Advertisement

Experimental Aspects of Growth Plate Disorders

A Study Concerning Chondrocytic Lysosomes in Different Physical and Metabolic Conditions
  • U. N. Riede
Part of the Current Topics in Pathology book series (CT PATHOLOGY, volume 59)

Abstract

The present paper reports on investigations geared at finding a denominator common to the various growth plate disorders as elucidated by means of selected interference in the process of enchondral ossification in animals. Although growth disturbances are a marginal area of pathology, general questions of subcellular pathology are broached in discussions relating to their pathogenesis. Therefore, a short survey of the orthology of enchondral ossification precedes the report on the animal experiments: The capillaries exert a decisive influence on the hyaline epiphyseal cartilage, as cartilage is resorbed and mineralized in their vicinity. To investigate the behaviour of intact chondrocytes in the diffusion area of the capillaries, the epiphyseal cartilage was focally thermocoagulated. This induced a regenerative process in which mesenchyme, rich in capillaries, penetrated into the cartilage, as is the case in vitamin D-deficient rickets. It was, therefore, interesting to determine whether vitamin D-deficient rickets would produce effects on cellular metabolism and on cellular morphology, comparable to those observed following thermocoagulation.

Keywords

Collagen Fibril Cartilage Matrix Matrix Vesicle Epiphyseal Plate Epiphyseal Cartilage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akamatsu, Y., Takahashi, M.: Lathyrism in mice. Arch. Path. 78, 61–65 (1964)PubMedGoogle Scholar
  2. Alcock, N. W.: Calcification of cartilage. Clin. Orthop. rel. Res. 86, 287–311 (1972)Google Scholar
  3. Ali, S. Y., Sjadera, S. W., Anderson, H. C.: Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc. nat. Acad. Sci. (Wash.) 67, 1513–1520 (1970)Google Scholar
  4. Allison, A. C.: Role of lysosomes in oxygen toxicity. Nature (Lond.) 205, 141–143 (1965)Google Scholar
  5. D’ambrosia, R., Ferguson, A. B.: The formation of osteochondroma by epiphyseal cartilage transplantation. Clin. Orthop. 61, 103–115 (1968)PubMedGoogle Scholar
  6. Anderson, C. E., Parker, J.: Invasion and resorption in enchondral ossification. J. Bone Jt Surg. A 48, 899–914 (1966)Google Scholar
  7. Anderson, C. E., Parker, J.: Electron microscopy of the epiphyseal cartilage plate. A critical review of electron microscopic observations on enchondral ossification. Clin. Orthop. 58, 225–241 (1968)PubMedGoogle Scholar
  8. Anderson, H. C.: Electron microscopic studies of induced cartilage development and calcification. J. Cell Biol. 35, 81–101 (1967)PubMedGoogle Scholar
  9. Anderson, H. C.: Vesicles associated with calcification in the matrix of epiphyseal cartilage. J. Cell Biol. 41, 59–72 (1969)PubMedGoogle Scholar
  10. Anderson, H. C.: Calcium-accumulating vesicles in the intercellular matrix of bone. In: Hard tissue growth, repair and remineralization. Ciba Foundation Symposium 11 (new series), p. 213–247. Amsterdam-London-New York: Elsevier, Excerpta Medica, North-Holland 1973Google Scholar
  11. Aoike, J.: Relation between synovial joint and fibrinolytic activity of synovial fluid. Bull. Tokyo med. dent. Univ. 13, 77–95 (1966)PubMedGoogle Scholar
  12. Au, W. Y. W., Raisz, L. G.: Effect of vitamin D and dietary calcium on parathyroid activity. Amer. J. Physiol. 209, 637–642 (1965)PubMedGoogle Scholar
  13. Bachra, B. N., Fischer, H. R. A.: Mineral deposition in collagen in vitro. Calcif. Tiss. Res. 2, 343–352 (1968)Google Scholar
  14. Baker, J. R., Howell, J. M., Thompson, J. N.: Hypervitaminosis A in the chick. Brit. J. exp. Path. 48, 507–512 (1967)PubMedGoogle Scholar
  15. Ball, J., Garner, A.: Mineralisation of woven bone in osteomalacia. J. Path. Bact. 91, 563–568 (1965)Google Scholar
  16. Balogh, K.: Histochemischer Enzym-Nachweis im normalen und rachitischen Skelett-knorpel. Verh. dtsch. Ges. Path. 47, 146–149 (1963)Google Scholar
  17. Balogh, K., Kunin, A. S.: The effects of vitamin D2 and dietary phosphorus on oxidative enzymes in the epiphyseal cartilage of rachitis rats. Lab. Invest. 18, 782–788 (1968)PubMedGoogle Scholar
  18. Barka, T., Anderson, P. J.: Histochemical methods for acid phosphatase using hexasonium pararosanilinas coupler. J. Histochem. Cytochem. 10, 741–753 (1962)Google Scholar
  19. Barnes, M. J.: Biochemistry of collagens from mineralized tissues. In: Hard tissue growth, repair and remineralization. Ciba Foundation Symposium 11 (new series), p. 247–261. Amsterdam-London-New York: Elsevier, Excerpta Medica, North-Holland 1973Google Scholar
  20. Baylink, D., Wergedal, J., Thompson, E.: Loss of proteinpolysaccharides at sites where bone mineralization is initiated. J. Histochem. Cytochem. 20, 279–292 (1972)PubMedGoogle Scholar
  21. Beighton, P.: The Ehlers-Danlos syndrom. London: W. Heinemann Medical Books 1970Google Scholar
  22. Beneke, G., Goubaud, G., Schmitt, W.: Altersabhängige Veränderungen des Nicht-kollagenproteins in der Interzellularsubstanz des hyalinen Knorpels. Z. Geront. 2, 277–295 (1969)Google Scholar
  23. Bentley, G., Greer, R. B.: The fate of chondrocytes in enchondral ossification in the rabbit. J. Bone Jt Surg. B 52, 571–577 (1970)Google Scholar
  24. Bernard, G. W.: The ultrastructural interface of bone crystals and organic matrix in woven and lamellar enchondral bone. J. dent. Res. 5, 781–788 (1969)Google Scholar
  25. Bernard, G. W., Pease, D.: An electron microscopic study of initial intramembranous osteogenesis. Amer. J. Anat. 125, 271–290 (1969)PubMedGoogle Scholar
  26. Bernick, S., Ershoff, B. H., Lal, J. B.: Effects of hypervitaminosis D on bones and teeth of rats. J. internat. Vit. Nutr. Res. 41, 480–489 (1971)Google Scholar
  27. Berntsen, E.: Epiphyseal growth zone in acute lathyrism. Acta path, microbiol. scand. 69, 161–170 (1967)Google Scholar
  28. Blivaiss, B. B., Rosenberg, E. F., Kutuzov, H., Stoner, R.: Experimental ochronosis. Arch. Path. 82, 45–53 (1966)PubMedGoogle Scholar
  29. Bonucci, E.: Fine structure of early cartilage calcification. J. Ultrastruct. Res. 20, 33–50 (1967)PubMedGoogle Scholar
  30. Bonucci, E.: Further investigation on the organic/inorganic relationship in calcifying cartilage. Calcif. Tiss. Res. 3, 38–42 (1969)Google Scholar
  31. Bonucci, E.: Fine structure of epiphyseal cartilage in experimental scurvy. J. Path. 102, 219–227 (1970)PubMedGoogle Scholar
  32. Bonucci, E.: Fine structure and histochemistry of “calcifying globules” in epiphyseal cartilage. Z. Zellforsch. 103, 192–217 (1970)PubMedGoogle Scholar
  33. Bonucci, E., Denys-Matrjt, H., Tun-Chot, S., Hioco, D. J.: Bone structure in osteomalacia, with special reference to ultrastructure. J. Bone Jt Surg. B 51, 511–528 (1969)Google Scholar
