The Question of Uncoupling of Cerebral Oxidative Phosphorylation in Acute Cerebral Infarction

  • J. S. Meyer
  • S. Okamoto
  • K. Shimazu
  • A. Koto
  • Y. Itoh
  • A. Sari
  • A. D. Ericsson


It is now well established that the autonomic nervous system plays an important role in control of the cerebral circulation (5). Information is now becoming available that neurotransmitters may exert important influences on cerebral metabolism. Certain neurotransmitters, such as norepinephrine and serotonin, cause a contractile response in the cerebral arteries when applied locally (14, 15). In both cerebral infarction and spinal cord injury, these neurotransmitters have been shown to accumulate in the damaged CNS tissue and hence in the cerebrospinal fluid (10, 11, 13, 18). It has been hypothesized from measurements of catecholamines in brain tissue that in addition to enhancing cerebral oxygen consumption, free norepinephrine in CNS tissues may also stimulate membrane-dependent processes such as oxidative phosphorylation and enzymatic disruption of lipids contained in neuronal membranes (1).


Cerebral Infarction Cerebral Metabolism Acute Cerebral Infarction Cerebral Oxygen Consumption Cerebral Infarc 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bazan, N. G., Jr.: “Changes in free fatty acids of brain by drug-induced convulsions, electroshock, and anaesthesia.” J. Neurochem. 18:1379 (1971).PubMedCrossRefGoogle Scholar
  2. 2.
    Bazan, N. G., Jr., DeBazan, H. E. P., Kennedy, W. G., and Joel, C. D.: “Regional distribution and rate of production of free fatty acids in rat brain.” J. Neurochem. 18:1387 (1971).PubMedCrossRefGoogle Scholar
  3. 3.
    Hagen, J. H., and Ball, E. G.: “Studies on the metabolism of adipose tissue. The effect of adrenaline on oxygen consumption and glucose utilization.” Endocrinology 69:752 (1961).PubMedCrossRefGoogle Scholar
  4. 4.
    Hori, H., and Zervas, N. T.: “The effect of alpha-methyl-p-tyrosine on experimental stroke.” American Association of Neurological Surgeons Scientific Program, 1973, Los Angeles, Paper #30.Google Scholar
  5. 5.
    James, I. M., Millar, R. A., and Purves, M. J.: “Observations on the extrinsic neural control of cerebral blood flow in the baboon.” Circ. Res. 25:77 (1969).PubMedGoogle Scholar
  6. 6.
    Kraml, M.: “A semi-automated determination of phospholipids.” Clin. Chim. Acta 13:442 (1966).PubMedCrossRefGoogle Scholar
  7. 7.
    Laurell, S., and Tibbling, G.: “Colorimetric micro-determination of free fatty acids in plasma.” Clin. Chim. Acta 16:57 (1967).PubMedCrossRefGoogle Scholar
  8. 8.
    Meyer, J. S., Fukuuchi, Y., Shimazu, K., Ohuchi, T., and Ericsson, A. D.: “Effect of intravenous infusion of glycerol on hemispheric blood flow and metabolism in patients with acute cerebral infarction.” Stroke 3:168 (1972).PubMedCrossRefGoogle Scholar
  9. 9.
    Meyer, J. S., Kanda, T., Fukuuchi, Y., Shimazu, K., Dennis, E. W., and Ericsson, A. D.: “Clinical prognosis correlated with hemispheric blood flow in cerebral infarction.” Stroke 2:383 (1971).PubMedCrossRefGoogle Scholar
  10. 10.
    Meyer, J. S., Stoica, E., Pascu, I., Shimazu, K., and Hartmann, A.: “Catecholamine concentrations in CSF and plasma of patients with cerebral infarction and haemorrhage.” Brain, 96:277 (1973).PubMedCrossRefGoogle Scholar
  11. 11.
    Osterholm, J. L., and Mathews, G. J.: “Altered norepinephrine metabolism following experimental spinal cord injury. I. Relationship to hemorrhagic necrosis and post-wounding neurological deficits.” J. Neurosurg. 36:386 (1972).PubMedCrossRefGoogle Scholar
  12. 12.
    Osterholm, J. L., and Mathews, G. J.: “Altered norepinephrine metabolism following experimental spinal cord injury. II. Protection against traumatic spinal cord hemorrhagic necrosis by norepinephrine synthesis blockade with alpha-methyl-tyrosine.” J. Neurosurg. 36:395 (1972).PubMedCrossRefGoogle Scholar
  13. 13.
    Pausescu, E., Lugojan, R., and Pausescu, M.: “Cerebral catecholamine and serotonin metabolism in post-hypothermic brain oedema.” Brain 93:31 (1970).PubMedCrossRefGoogle Scholar
  14. 14.
    Raynor, R. B., McMurtry, J. G., and Pool, J. L.: “Cerebrovascular effects of topically applied serotonin in the cat.” Neurology 11:190 (1961).PubMedGoogle Scholar
  15. 15.
    Rosendorff, C., and Cranston, W. I.: “Effects of intra-hypothalamic and intraventricular norepinephrine and 5-hydroxytryptamine on hypothalamic blood flow in conscious rabbit.” Circ. Res. 28:492 (1971).PubMedGoogle Scholar
  16. 16.
    Sato, K., Yamaguchi, M., Mullan, S., Evans, J. P., and Ishii, S.: “Brain edema. A study of biochemical and structural alterations.” Arch. Neurol. 21:413 (1969).PubMedGoogle Scholar
  17. 17.
    Siesjö, B. K., and Plum, F.: “Pathophysiology of anoxic brain damage.” In Biology of Brain Dysfunction, G. E. Gaull, ed. Vol. 1, New York-London: Plenum Press (1973), pp. 319–372.Google Scholar
  18. 18.
    Welch, K. M. A., Meyer, J. S., Teraura, T., Hashi, K., and Shinmaru, S.: “Ischemic anoxia and cerebral serotonin levels.” J. Neurol. Sci. 16:85 (1972).PubMedCrossRefGoogle Scholar
  19. 19.
    Yatsu, F. M., and Moss, S. A.: “Brain lipid changes following hypoxia.” Stroke 2:587 (1971).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • J. S. Meyer
  • S. Okamoto
  • K. Shimazu
  • A. Koto
  • Y. Itoh
  • A. Sari
  • A. D. Ericsson

There are no affiliations available

Personalised recommendations