Function of the Middle Ear

  • Aage R. Møller
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 5 / 1)


When the vertebrates began to adapt to terrestrial life it became important for their continued existence that they hear airborne sounds over a wide range of intensities and frequencies. The sense organs which, in their aquatic life, served to sense the vibrations in the surrounding water, responded only to relatively intense sounds in air; most of the sound energy was lost by reflection at the interface between air and the fluid in the organs which were sensitive to vibration because of the great difference in mobility (or impedance) of the two media. In fact, about 99.9% of the energy was lost by reflection. The development of the middle ear mechanism, which began in the amphibians, greatly improved the transmission of energy from air to the fluid of the inner ear by acting as an impedance transformer that matched the high impedance of the fluid to the much lower impedance of the air. The middle ear of the frog is a simple type of transformer which consists of a columella that connects the eardrum with the oval window of the inner ear. The transformer action is brought about because the eardrum has a much larger area than the oval window. During the further development of terrestrial animals, the middle ear took the form as we now know it in mammals. The transformer action of the middle ear is mainly accomplished through the wide difference in the areas of the eardrum and the stapes foot-plate and, to a lesser extent, through the lever action of the ossicular chain.


Sound Pressure Acoustic Impedance Round Window Ossicular Chain Oval Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, G. E., Schindler, P.: Gellé test with Békésy audiometry. Acta oto-laryng. (Stockh.) 56, 523–536 (1963).CrossRefGoogle Scholar
  2. Bárány, E.: A contribution to the physiology of bone conduction. Acta oto-laryng. (Stockh.) Suppl. 26 (1938).Google Scholar
  3. Békésy, G.von: Zur Physik des Mittelohres und über das Hören bei fehlerhaftem Trommelfeil. Akust. Z. 1, 13–23 (1936).Google Scholar
  4. Békésy, G.von: Über die Messung der Schwingungsamplitude der Gehörknöchelchen mittels einer kapazitiven Sonde. Akust. Z. 6, 1–16 (1941).Google Scholar
  5. Békésy, G.von: Über die Schwingungen der Schneckentrennwand beim Präparat und Ohrenmodell. Akust. Z. 7, 173–186 (1942).Google Scholar
  6. Dahman, H.: Zur Physiologie des Hörens. Experimentelle Untersuchungen über die Mechanik der Gehörknöchelchenkette sowie über deren Verhalten auf Ton und Luftdruck. (Part 1). Z. Hals-, Nas.- u. Ohrenheilk. 24, 462–497 (1929).Google Scholar
  7. Dahman, H.: Zur Physiologie des Hörens. Experimentelle Untersuchungen über die Mechanik der Gehörknöchelchenkette sowie über deren Verhalten auf Ton und Luftdruck. (Part 2). Z. Hals-, Nas.- u. Ohrenheilk. 27, 329–368 (1930).Google Scholar
  8. Feldman, R.S.: Impedance measurements at the eardrum as an aid to diagnosis. J. Speech Res. 6, 315–327 (1963).Google Scholar
  9. Feldman, R.S.: Acoustic impedance measurements as a clinical procedure. Int. Audiol. 3, 156–166 (1964).CrossRefGoogle Scholar
  10. Fumagalli, Z.: Ricerche morfologiche sull’apparato di transmissione del suono (Sound-conducting apparatus: A study of morphology). Arch. ital. Otol. 60, Suppl. 1 (1949).Google Scholar
  11. Geffcken, W.: Untersuchungen über akustische Schwellenwerte. Poggendorff’s Ann. Phys. Chem. 19, Ser. 5, 829–848 (1934).Google Scholar