  34. Bonucci, E., Nardi, F.: The cloverleaf skull syndrome. Virchows Arch. Abt. A 357, 199–212 (1972)Google Scholar
  35. Boothroyd, B.: The problem of demineralization in thin sections of fully calcified bone. J. Cell Biol. 20, 165–173 (1964)PubMedGoogle Scholar
  36. Bornstein, P.: The cross-linking of collagen and elastin and its inhibition in osteolathyrism. Amer. J. Path. 49, 429–435 (1970)Google Scholar
  37. Boudrillon, R. H., Brouse, H. E., Fischman, S., Webster, J.: Quantitative estimation of vitamin D by radiography. Med. Res. Council. 158 (1931)Google Scholar
  38. Bowness, J. M.: Present concept of the role of ground substance in calcification. Clin. Orthop. 59, 233–247 (1968)PubMedGoogle Scholar
  39. Boyde, A., Switsur, V. R., Fearnhead, R. W.: Application of the scanning electron-probe X-ray microanalyser to dental tissues. J. Ultrastruct. Res. 5, 201–207 (1961)PubMedGoogle Scholar
  40. Brearley, L. J., Storey, E.: Osteofluorosis in the rabbit. Pathology 2, 231–247 (1970)Google Scholar
  41. Brighton, C. T., Ray, R. D., Soble, L. W., Kuettner, K. E.: In vitro epiphyseal plate growth in various oxygen tensions. J. Bone Jt Surg. A 51, 1383–1396 (1969)Google Scholar
  42. Brookes, M.: The blood supply of bone. An approach to bone biology. London: Butter-worth Co. (Publ.) Ltd. 1971Google Scholar
  43. Cabrini, R. L.: Histochemistry of ossification. In: Bourne, G. H., Danielli, J. F. (eds.), Internat. Rev. Cytol., vol. II, p. 283. New York-London: Academic Press 1961Google Scholar
  44. Cameron, D. A.: The fine structure of bone and calcified cartilage. A critical review of the contribution of electron microscopy to the understanding of osteogenesis. Clin. Orthop. 26, 199–228 (1963)PubMedGoogle Scholar
  45. Cameron, D. A.: The golgi apparatus in bone and cartilage cells. Clin. Orthop. 58, 191–211 (1968)PubMedGoogle Scholar
  46. Campo, R. D.: Protein-polysaccharides of cartilage and bone in health and disease. Clin. Orthop. 68, 182–209 (1970)PubMedGoogle Scholar
  47. Campo, R. D., Bielen, R. J.: Acute toxic effect of sodium selenate on the epiphyseal plate of the rat. Calcif. Tiss. Res. 7, 318–330 (1971)Google Scholar
  48. Campo, R. D., Tourtelotte, C. D., Bielen, R. J.: The protein-polysaccharides of articular, epiphyseal plate and costal cartilage. Biochim. biophys. Acta (Amst.) 177, 501–511 (1969)Google Scholar
  49. Chou, W. S., Savage, J. E., O’dell, B. L.: Relation of monoamine oxidase activity and collagen crosslinking in copper-deficient and controll tissues. Proc. Soc. exp. Biol. (N.Y.) 128, 948–952 (1968)Google Scholar
  50. Cooper, R. R., Ponseti, I. V.: Metaphyseal dysostosis. J. Bone Jt Surg. A 55, 485–495 (1973)Google Scholar
  51. Cooper, R. R., Pedrini-Mille, A., Ponseti, I.V.: Metaphyseal dysostosis: a rough surfaced endoplasmic reticulum storage defect. Lab. Invest. 28, 119–125 (1973)PubMedGoogle Scholar
  52. Cranes, W. H., Shields, G. S., Cartwright, G. E., Wintrope, N. M.: Vascular lesions in copper deficient swine. Fed. Proc. 20, 118–130 (1961)Google Scholar
  53. Decker, J. D.: An electron microscopic investigation of osteogenesis in the embryonic chick. Amer. J. Anat. 118, 591–614 (1966)PubMedGoogle Scholar
  54. Dent, C. E., Friedman, M., Watson, L.: Hereditary pseudo-Vitamin D deficiency rickets. J. Bone Jt Surg. B 50, 708–719 (1968)Google Scholar
  55. Deshmuk, K., Nimni, M. E.: A defect in the intramolecular and intermolecular cross-linking of collagen caused by penicillamine. J. biol. Chem. 244, 1787–1795 (1969)Google Scholar
  56. Deshmuk, K., Just, M., Nimni, M. E.: A defect in the intramolecular and intermolecular crosslinking of collagen caused by Penicillamine. Clin. Orthop. rei. Res. 91, 186–196 (1973)Google Scholar
  57. Dingle, J.T.: The extracellular secretion of lysosomal enzymes. In: Dingle, J. T., Fell, H. B., Lysosomes in biology and pathology, vol. II, p. 422–436. Amsterdam-London: North-Holland Publishing Company 1969Google Scholar
  58. Dixon, B.: Regional variation in the cycle time of cells in epiphyseal cartilage. Rev. europ. Etudes clin. biol. 15, 875–878 (1970)Google Scholar
  59. Dodds, G. S., Cameron, H. C.: Studies on experimental rickets in rats. III. The behavior and fate of the cartilage remnants in the rachitic metaphysis. Amer. J. Path. 15, 723–740 (1939)PubMedGoogle Scholar
  60. Doerr, W.: Experimenteller Lathyrismus. Verh. dtsch. Ges. Path. 44, 145–149 (I960)Google Scholar
  61. Doerr, W., Rossner, A. J., Schreil, W.: Experimentelle Mesenchymschäden durch Lathyrus odoratus. Langenbecks Arch. klin. Chir. 294, 426–449 (1960)Google Scholar
  62. Duncumb, P., Shields, P. K.: In: Mckinley, T. D., Heinrich, K. F. J., Wittry, D. B. (eds.), The electron microprobe, p. 284. New York: John Wiley Sons Inc. 1966Google Scholar
  63. De Duve, C.: Lysosomes and cell injurie. In: Injury, inflammation and immunity, p. 283–311 ( Thomas, L., Uhr, J., Grant, L., eds.). Baltimore: Williams and Wilkins 1964Google Scholar
  64. De Duve, CH., Wattiaux, R., Wibo, M.: Effects of fat soluble compounds in lysosomes in vitro. Biochem. Pharmacol. 9, 97–115 (1962)Google Scholar
  65. Eanes, E. D., Termine, J. D., Posner, A. S.: Amorphus calcium phosphate in skeletal tissues. Clin. Orthop. rei. Res. 53, 223–235 (1967)Google Scholar
  66. Eeg-Larsen, M. N.: An experimental study on growth and glycolysis in the epiphyseal cartilage of rats. Acta physiol. scand. 38, Suppl. 128, 1–77 (1956)Google Scholar
  67. Ehrlich, M. G., Mankin, H. J., Treadwell, B. V.: Biochemical and physiological events during closure of the stapled distal femoral epiphyseal plate in rats. J. Bone Jt Surg. A 54, 309–322 (1972)Google Scholar
  68. Eisenstein, R., Sorgente, N., Arsenis, C., Kuettner, K. E.: Vitamin D effects on tissue and serum lysozyme. Arch. Path. 94, 479–485 (1972)PubMedGoogle Scholar
  69. Eisenstein, R., Sorgente, N., Kuettner, K. E.: Organization of extracellular matrix in epiphyseal growth plate. Amer. J. Path. 65, 515–534 (1971)PubMedGoogle Scholar
  70. Ellis, H. A.: Effects of the long-term administration to animals of dextran sulphate. J. Path. Bact. 89, 437–460 (1965)PubMedGoogle Scholar
  71. Engfeldt, B.: Studies on the epiphyseal growth zone. III. Electron microscopic studies on the normal epiphyseal growth zone. Acta path, microbiol. scand. 75, 201–219 (1969)Google Scholar
  72. Engfeldt, B.: Studies on the epiphyseal growth zone. IV. The effect of papain on the ultrastructure of epiphyseal cartilage. Acta path, microbiol. scand. 75, 220–228 (1969)Google Scholar
  73. Engfeldt, B., Hjerquist, S. O.: Studies on the epiphyseal growth zone. I. Preservation of acid glycosaminoglycans in tissues in some histotechnical procedures for electron microscopy. Virchows Arch. Abt. B 1, 222–229 (1968)Google Scholar
