system. Molec. gen. Genet. 122, 131–136 (1973).PubMedCrossRefGoogle Scholar
  321. Yarosh, E., Levinthal, C.: Exclusion of RNA bacteriophages and interference with their RNA replication by bacteriophage T4. J. molec. Biol. 30, 329–348 (1967).PubMedGoogle Scholar
  322. Young, E. T., Tissière, A.: In vitro synthesis of T4 glucosyltransferase. Cold Spr. Harb. Symp. quant. Biol. 34, 766–768 (1969).Google Scholar
  323. Zillig, W., Fuchs, E., Millette, R.: DNA-dependent RNA polymerase (EC 2.7.7.6), In: G. L. Cantoni and D. A. Davies (eds.), Procedures in nucleic acid research, p. 323–339. New York: Harper & Row 1966.Google Scholar
  324. Zillig, W., Zechel, K., Rabussay, D., Schachner, M., Sethi, V. S., Palm, P., Heil, A., Seifert, W.: On the role of different subunits of DNA-dependent RNA polymerase from E. coli in the transcription process. Cold Spr. Harb. Symp. quant. Biol. 35, 47–58 (1970).Google Scholar
  325. Zipser, D.: Polarity and translation punctuation. In: J. R. Beckwith and D. Zipser (eds.), The lactose operon, p. 221–232. Cold Spring Harbor Laboratory 1970.Google Scholar
  326. Zograf, Y. N., Nikiforov, V. G., Shemyakin, M. F.: Influence of DNA synthesis on the regulation of messenger RNA formation in E. coli B cells infected with T-even phages. Mol. Biologia 1, 79–87 (1967).Google Scholar
  327. Zubay, G.: A theory on the mechanism of messenger-RNA synthesis. Proc. nat. Acad. Sci. (Wash.) 48, 456–461 (1962).CrossRefGoogle Scholar
  328. Zubay, G., Lederman, M., De Vries, J. K.: DNA-directed peptide synthesis. III. Repression of β-galactosidase synthesis and inhibition of repressor by inducer in a cell-free system. Proc. nat. Acad. Sci. (Wash.) 58, 1669–1675 (1967).CrossRefGoogle Scholar
  329. Zubay, G.: The mechanism of activation of catabolite-sensitive genes: A positive control system. In: T. W. Rall, M. Rodbell, and P. Condliffe (eds.), The role of adenyl cyclase and cyclic 3′, 5′-AMP in biological systems, p. 231–237. Fogarty International Center Proceedings No. 4, Bethesda, Maryland, 1969.Google Scholar
  330. Zubay, G., Chambers, D. A.: A DNA-directed cell-free system for β-galactosidase synthesis; characterization of the novo synthesized enzyme and some aspects of the regulation of synthesis. Cold Spr. Harb. Symp. quant. Biol. 34, 753–761 (1969).Google Scholar
  331. Zubay, G., Chambers, D. A.: Regulating the lac operon, p. 297–347. In: D. Greenberg and H. Vogel (eds.), Metabolic pathways, vol. V. New York: Academic Press 1971.Google Scholar
  332. Zubay, G., Chambers, D. A., Cheong, L. C.: Cell-free studies on the regulation of the lac operon. In: J. R. Beckwith and D. Zipser (eds.), The lactose operon, p. 375–391. Cold Spring Harbor Laboratory 1970a.Google Scholar
  333. Zubay, G., Schwartz, D., Beckwith, J.: Mechanism of activation of catabolite-sensitive genes: A positive control system. Proc. nat. Acad. Sci. (Wash.) 66, 104–110 (1970b).CrossRefGoogle Scholar
  334. Zubay, G., Cheong, L., Gefter, M.: DNA-directed cell-free synthesis of biologically active transfer RNA: su<Stack><Subscript>III</Subscript><Superscript>+</Superscript></Stack>+III tyrosyl-tRNA. Proc. nat. Acad. Sci. (Wash.) 68, 2195–2197 (1971b).CrossRefGoogle Scholar
  335. Zubay, G., Gielow, L., Englesberg, E.: Cell-free studies on the regulation of the arabinose operon. Nature (Lond.) New Biol. 233, 164–165 (1971a).Google Scholar
  336. Zubay, G., Lederman, M.: DNA-directed peptide synthesis. VI. Regulating the expression of the lac operon in a cell-free system. Proc. nat. Acad. Sci. (Wash.) 62, 550–557 (1969).CrossRefGoogle Scholar
  337. Zubay, G., Morse, D. E., Schrenk, W. J., Miller, J. H. M.: Detection and isolation of the repressor protein for the tryptophan operon of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 69, 1100–1103 (1972).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1974

Authors and Affiliations

  • Manfred Schweiger
  • Peter Herrlich
    • 1
  1. 1.Max-Planck-Institut für Molekulare GenetikBerlin-DahlemGermany

Personalised recommendations