  12. Guinan, J. J., Jr., Peake, W.T.: Middle ear characteristics of anethetized cats. J. acoust. Soc. Amer. 41, 1237–1261 (1967).CrossRefGoogle Scholar
  13. Khanna, S.M., Tonndorf, J.: The vibratory pattern of the round window in cats. J. acoust. Soc. Amer. 50, 1475–1483 (1971).CrossRefGoogle Scholar
  14. Kirikae, I.: The structure and function of the middle ear. Tokyo 1960.Google Scholar
  15. Kobrak, H.G.: The middle ear. Chicago: The University of Chicago Press 1959.Google Scholar
  16. Mach, E., Kessel, J.: Die Funktion der Trommelhöhle und der Tuba Eustachii. S.-B. Akad. Wiss. Wien, math.-nat. Kl. Abt. III. 66, 329–336 (1872).Google Scholar
  17. Metz, O.: The acoustic impedance measured on normal and pathological ears. Acta oto-laryng. (Stockh.) Suppl. 63 (1946).Google Scholar
  18. Møller, A.R.: Network model of the middle ear. J. acoust. Soc. Amer. 33, 168–176 (1961).CrossRefGoogle Scholar
  19. Møller, A.R.: Transfer function of the middle ear. J. acoust. Soc. Amer. 35, 1526–1534 (1963).CrossRefGoogle Scholar
  20. Møller, A.R.: An experimental study of the acoustic impedance of the middle ear and its transmission properties. Acta oto-laryng. (Stockh.) 60, 129–149 (1965).CrossRefGoogle Scholar
  21. Møller, A. R.: The middle ear. In: Tobias, J. (Ed.): Foundation of modern auditory theory, Vol. II, p. 133–194. London: Academic Press 1972.Google Scholar
  22. Mundie, J.R.: The impedance of the ear — A variable quantity. U.S. Army Med. Res. Lab. Rep. 576, 63–85 (1963).Google Scholar
  23. Rasmussen, H.: Studies on the effect on the air conduction and bone conduction from changes in the meatal pressure in normal subjects and otosclerotic patients. Acta oto-laryng. (Stockh.) Suppl. 74, 54–64 (1948).CrossRefGoogle Scholar
  24. Tonndorf, J., Khanna, S.M., Fingerhood, B.J.: The imput impedance of the inner ear in cats. Ann. Otol. (St. Louis). 75, 752–763 (1966).Google Scholar
  25. Tröger, J.: Die Schallaufnahme durch das äußere Ohr. Phys. Z. 31, 26–47 (1930).Google Scholar
  26. Wever, E.G., Lawrence, M.: Physiological acoustics. Princeton/New Jersey: Princeton University Press 1954.Google Scholar
  27. Wever, E.G., Bray, C.W., Lawrence, M.: The effect of pressure in the middle ear. J. exp. Psychol. 30, 40–52 (1942).CrossRefGoogle Scholar
  28. Wever, E.G., Lawrence, M., Smith, K.R.: The effects of negative air pressure in the middle ear. Ann. Otol. (St. Louis) 57, 418–428 (1948).Google Scholar
  29. Wiener, F.M., Ross, D. A.: The pressure distribution in the auditory canal in a progressive sound field. J. acoust. Soc. Amer. 18, 401–408 (1946).CrossRefGoogle Scholar
  30. Zwislocki, J.: Some measurements of the impedance at the eardrum. J. acoust. Soc. Amer. 29, 349–356 (1957a).CrossRefGoogle Scholar
  31. Zwislocki, J.: Some impedance measurements on normal and pathological ears. J. acoust. Soc. Amer. 29, 1312–1317 (1957b).CrossRefGoogle Scholar
  32. Zwislocki, J.: An acoustic method for clinical examination of the ear. J. Speech Res. 6, 303–314 (1963).Google Scholar
  33. Zwislocki, J., Feldman, R.S.: Just noticeable differences in dichotic phase. J. acoust. Soc. Amer. 28, 860–864 (1956).CrossRefGoogle Scholar
  34. Zwislocki, J., Feldman, R.S.: Post-mortem acoustic impedance of human ears. J. acoust. Soc. Amer. 35, 104–107 (1963).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1974

Authors and Affiliations

  • Aage R. Møller
    • 1
  1. 1.StockholmSweden

Personalised recommendations