  74. Engfeldt, B., Hjertquist, S. O.: The effect of strontium administration on bones and teeth of rats maintained on diets with different calcium contents. Virchows Arch. Abt. A 346, 330–344 (1969)Google Scholar
  75. Erdheim, J.: Morphologische Studien über die Beziehungen der Epithelkörperchen zum Kalkstoffwechsel. Frankfurt. Z. Path. 7, 338–352 (1911)Google Scholar
  76. Eschenbach, C., Seebach, G.: Anomalie der Lysosomenmembran von neutrophilen Granulocyten als Ursache der progressiven septischen Granulomatose. Virchows Arch. Abt. B 7, 16–26 (1971)Google Scholar
  77. Estable-Puig, J. F., Bauer, W. C., Blumberg, J. M.: Paraphenylendiamine staining of osmium-fixed, plastic-embedded tissue for light and phase microscopy. J. Neuro-path. exp. Neurol. 24, 531–535 (1965)Google Scholar
  78. Fahmy, A., Hillman, W., Talley, P., Long, V.: Fibrillogenesis in the epiphyseal cartilage of adult rats. J. Bone Jt Surg. A 51, 802 (1969)Google Scholar
  79. Fell, H. B.: The role of organ cultures in the study of vitamins and hormones. Vitam. and Horm. 22, 81–127 (1964)Google Scholar
  80. Fell, H. B., Dingle, J. T.: Studies on the mode of action of excess of vitamin A. 6. Lysosomal protease and the degradation of cartilage matrix. Biochem. J. 87, 403–427 (1963)PubMedGoogle Scholar
  81. Fine, A. S., Person, P.: Cytochromoxydase activities of various cartilage tissues during growth and development. Calcif. Tiss. Res. 5, 85–90 (1970)Google Scholar
  82. Fischer, G.: Untersuchungen zur qualitativen Verteilung von Enzymen des Kohlehydratstoffwechsels in der Humerusepiphyse von Ratten bestimmter Altersgruppen. Acta anat. (Basel) 84, 19–30 (1973)Google Scholar
  83. Fitton-Jackson, S.: Fibrogenesis and the formation of matrix. In: Rohdal, K., Nicholson, J. T., Brown, E. M. (eds.), Bone as a tissue, p. 165–185-New York: McGraw-Hill Book Co. 1960Google Scholar
  84. Ford, J. K., Eyring, E. J., Anderson, C. E.: Thallium chondrodystrophy in chick embryos. An histological and biochemical investigation. J. Bone Jt Surg. A 50, 687–700 (1969)Google Scholar
  85. Freehafer, A. A.: Effect of hydrocortisone and gonadal hormone on growing rabbit bone. J. Surg. Res. 9, 35–41 (1969)PubMedGoogle Scholar
  86. Frimmer, M., Gries, J., Waldvogel, G.: Akute Wirkungen hoher Dosen Vitamin A auf die Stabilität von Lysosomen in der perfundierten Rattenleber. Int. Z. Vitaminforsch. 38, 454–458 (1968)PubMedGoogle Scholar
  87. Frost, H. M.: The physiology of cartilaginous, fibrous and bony tissue, p. 103–139 Springfield, Illinois: Ch. C. Thomas Publisher 1972Google Scholar
  88. Gander, E. S., Moppert, J. M.: Der Einfluß von Dimethylsulfoxyd auf die Permeabilität der Lysosomenmembran bei quantitativer und qualitativer Darstellung der sauren Phosphatase. Histochemie 20, 211–214 (1969)PubMedGoogle Scholar
  89. Garner, A.: Woven bone mineralisation in the rachitic rat. J. Path. Bact. 94, 149–154 (1967)PubMedGoogle Scholar
  90. Geiler, G., Strauch, G.: Über die Knochenveränderungen und Störungen der enchondralen Ossifikation beim Vitamin C-Mangel des Meerschweinchens. Beitr. Path. 125, 304–324 (1961)Google Scholar
  91. Ghadially, F. N., Fuller, J. A., Kirkaldy-Willis, W. H.: Ultrastructure of full-thickness defects in articular cartilage. Arch. Path. 92, 356–369 (1971)PubMedGoogle Scholar
  92. Glimcher, M. J.: Molecular biology of mineralized tissues with particular references to bone. Rev. mod. Phys. 31, 359–393 (1959)Google Scholar
  93. Glimcher, M. J.: Specifity of the molecular structure of organic matrices in mineralization. In: Sognnaes, R. F. (ed.), Calcification in biological systems. Amer. Ass. Advanc. Sci. 23, 421–487 (1960)Google Scholar
  94. Goel, S. C.: Electron microscopic studies on developing cartilage. I. The membrane system related to the synthesis and secretion of extracellular materials. J. Embryol. exp. Morph. 23, 169–184 (1970)PubMedGoogle Scholar
  95. Goessner, W.: Grundlagen und allgemeine pathologische Anatomie der Strahlenschäden. In: Therapieschäden (G. Scifert, ed.), S. 176–182. Stuttgart: Gustav Fischer 1973Google Scholar
  96. Goethlin, G., Ericsson, J.L. E.: Fine structural localization of acid Phosphomonoesterase in the Osteoblasts and osteocytes of fracture callus. Histochemie 35, 81–91 (1973)Google Scholar
  97. Goodman, J. R., Dallman, P. R.: Mitochondria and cytochrome oxidase in copper deficiency in the rat. In: Arcencaux, C. J. (ed.), Proceedings of the twenty-fifth annual EMSA Meeting. Claitor’s Bookstore, Louisiana, p. 164–165 (1967)Google Scholar
  98. Granda, J. L., Posner, A. S.: Distribution of four hydrolases in the epiphyseal plate. Clin. Orthop. 74, 269–272 (1971)PubMedGoogle Scholar
  99. Gray, L. H., Scott, O. C. A.: Oxygen tension and the radio-sensivity of tumors. In: Dickens, F. (ed.), Oxygen and the animal organism. London: Pergamon Press 1966Google Scholar
  100. Greenwald, R. A., Sajdera, S. W.: Extracellular localization of lysozyme in rachitic rat cartilage. Proc. Soc. exp. Biol. (N.Y.) 142, 924–927 (1973)Google Scholar
  101. Greer, R. B., Skinner, S., Zarins, A., Mankin, H. J.: Distribution of acidic glycosaminoglycans in rabbit growth plate cartilage. Calcif. Tiss. Res. 94, 194–199 (1972)Google Scholar
  102. Haebara, H., Yamasaki, Y., Kyogoku, M.: An autopsy case of osteogenesis imperfecta congenita (Histochemical and electron microscopical studies). Acta path. jap. 19, 377–394 (1969)PubMedGoogle Scholar
  103. Hale, A. J., Hall, T., Curran, R. C.: Electron-microprobe analysis of calcium phosphorus and sulphur in human arteries. J. Path. Bact. 93, 1–17 (1967)PubMedGoogle Scholar
  104. Hall, B. K.: Calcification of the cartilage formed on avian membrane bones. Clin. Orthop. Rel. Res. 78, 182–190 (1971)Google Scholar
  105. Ham, R. G., Sattler, G. L.: Clonal growth of differentiated rabbit cartilage cells. J. Cell Physiol. 72, 109–114 (1968)PubMedGoogle Scholar
  106. Hansson, L. I., Menander-Sellman, K., Stenstroem, A., Throngren, K. G.: Rate of normal longitudinal bone growth in the rat. Calcif. Tiss. Res. 10, 238–251 (1972)Google Scholar
  107. Heilmann, K., Nemetschek, TH., Voelkl, A.: Das Ehlers-Danlos-Syndrom aus morphologischer und chemischer Sicht. Virchows Arch. Abt. A 354, 268–284 (1971)Google Scholar
  108. Herrmann, H. J.: Das histomorphologische Verhalten des Knochensystems des Jungrindes nach quantitativer Mangelernährung. Path. vet. 2, 468–492 (1965)Google Scholar
  109. Hirsch, J. G., Cohn, Z. A.: Leucocyte lysosomes. In: AMOS, B., KOPROWSKI, H. (eds,), Cell-bound antibodies. Philadelphia: Wistar Institute Press 1964Google Scholar
  110. Hirschman, A.: Staining of fresh epiphyseal cartilage with toloidin blue. Histochemistry 10, 369–375 (1967)PubMedGoogle Scholar
  111. Hirschman, A., Dziewiatkowski, D.: Protein-polysaccharide loss during enchondral ossification: immunochemical evidence. Science 154, 393–397 (1966)PubMedGoogle Scholar
  112. Hjertquist, S.O.: Autoradiographic study of the proximal tibial growth zone in normal and rachitic rats after administration of radiosulphate. Acta path, microbiol. scand., Suppl. 154, 99–123 (1962)Google Scholar
  113. Hjertquist, S. O., Westerborn, O.: The effect of papain on epiphyseal cartilage in rachitic rats: Histologic, autoradiographic and microradiographic studies. Virchows Arch. path. Anat. 335, 143–158 (1962)Google Scholar
  114. Hoehling, H. J., Hall, T. A., Boothroyd, B., Cooke, C. J., Duncumb, P., Fitton-Jackson, S.: Untersuchungen der Vorstadien der Knochenbildung mit Hilfe der normalen und elektronenmikroskopischen Electron Probe X-ray Microanalysis. Naturwissenschaften 54, 142–143 (1967)Google Scholar
  115. Holtrop, M. E.: The potencies of the epiphyseal cartilage in enchondral ossification. Proc. kon. ned. Akad. Wet. 70, 21–28 (1967)Google Scholar
  116. Holtrop, M. E.: Factors influencing the growth rate in enchondral ossification. Proc. kon. ned. Akad. Wet. 70, 29–38 (1967)Google Scholar
  117. Holtrop, M. E.: The ultrastructure of the hypertrophic chondrocyte. Israel J. med. Sci. 7, 473–476 (1971)Google Scholar
  118. Holtrop, M. E.: The ultrastructure of the epiphyseal plate. I. The flattened chondrocyte. Calcif. Tiss. Res. 9, 131–139 (1972)Google Scholar
  119. Holtrop, M. E.: The ultrastructure of the epiphyseal plate. II. The hypertrophic chondrocyte. Calcif. Tiss. Res. 9, 140–151 (1972)Google Scholar
  120. Horwitz, A. L., Dorfman, A.: Subcellular sites for synthesis of chondromucoprotein of cartilage. J. Cell Biol. 38, 358–368 (1968)PubMedGoogle Scholar
  121. Hunt, D. D., Ponseti, I. V., Pedrini-Mille, A., Pedrini, V.: Multiple epiphyseal dysplasia in two siblings. J. Bone Jt Surg. A 49, 1611–1627 (1967)Google Scholar
  122. Iha, G. J., Deo, M. G., Ramalingaswami, V.: Bone growth in protein deficiency. Amer. J. Path. 53, 1111–1126 (1968)Google Scholar
  123. Irving, J. T., Heeley, J. D.: Resorption of bone collagen by multinucleated cells. Calcif. Tiss. Res. 6, 254–259 (1970)Google Scholar
  124. Irving, J. T., Wuthier, R. E.: Histochemistry and biochemistry of calcification with special reference to the role of lipids. Clin. Orthop. 56, 237–260 (1968)PubMedGoogle Scholar
  125. Irving, M. H.: Blood supply of the growth cartilage and metaphysis in rachitic rats. J. Path. Bact. 89, 461–471 (1964)Google Scholar
  126. Jacobus, D., Grenan, M., Wagner, B., Margolis, C., Jaffe, I.: Osteolathyrogenic effect of penicillamine. Amer. J. Path. 54, 21–34 (1969)PubMedGoogle Scholar
  127. Karnovsky, M. J.: Effects of lathyrogenic agents on glycogen in epiphyseal plate. Lab. Invest. 9, 639–653 (1960)PubMedGoogle Scholar
  128. Keiser, H. R., Henkin, R. I., Kare, M.: Reversal by copper of the lathyrogenic action of D-penicillamine. Proc. Soc. exp. Biol. (N.Y.) 129, 516–522 (1968)Google Scholar
  129. Kember, N. F.: Cell division in enchondral ossification. A study of cell proliferation in rat bones by the method of tritiated thymidine autoradiography. J. Bone Jt Surg. B 42, 824–839 (1960)Google Scholar
  130. Kember, N. F.: Comparative patterns of cell division in epiphyseal cartilage plates in the rat. J. Anat. (Lond.) Ill, 137–142 (1972)Google Scholar
  131. Kember, N. F., Walker, K. Y. R.: Control of bone growth in rats. Nature (Lond.) 229, 428–429 (1971)Google Scholar
  132. Kitano, M.: Histopathological study of enchondral ossification of femur in infants. Bull. Tokyo med. dent. Univ. 18, 1–21 (1971)PubMedGoogle Scholar
  133. Kleine, T. O., Hilz, H.: Charakterisierung der Protein-Polysaccharide aus Kälberrippenknorpel und ihre in vitro-Markierung mit 35–S04. Hoppe-Seylers Z. physiol. Chem. 349, 1027–1036 (1968)PubMedGoogle Scholar
  134. Knese, K. H.: Struktur und Ultrastruktur des Knorpels. In: Diethelm, L., Olsson, O., Strnad, F., Vieten, H., Zuppinger, A., Handbuch der medizinischen Radiologie, Bd. IV, S. 678–783-Berlin-Heidelberg-New York: Springer 1970Google Scholar
  135. Knese, K. H.: Osteoklasten, Chondroklasten, Mineraloklasten, Kollagenoklasten. Acta anat. (Basel) 83, 275–288 (1972)Google Scholar
  136. Knese, K. H., Knoop, A. M.: Elektronenmikroskopische Beobachtungen über die Zellen in der Eröffnungszone des Epiphysenknorpels. Z. Zellforsch. 54, 1–38 (l961)Google Scholar
  137. Kobayashi, S.: Acid mucopolysaccharides in calcified tissues. In: Bourne, G. H., Danielli, J. F. (eds.), Int. Rev. Cytol. 30, 257–372 (1971)Google Scholar
  138. Kovac, W., Suckert, R.: Der Einfluß von DMSO (Dimethylsulfoxyd) auf das reparative Granulationsgevebe der Ratte. Wien. klin. Wschr. 49, 926–928 (1968)Google Scholar
  139. Krutsay, M.: Methode zur Darstellung einzelner Kalziumverbindungen in histologischen Schnitten. Acta histochem. (Jena) 15, 189–191 (1963)Google Scholar
  140. Kuettner, K. E., Wezeman, F. H., Simmons, D. J., Lisk, P. Y., Croxen, R. L., Soble, L. W., Eisenstein, R.: Lysozyme in preosseus cartilage. Lab. Invest. 27, 324–330 (1972)PubMedGoogle Scholar
  141. Kuhlman, R. E., Mcnamee, M. J.: The biochemical importance of the hypertrophic cartilage cell area to enchondral bone formation. J. Bone Jt Surg. A 52, 1025–1032 (1970)Google Scholar
  142. Kunin, A. S., Krane, S. M.: Utilization of citrate by epiphyseal cartilage of rachitic and normal rats. Biochem. biophys. Acta (Amst.) III, 32–39 (1965)Google Scholar
  143. Leblond, C. P., Wilkinson, G. W., Belanger, L. F., Robichon, J.: Radio-autographic visualization of bone formation in the rat. Amer. J. Anat. 86, 289–341 (1950)PubMedGoogle Scholar
  144. Lemperg, R., Boquist, L., Rosenquist, J.: Intracartilaginous defects in adult sheep. Virchows Arch. Abt. A 354, 1–16 (1971)Google Scholar
  145. Lipp, W.: Blood serum proteins and the mineralization of bone ground substance. Histochemistry 9, 339–353 (1967)Google Scholar
  146. Lucht, U.: Acid phosphatase of osteoclasts demonstrated by electron microscopic histo-chemistry. Histochemie 28, 103–117 (1971)PubMedGoogle Scholar
  147. Lucy, J. A.: Lysosomal membranes. In: Dingle, J. T., Fell, H. (eds.), Lysosomes in biology and pathology, p. 313–341. Amsterdam-London: North-Holland Publishing Company 1969Google Scholar
  148. Ludwig, K. S.: Vitamin A-Mangel und Überdosierung und ihre Beziehungen zum Ge¬halt an alkalischer Phosphatase der Epiphysenfuge. Int. Z. Vitaminforsch. 15, 98–103 (1953)Google Scholar
  149. Luft, J.H.: The fine structure of hyaline cartilate matrix following ruthenium red fixative and staining. J. Cell Biol. 27, 61 A (1967)Google Scholar
  150. Macadam, R. F., Mccallum, H. M.: Fine structure of the GAAN effect and lathyrism in cultured chick cartilage. Exp. molec. Path. 11, 247–261 (1969)Google Scholar
  151. Malkani, K., Luxembourger, M. M., Rebel, A.: Cytoplasmic modifications at the contact zone of osteoclasts and calcified tissue in the diaphyseal growing plate of foetal guinea pig tibia. Calcif. Tiss. Res. 11, 258–264 (1973)Google Scholar
  152. Mankin, H. J., Lipiello, L.: Nucleic acid and protein synthesis in epiphyseal plates of rachitic rats. An autoradiographic study. J. Bone Jt Surg. A 51, 862–874 (1969)Google Scholar
  153. Martin, J. H., Matthews, J. L.: Mitochondrial granules on chondrocytes. Calcif. Tiss. Res. 3, 184–202 (1969)Google Scholar
  154. Matsuzawa, T., Anderson, H. C.: Phosphatases of epiphyseal cartilage studied by electron microscopic histochemistry. 7 ème congrès internat, microscop. électronique. Grenoble, vol. I, 529–530 (1970)Google Scholar
  155. Matsuzawa, T., Anderson, H. C.: Phosphatases of epiphyseal cartilage studied by electron microscopic cytochemical methods. J. Histochem. Cytochem. 19, 801–808 (1971)PubMedGoogle Scholar
  156. Matthews, J.L.: Ultrastructure of calcifying tissues. Amer. J. Anat. 129, 451–457 (1970)PubMedGoogle Scholar
  157. Matthews, J. L., Martin, J. H.: Intracellular calcium in connective tissue cells, immunopathology of inflammation. In: Forscher, B. K. (ed.). p. 83–112: Excerpta Medica Foundation 1971Google Scholar
  158. Matthews, J. L., Martin, J. H., Collins, E. J.: Intracellular calcium in epithelial, cartilage and bone cells. Calcif. Tiss. Res. 4, 37–38 (1970)Google Scholar
  159. Matthews, J. L., Martin, J. H., Kennedy, J. W., Collins, E. J.: An ultrastructural study of calcium and phosphate deposition and exchange in tissues. In: Hard tissue, growth, repair and remineralization. Ciba Foundation Symposium 11 (new series), p. 187–211. Amsterdam-London-New York: Elsevier, Excerpta Medica, North-Holland 1973Google Scholar
  160. Matthews, J. L., Martin, J. H., Sampson, H. W., Kunin, A. S., Roan, J. H.: Mitochondrial granules in the normal and rachitic rat epiphysis. Calcif. Tiss. Res. 5, 91–99 (1970)Google Scholar
  161. Mathews, M. B., Decker, L.: The effect of acid mucopolysaccharides and mucopoly-saccharid proteins on fibril formation from collagen solutions. Biochem. J. 109, 517–534 (1968)PubMedGoogle Scholar
  162. Matukas, V. J., Krikos, G. A.: Evidence for changes in protein polysaccharide associated with the onset of calcification in cartilage. J. Cell Biol. 39, 43–67 (1968)PubMedGoogle Scholar
  163. Matukas, V. J., Panner, B. J., Orbison, J. L.: Studies on ultrastructural identification and distribution of protein polysaccharide in cartilage matrix. J. Cell Biol. 32, 365–378 (1967)PubMedGoogle Scholar
  164. Maynard, J. A., Cooper, R. R., Ponseti, I. V.: A unique rough surfaced endoplasmic reticulum inclusion in pseudoachondroplasia. Lab. Invest. 26, 40–44 (1972)Google Scholar
  165. Maynard, J. A., Cooper, R. R., Ponseti, I.V.: Morquio’s disease (Mucopolysaccharidosis Type IV). Lab. Invest. 28, 194–204 (1973)PubMedGoogle Scholar
  166. Meier-Ruge, W., Bielser, W., Wiederhold, K. H., Meyenhofer, M.: Incubation media for routine laboratory work on enzyme histotopochemistry. Beitr. Path. 144, 409–431 (1971)Google Scholar
  167. Mellors, R. C., Caroll, k. G., Solberg, T.: The electron-microprobe. New York-London-Sidney: John Wiley Sons Inc. 1967Google Scholar
  168. Merker, H. J., Guenther, TH.: Die elektronenmikroskopische Darstellung von Glycos-aminoglycanen im Gewebe mit Rutheniumrot. Histochemie 34, 293–303 (1973)PubMedGoogle Scholar
  169. Merker, H. J., Zimmermann, B., Guenther, TH.: Elektronenmikroskopische Untei-suchungen über die D-Penicillaminwirkung am Knorpel embryonaler Ratten (Tag 16) in vitro. Virchows Arch. Abt. B 12, 51–60 (1972)Google Scholar
  170. Meyer, W. L., Kunin, A. S.: The inductive effect of rickets on glycolytic enzymes of rat epiphyseal cartilage and its reversal by Vitamin D and Phosphate. Arch. Biochem. Biophys. 129, 438–446 (1969)PubMedGoogle Scholar
  171. Mihatsch, M. J., Ohnacker, H., Riede, U. N., Remagen, W., V. Bassewitz, D. B., Schuppler, J., Meier-Ruge, W.: GMrGangliosidosis. II. Morphological aspects and review of the literature. Helv. paediat. Acta 28, 521–542 (1973)Google Scholar
  172. Miller, E. J.: A review of biochemical studies on the genetically distinct collagens of the skeletal system. Clin. Orthop. rel. Res. 92, 260–280 (1973)Google Scholar
  173. Modis, L., Spreca, a., Sueveges-Modis, J., Conti, G.: Recherches histochimiques et biochimiques sur des rats en hyper-et hypovitaminose A. Acta anat. (Basel) 83, 481–504 (1972)Google Scholar
  174. Morscher, E., Desaulles, P. A.: Tierexperimentelle Untersuchungen über die mecha¬nische Festigkeit der Epiphysenfuge. Z. Unfallmed. Berufskr. 3, 231–237 (1964)Google Scholar
  175. Muenzenberg, K. J.: Die Calcifikation bei der Knochenbildung. Arch, orthop. Unfall-Chir. 71, 41–54 (1971)Google Scholar
  176. Myers, D. B., Highton, T. C., Rayns, D. G.: Ruthenium red-positive filaments interconnecting collagen fibrils. J. Ultratruct. Res. 42, 87–92 (1973)Google Scholar
  177. Nagai, N.: Ultrastructural localization of acid phosphatase in odontoblasts of young rat incisors. Bull. Tokyo dent. Coll. 11, 85–120 (1970)PubMedGoogle Scholar
  178. Nagai, N.: Electron microscopy of the cytoplasmic bodies in the odontoblasts of young rat incisors. Bull. Tokyo dent. Coll. 11, 47–83 (1970)PubMedGoogle Scholar
  179. Norman, A. W., Haussler, M. R., Adams, T. H., Myrtle, J. F., Roberts, P., Hibberd, K. A.: Basic studies on the mechanism of action of vitamin D. Amer. J. clin. Nutr. 22, 396–411 (1969)Google Scholar
  180. Ornoy, A., Nebel, L., Menczel, Y.: Impaired osteogenesis of fetal long bones (induced by maternal hypervitaminosis D2). Arch. Path. 87, 563–571 (1969)PubMedGoogle Scholar
  181. Osborn, S. B., Walshe, J. M.: Effects of penicillamine and dimercaprol on turnover of copper in patients with Wilson’s disease. Lancet 1958I, 70–73Google Scholar
  182. Page, R. C., Benditt, E. P.: Molecular diseases of connective and vascular tissues. I. The source of lathyritic collagen. Lab. Invest. 15, 1643–1650 (1966)PubMedGoogle Scholar
  183. Page, R. C., Benditt, E. P.: Molecular diseases of connective and vascular tissues. II. Amino oxydase inhibition by the lathyrogen Beta-aminopropionitrile. Biochemistry 6, 1142–1157 (1967)PubMedGoogle Scholar
  184. Page, R. C., Benditt, E. P.: Molecular diseases of connective and vascular tissues. III.The aldehyd content of normal and lathyritic soluble collagen. Lab. Invest. 18, 124–130 (1968)PubMedGoogle Scholar
  185. Parakkal, P. F.: Involvement of macrophages in collagen resorption. J. Cell Biol. 41, 345–354 (1969)PubMedGoogle Scholar
  186. Parsons, V., Self, M.: Urinary hydroxyproline excretion in phosphate depleted rachitic rats. Nature (Lond.) 217, 551–563 (1968)Google Scholar
  187. Pedrini-Mille, A., Pedrini, V., Hunt, D. D., Ponseti, I. V.: Chemical studies on the ground substance of human epiphyseal-plate cartilage. J. Bone Jt Surg. A 51, 1628– 1635 (1967)Google Scholar
  188. Persson, B. M.: Growth in length of bones in change of oxygen and carbon dioxide tensions. Acta orthop. scand., Suppl. 117 (1968)Google Scholar
  189. Pette, D., Nolte, J.: Quantitative microscope-photometric determination of enzyme activities in cryostat sections. In: Recent advances in quantitative histo- and cytochemistry (Current problems in clinical biochemistry, vol. 3), p. 54–62. Edit.: U. C. Dubach, U. Schmidt. Bern-Stuttgart-Wien: Hans Huber 1970Google Scholar
  190. Platt, D., Dorn, M.: Nachweis, Reinigung und Eigenschaften der Glycosamino-Glycan-Hydrolasen im menschlichen hyalinen Knorpel. Clin. chim. Acta 21, 333–345 (1968)PubMedGoogle Scholar
  191. Ponseti, J.V.: Skeletal growth in achondroplasia. J. Bone Jt Surg. A 52, 701–716 (1970)Google Scholar
  192. Poole, A. R., Hembry, R. M., Dingle, J. T.: Extracellular localization of cathepsin D in ossifying cartilage. Calcif. Tiss. Res. 12, 313–321 (1973)Google Scholar
  193. Ray, R. D., Asling, C. W., Walker, D. G., Simpson, M. E., Li, C. H., Evans, H. M.: Growth and differentiation of the skeleton in thyroidectomized hypophysectomized rats treated with thyroxin, growth hormone and the combination. J. Bone Jt Surg. A 36, 94–103 (1954)Google Scholar
  194. Rayan, K. T.: The cultivation in vitro of postfoetal mammalian cartilage and its response to hypervitaminosis A. Exp. Cell Res. 55, 420–422 (1969)Google Scholar
  195. Resnick, J. S., Brown, D. M., Vernier, R. L.: Oxygen toxicity in fetal organ culture. Lab. Invest. 28, 437–445 (1973)PubMedGoogle Scholar
  196. Riede, U. N.: Penicllamine-induced changes in growing rats. I. Epiphyseal plate. Amer. J. Path. 61, 229–235 (1970)Google Scholar
  197. Riede, U. N.: Zellen und Matrix im Blasenknorpel einer durch D-Penicillamin veränderten Ratten-Tibiaepiphysenfuge. Virchows Arch. Abt. B 9, 322–332 (1971)Google Scholar
  198. Riede, U. N.: Zellen und Matrix im rachitischen Blasenknorpel juveniler Ratten. Verh. dtsch. path. Ges. 55, 514–517 (1971)Google Scholar
  199. Riede, U. N.: Experimenteller Beitrag zum Problem der gestörten Knorpelresorption in der rachitischen Epiphysenfuge. Beitr. Path. 144, 23–32 (1971)Google Scholar
  200. Riede, U. N., Berli, TH., Mihatsch, M.: Beeinflussung der enchondralen Ossifikation durch exogen verabreichte Orotsäure. Beitr. Path. 149, 13–22 (1973)Google Scholar
  201. Riede, U. N., Leibundgut, U., Mihatsch, M. J.: Automatisierte Strukturanalyse am Beispiel der Orotsäure-induzierten Spongiosaveränderung. Microsc. Acta 75, 243–248 (1974)PubMedGoogle Scholar
  202. Riede, U. N., Leibundgut, U., Rohr, H. P.: Ultrastruktureller und morphometrischer Nachweis einer durch Vitamin D-Mangel induzierten Störung im oxydativen Stoffwechsel. Beitr. Path. 150, 377–388 (1973)Google Scholar
  203. Riede, U. N., Mihatsch, M. J.: Zellen und Matrix im orthotop homotransplantierten Epiphysenknorpel. Beitr. Path. 149, 336–346 (1973)Google Scholar
  204. Riede, N. N., Mihatsch, M. J.: Beeinflussung der rachitischen Epiphysenfuge durch Thyreoparathreoidektomie. Arch, orthop. Unfall-Chir. 78, 127–135 (1974)Google Scholar
  205. Riede, U. N., Mihatsch, M. J., Schaerer, W., Anabitarte, M.: Lathyritische-rachi-toide Epiphysenfugenveränderungen der Ratte durch Verabreichung von Serin-Hydrazid-Derivaten. Beitr. Path. (1974) (in press)Google Scholar
  206. Riede, U. N., Molnar, J. J., Fridrich, R., Rohr, H. P.: Über den Einfluß des Penicill-amins auf das Skelettsystem wachsender Ratten. Experientia (Basel) 27, 181–182 (1971)Google Scholar
  207. Riede, U. N., Remagen, W.: Influence of vitamin A on vitamin D deficient rickets in rats 9th European Symposium on calcified tissues. Baden near Vienna p. 63, Abstracts, Verlag Wiener Med. Akad. 1972Google Scholar
  208. Riede, U. N., Roth, M., Molnar, J. J., Bianchi, L., Rohr, H. P.: Penicillamine induced changes in growing rats. II. Liver parenchymal cell. Experientia (Basel) 27, 794–797(1971)Google Scholar
  209. Riede, U. K., Schwander, H., Villiger, W.: Einbau und Verteilung von Calcium, Phosphor und Schwefel in der rachitischen Epiphysenfuge. Virchows Arch. Abt. B 4, 256–262 (1970)Google Scholar
  210. Riede, U. N., Villiger, W.: Beobachtungen an der Epiphysenfuge bei der experimentellen Ratten-Rachitis. Acta anat. (Basel) 73, 313–314 (1969)Google Scholar
  211. Riede, U. N., Villiger, W., Schenk, R. K.: Ultrastrukturelle Untersuchung der Epiphysenfuge rachitischer Ratten nach Darstellung der Mucopolysaccharide mit Rutheniumrot. Virchows Arch. Abt. B 7, 114–125 (1971)Google Scholar
  212. Riede, U. N., Zinkernagel, R., Rohr, H. P.: Goldphagozytose durch die Chondro-zyten des Gelenkknorpels und der Menisci. Schweiz, med. Wschr. 102, 614–617(1972)Google Scholar
  213. Riede, U. N., Zinkernagel, R., Remagen, W., Villiger, W.: Knorpelmineralisation nach umschriebener Schädigung der Ratten-Tibiaepiphysenfuge (Beitrag zur Klärung der Rolle der Lysosomen in den Chondrocyten). Beitr. Path. 143, 271–282 (1971)Google Scholar
  214. Roels, O.A.: The influence of vitamins A and E on lysosomes. In: Dingle, J. T., Fell, H. B. (eds.), Lysosomes in biology and pathology, p. 254–275. Amsterdam-London: North-Holland Publishing Company 1969Google Scholar
  215. Rohr, H. P.: Autoradiographische Untersuchungen über das Knorpel-Knochen-Längenwachstum bei der experimentellen Rattenrachitis. Z. ges. exp. Med. 137, 248–255 (1963)PubMedGoogle Scholar
  216. Rohr, H. P.: Reifung der Knorpelzellen der Epiphysenfuge bei der experimentellen Rattenrachitis. Z. ges. exp. Med. 137, 532–540 (1963)PubMedGoogle Scholar
  217. Rohr, H. P.: Autoradiographische Untersuchung über die Zellkinetik der enchondralen Ossifikation der Ratte nach Parathormonverabreichung. Z. ges. exp. Med. 138, 461–477 (1964)PubMedGoogle Scholar
  218. Rohr, H. P.: Autoradiographische Untersuchungen über den Kollagenstoffwechsel bei der experimentellen Rattenrachitis. Z. ges. exp. Med. 139, 621–632 (1965)Google Scholar
  219. Rohr, H. P., Gebert, G.: Untersuchungen über den intrazellulären Syntheseweg des Kollagens der Knorpelzelle der Ratte. Beitr. path. Anat. 135, 92–116 (1967)Google Scholar
  220. Rohr, H. P., Walter, S.: Die Mucopolysaccharidsynthese in ihrer Beziehung zur submikroskopischen Struktur der Knorpelzelle. Acta anat. (Basel) 64, 223–234 (1966)Google Scholar
  221. Ross, R.: The connective tissue fiber forming cell. In: Treatise on collagen (Rama-Hondran, G. N., ed.), vol. A 2, p. 1–75-London-New York: Academic Press 1968Google Scholar
  222. Roy, S.: Ultrastructure of articular cartilage in experimental hemarthrosis. Arch. Path. 86, 69–76 (1968)PubMedGoogle Scholar
  223. Roy, S., Meachim, G.: Chondrocyte ultrastructure in adult human articular cartilage. Ann. rheum. Dis. 27, 544–558 (1968)PubMedGoogle Scholar
  224. Rucker, R. B., Rogler, J. C., Parker, H. E.: The partial characterization of an amine oxidase in bone tissue. Proc. Soc. exp. Biol. (N.Y.) 130, 1150–1155 (1969)Google Scholar
  225. Rüssel, R. G. G.: Excretion of inorganic pyrophosphate in hypophosphatasia. Lancet 1965II, 461–464Google Scholar
  226. Salpeter, M. M.: H-3-Proline incorporation into cartilage: Electron microscope autoradiographic observations. J. Morph. 124, 387–421 (1968)PubMedGoogle Scholar
  227. Schaffer, J.: Die Stützgewebe. In: Handbuch der mikroskopischen Anatomie des Menschen (v. Möllendorf, W., ed.), Bd. II, H 2, p. 1. Berlin: Springer 1930Google Scholar
  228. Schenk, R., Merz, W. A., Muehlbauer, R., Russell, R. G. G., Fleisch, H.: Effect of ethane-i-hydroxy-l.l-diphosphinate (EHDP) and dichloromethylene diphosphonate (C12MDP) on the calcification and resorption of cartilage and bone in the tibial epiphysis and metaphysis of rats. Calcif. Tiss. Res. 11, 196–214 (1973)Google Scholar
  229. Schenk, R. K., Spiro, D., Wiener, J.: Cartilage resorption in the tibial epiphyseal plate of growing rats. J. Cell Biol. 34, 275–291 (1967)PubMedGoogle Scholar
  230. Schenk, R. K., Wiener, J., Spiro, D.: Fine structural aspects of vascular invasion of the tibial epiphyseal plate of growing rats. Acta anat. (Basel) 69, 1–17 (1968)Google Scholar
  231. Scherft, J. P.: The ultrastructure of the organic matrix of calcified cartilage and bone in embryonic mouse radii. J. Ultrastruct. Res. 23, 333–343 (1968)Google Scholar
  232. Scherft, J. P.: Beginning enchondral ossification in embryonic mouse radii. J. Ultrastruct. Res. 42, 342–353 (1973)PubMedGoogle Scholar
  233. Schmidt, M. B.: Rhachitis und Osteomalacic. In: Handbuch der speziellen pathologischen Anatomie und Histologie (Henke, F., Lubarsch, O., Hrsg.), Bd. 9, 1, S. 1–165. Berlin: Springer 1929Google Scholar
  234. Schneider, M.: Experimental epiphyseal arrest by intra-osseus injection of papain. J. Bone Jt Surg. A 45, 25–35 (1963)Google Scholar
  235. Seegmiller, R., Ferguson, C. C., Sheldon, H.: Studies on cartilage. VI. A genetically determined defect in tracheal cartilage. J. Ultrastruct. Res. 38, 288–301 (1972)PubMedGoogle Scholar
  236. Seegmiller, R., Fräser, F. C., Sheldon, H.: A new chondrodystrophy mutant in mice. Electron microscopy of normal and abnormal chondrogenesis. J. Cell Biol. 48, 580–593 (1971)PubMedGoogle Scholar
  237. Shaw, J., Bassett, C. A. L.: The effects of varying oxygen concentrations on osteogenesis and embryonic cartilage in vitro. J. Bone Jt Surg. A 49, 73–80 (1967)Google Scholar
  238. Sheldon, H., Robinson, R. A.: Studies on rickets: The fine structure of undecalcified bone matrix in experimental rickets. Z. Zellforsch. 53, 671–684 (1961)Google Scholar
  239. Sheldon, H., Robinson, R. A.: Studies on rickets: The fine structure of cellular components of bone in experimental rickets. Z. Zellforsch. 53, 685–698 (1961)Google Scholar
  240. Sherman, B. S.: Blood vessels in the epiphyseal cartilage of vitamin A deficient rats. Calcif. Tiss. Res. 3, 192–196 (1967)Google Scholar
  241. Shimomoura, Y., Wezeman, F. H., Ray, R. D.: The growth cartilage plate of the rat rib: cellular differentiation. Clin. Orthop. rel. Res. 90, 246–254 (1973)Google Scholar
  242. Shintani, Y. K., Taylory, H. E.: The effect in vitro of lathyrogens on the uptake of radiosulfate by epiphyseal plate. Lab. Invest. 11, 697–702 (1962)PubMedGoogle Scholar
  243. Shulman, H. J., Meyer, K.: Cellular differentiation and the aging process in cartilage tissues. Mucopolysaccharid synthesis in cell cultures of chondrocytes. J. exp. Med. 128, 1353–1362 (1968)PubMedGoogle Scholar
  244. Siegel, R. C.: Collagen crosslinking. J. biol. Chem. 245, 1653–1674 (1970)PubMedGoogle Scholar
  245. Siffert, R. S.: The growth plate and its affections. J. Bone Jt Surg. A 48, 546–563 (1966)Google Scholar
  246. Silberberg, M., Silberberg, R.: Dyschondrogenesis and osteoarthrosis in mice. Arch. Path. 77, 519–524 (1964)PubMedGoogle Scholar
  247. Silberberg, R., Rimoin, D. L., Rosenthal, R. E., Hasler, M. B.: Ultrastructure of cartilage in the Hurler and Sanfilippo syndromes. Arch. Path. 94, 500–510 (1972)PubMedGoogle Scholar
  248. Siller, W. G.: Tibial dyschondroplasia in the fowl. J. Path. 101, 39–46 (1970)PubMedGoogle Scholar
  249. Simmons, D. J., Kunin, A. S.: Autoradiographic and biochemical investigations of the effect of Cortison on the bones of the rat. Clin. Orthop. rel. Res. 55, 201–215 (1967)Google Scholar
  250. Simmons, D. J., Kunin, A. S.: Development and healing of rickets in rats. I. Studies with tritiated thymidine and nutritional considerations. Clin. Orthop. 68, 251–260 (1970)PubMedGoogle Scholar
  251. Simon, W. H., Garman, R. A.: Simian bone disease: unrecognized rickets in rhesus monkeys. Clin. Orthop. rel. Res. 73, 232–240 (1970)Google Scholar
  252. Simpson, C. F., Harms, R. H.: Pathology of the aorta of chicks fed a copper deficient diet. Exp. molec. Path. 3, 390–399 (1964)Google Scholar
  253. Sissons, H.A.: The growth of bone. In: The biochemistry and physiology of bone (Bourne, G. H., ed.), vol. Ill, Development and growth, p. 145–175-New York-London: Academic Press 1971Google Scholar
  254. Slavkin, H. C., Croissant, R., Bringas, P.: Epithelial-mesenchymal interactions during odontogenesis. J. Cell Biol. 53, 841–849 (1972)PubMedGoogle Scholar
  255. Sledge, C. B.: Biochemical events in the epiphyseal plate and their physiologic control. Clin. Orthop. rel. Res. 61, 37–47 (1968)Google Scholar
  256. Sledge, C. B., Dingle, J. T.: Oxygen-induced resorption of cartilage in organ culture. Nature (Lond.) 205, 140–141 (1965)Google Scholar
  257. Solomon, A. K.: Compartmental methods of kinetic analysis. Mineral metabolism (Comar, F. C., Bronner, F., eds.), vol. Ia, p. 119–168. New York-London: Academic Press 1960Google Scholar
  258. Spycher, M. A., Moor, H., Ruettner, J. R.: Electron microscopic investigations on aging and osteoarthrotic human articular cartilage. II. The fine structure of freeze-etched aging hip joint cartilage. Z. Zellforsch. 98, 512–524 (1969)PubMedGoogle Scholar
  259. Stanescu, V., Bona, C., Ionescu, V.: The tibial growing cartilage biopsy in the study of growth disturbances. Acta endocr. (Kbh.) 64, 577–601 (1970)Google Scholar
  260. Sternlieb, J., Scheinberg, J.H.: Prevention of Wilson’s disease in asymptomatic patients. New Engl. J. Med. 278, 352–359 (1968)PubMedGoogle Scholar
  261. Storey, E.: Intermittent bone changes and multiple cartilage defects in chronic strontium rickets in man. J. Bone Jt Surg. B 44, 194–208 (1962)Google Scholar
  262. Storey, E.: Experimental epiphyseal cartilage growth anomalies. J. Bone Jt Surg. B 47, 145–156 (1965)Google Scholar
  263. Studer, A., Zbinden, G., Uehlinger, E.: Die Pathologie der Avitaminosen und Hyper–vitaminosen. In: Handbuch der allgemeinen Pathologie (Buchner, F., Letterer, E., Roulet, F., Hrsg.), Bd. ll/I, S. 785–811. Berlin-Göttingen-Heidelberg: Springer 1962Google Scholar
  264. Sundstroem, B., Takuma, S.: A further contribution on the ultrastructure of calcifying cartilage. J. Ultrastruct. Res. 36, 419–424 (1971)Google Scholar
  265. Takuma, S.: Electron microscopy of the developing cartilaginous epiphyses. Arch. oral. Biol. 2, 111–119 (1960)Google Scholar
  266. Taves, D. R.: Mechanism of calcification. Clin. Orthop. 42, 207–220 (1965)Google Scholar
  267. Termine, J. D.: Amorphous/Crystalline interrelationships in bone mineral. Calcif. Tiss. Res. 1, 8–23 (1967)Google Scholar
  268. Termine, J.D.: Amorphous calcium phosphate: the second mineral of bone. Ph.D. Thesis, Cornell University (l967)Google Scholar
  269. Thomas, L., Mccluskey, R. T., Li, J., Weissmann, G.: Prevention by cortisone of the changes in cartilage induced by an excess of vitamin A in rabbits. Amer. J. Path. 47, 271–284 (1963)Google Scholar
  270. Thomas, L., Mccluskey, R. T., Potter, S. L., Weissmann, G.: Comparison of the effects of papain and vitamin A on cartilage. J. exp. Med. III, 705–718 (1960)Google Scholar
  271. Thyberg, J.: Ultrastructural localization of arylsulfatase activity in the epiphyseal plate. J. Ultrastruct. Res. 38, 332–342 (1972)PubMedGoogle Scholar
  272. Thyberg, J., Friberg, U.: Ultrastructure and acid phosphatase activity of matrix vesicles and cytoplasmic dense bodies in the epiphyseal plate. J. Ultrastruct. Res. 333, 554–573 (1970)Google Scholar
  273. Thyberg, J., Friberg, U.: Matrix vesicles and cytoplasmic dense bodies in the epiphyseal plate: Ultrastructure and acid phosphatase activity. J. Ultrastruct. Res. 36, 557–558 (1971)Google Scholar
  274. Thyberg, J., Lohmander, S., Friberg, U.: Ultrastructure of the epiphyseal plate of the guinea pig in experimental scurvy. Virchows Arch. Abt. B 9, 45–57 (1971)Google Scholar
  275. Tolnay, S., Tolnay, G.: Lysosomal hydrolases in experimental amyloidosis. Virchows Arch. Abt. B 4, 151–163 (1969)Google Scholar
  276. Toole, B. P., Kang, A. H., Trelstad, R. L., Gross, J.: Collagen heterogenity within different growth regions of long bones of rachitic and non-rachitic chicks. Biochem. J. 127, 715–738 (1972)PubMedGoogle Scholar
  277. Trueta, J., Amato, V. P.: The vascular contribution to osteogenesis. III. Changes in the growth cartilage caused by experimentally induced ischaemia. J. Bone Jt Surg. B 42, 571–597 (I960)Google Scholar
  278. Trueta, J., Buhr, A. J.: The vascular contribution to osteogensis. V. The vasculature supplying the epiphyseal cartilage in rachitic rats. J. Bone Jt Surg. B 45, 572–581 (1963)Google Scholar
  279. Trueta, J., Little, K.: The vascular contribution to osteogenesis. II. Studies with the electron microscope. J. Bone Jt Surg. B 42, 367–394 (1960)Google Scholar
  280. Trueta, J., Trias, A.: The vascular contribution to osteogenesis. IV. The effect of pressure upon the epiphyseal cartilage of the rabbit. J. Bone Jt Surg. B 43, 800–823 (1961)Google Scholar
  281. Trump, B. F., Ginn, F. L.: The pathogenesis of subcellular reaction to lethal injury. Meth. Ach. exp. Path. 4, 1–29 (1969)Google Scholar
  282. Urist, M. R., Abernethy, J. L.: Effects of the calcium ion upon structure and calcifiability of tendon. Clin. Orthop. rel. Res. 51, 255–274 (1967)Google Scholar
  283. Urist, M. R., Speer, D. P., Ibsen, K. J., Strates, B. S.: Calcium binding by chondroitin sulfate. Calcif. Tiss. Res. 2, 253–261 (1968)Google Scholar
  284. Wadkins, C. L.: Experimental factors that influence collagen calcification in vitro. Calcif. Tiss. Res. 2, 214–228 (1968)Google Scholar
  285. Walshe, J. M.: Penicillamine, a new oral therapy for Wilson’s disease. Amer. J. Med. 21, 487–495 (1956)PubMedGoogle Scholar
  286. Weisbrode, S. E., Capen, C. C., Nagode, L. A.: Fine structural and enzymatic evaluation of bone in thyroparathyroidectomized rats receiving various levels of vitamin D. Lab. Invest. 28, 29–37 (1973)PubMedGoogle Scholar
  287. Weissmann, G.: The effects of steroids and drugs on lysosomes. In: Lysosomes in biology and pathology. (Dingle, J. T., Fell, H. B., eds.), p. 276–298. Amsterdam-London: North-Holland Publishing Company 1969Google Scholar
  288. Weissmann, G., Dingle, J. T.: Release of lysosomal protease by ultraviolet irradiation and inhibition by hydrocortisone. Exp. Cell Res. 25, 207–223 (1961)PubMedGoogle Scholar
  289. Wells, P. J., Serafini-Fracassini, A.: Molecular organization of cartilage proteoglycan. Nature (Lond.) New Biol. 243, 266–268 (1973)Google Scholar
  290. Wilhelm, G.: Rachitis und D-Faktor-Wirkung. Dtsch. med. Wschr. 83, 1428–1432 (1958)PubMedGoogle Scholar
  291. Wirtschafter, T. Z., Sandberg, L. B.: Experimental lathyrism in rats. A correlation of histologic and chemical changes in the in vivo aorta. Arch. Path. 85, 631–639 (1968)PubMedGoogle Scholar
  292. Woessner, J. F.: Biological mechanisms of collagen resorption. In: Treatise on collagen. Part B, Biology of collagen. (Gould, B. S., ed.), vol.2, p. 253–285. New York: Acad. Press, Inc. 1967Google Scholar
  293. Woessner, J.F.: Treatise on collagen, p. 254 (Ramachandran, G. N., ed.). London-New York: Academic press 1968Google Scholar
  294. Wolke, R. E., Nielsen, S. W., Rousseau, J. E.: Bone lesions of hypervitaminosis A in the pig. Amer. J. vet. Res. 29, 1009–1024 (1968)PubMedGoogle Scholar
  295. Wollast, R., Burny, F.: Study of bone mineralization at the microscopic level using an electron probe microanalyser. Calcif. Tiss. Res. 8, 73–82 (1971)Google Scholar
  296. Wuthier, R. E.: The role of phospholipids in biological calcification. Clin. Orthop. rel. Res. 90, 191–200 (1973)Google Scholar
  297. Yabsley, R. H., Harris, W. R.: The effect of shaft fractures and periosteal stripping on the vascular supply to epiphyseal paltes. J. Bone Jt Surg. A 47, 551–575 (1965)Google Scholar
  298. Zinkernagel, R., Riede, U. N., Schenk, R. K.: Ultrastruktur der juxtametaphysären Kapillaren nach Perfusionsfixation. Experientia (Basel) 28, 1205–1206 (1972)Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • U. N. Riede
    • 1
  1. 1.Institute of PathologyUniversity of BasleSwitzerland

Personalised recommendations