Advertisement

Mechanism of Action of Mitomycins

  • H. Kersten
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 38 / 2)

Abstract

The mitomycins were discovered by Hata et al. (1956) in Streptomyces caespitosus and isolated by Wakaki et al. (1958) as deep violet crystals. Porfiromycin produced by Streptomyces ardus (DeBoer et al., 1961) also belongs to the group of mitomycin antibiotics. The two unidentified antibiotics, G 253 B and G 253 C, from Streptomyces reticuli var. shimofasuensis described by Hata et al. (1966) resemble the mitomycins in molecular weight, absorption spectra, and elemental analysis.

Keywords

Thymidine Kinase Nitrogen Mustard Rous Sarcoma Virus Aziridine Ring Interstrand Crosslinking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albach, H.R., Shaffer, J. G.: Effect of mitomycin C metabolism on thymidine-methyl-H3 utilization by Entamoeba histolytica in CLG medium. J. Protozool. 14, 60a (1967).Google Scholar
  2. Arora, O.P., Shah, Y.C., Rao, S.R.V.: Studies on micronuclei induced by mitomycin C in the root cells of Vicia faba. Exp. cell Res. 56, 443–448 (1969).PubMedGoogle Scholar
  3. Basu, S.K., Chakrabarty, A.M., Roy, S.C.: Enhancement of catabolite repression by mitomycin C in the induced-synthesis of ß-galactosidase. Biochim. biophys. Acta. (Amst.) 108, 713–716 (1965).Google Scholar
  4. Beukers, R., Berends, A.: Isolation and identification of the irradiation product of thymine. Biochim. biophys. Acta (Amst.) 41, 550–551 (1960).Google Scholar
  5. Boyce, R.P., Howard-Flanders, P.: Genetic control of DNA breakdown and repair in E. coli K-12 treated with mitomycin C or ultraviolet light. Z. Vererbungslehre 95, 345–350 (1964).Google Scholar
  6. Bruchovsky, N., Owen, A.A., Becher, A. J., Till, J. E.: Effects of vinblastine on the proliferative capacity of L cells and their progress through the division cycle. Cancer Res. 25, 1232–1237 (1965).PubMedGoogle Scholar
  7. Carter, S.K.: Mitomycin C. Cancer Chemother. Rep. 1, 99 (1968).Google Scholar
  8. Cheer, S., Tchen, T.T.: Effect of mitomycin C on the synthesis of induced ß-galactosidase in E. coli. Biochem. biophys. Res. Com. 9, 271–274 (1962).Google Scholar
  9. Cheer, S., Tchen, T.T.: Effect of mitomycin C on induced enzyme synthesis in E. coli. Bacteriol. Proc. 6, 38 (1963).Google Scholar
  10. Cohen, M.M., Shaw, M.W.: Effects of mitomycin C on human chromosomes. J. cell Biol. 23, 386–395 (1964).PubMedGoogle Scholar
  11. Coles, N.W., Gross, R.: The effect of mitomycin C on the induced synthesis of penicillinase in Staphylococcus aureus. Biochem. biophys. Res. Com. 20, 366–371 (1965).PubMedGoogle Scholar
  12. Constantopoulos, G., Tchen, T.T.: Enhancement of mitomycin C induced breakdown of DNA by inhibitors of protein synthesis. Biochem. biophys. Acta (Amst.) 80, 456–462 (1964).Google Scholar
  13. Cooper, S., Zinder, N.D.: The growth of an RNA bacteriophage: the role of DNA synthesis. Virology 18, 405–411 (1962).PubMedGoogle Scholar
  14. Cummings, D. J.: Macromolecular synthesis during synchronous growth of E. coli B/r. Biochim. biophys. Acta (Amst.) 85, 341–350 (1965).Google Scholar
  15. DeBoer, D., Dietz, A., Lummis, N.E., Savage, G.M.: Porfiromycin, a new antibiotic. I. Discovery and biological activities. Antimicrob. Agents Annual 1960, pp. 17–22. New York: Plenum Press 1961.Google Scholar
  16. DeWitt, W., Helsinki, D.R.: Characterization of colicinogenic factor E1 from a non-induced and a mitomycin C-induced Proteus strain. J. molec. Biol. 13, 692–703 (1965).Google Scholar
  17. Djordjevic, B., Kim, J.H.: Different lethal effects of mitomycin C and actinomycin D during the division cycle of HeLa cells. J. cell Biol. 38, 477 (1968).Google Scholar
  18. Driskell-Zamenhof, P.J., Adelberg, E.A.: Studies on the chemical nature and size of sex factors of E. coli K12. J. molec. Biol. 6, 483–497 (1963).Google Scholar
  19. Federicq, P.: Colicins. Ann. Rev. Microbiol. 11, 7–22 (1957).Google Scholar
  20. Freese, E.: Hereditary DNA alterations. Angew. Chemie Int. Ed. 8, 12–20 (1969).Google Scholar
  21. German, J., LaRock, J.: Chromosomal effects of mitomycin, a potential recombinogen in mammalian cell genetics. Texas Rep. biol. Med. 27, 409–418 (1969).Google Scholar
  22. Gribnau, A.G.M., Veldstra, H.: The influence of mitomycin C on the induction of crown- gall-tumors. FEBS Let. 8, 115–117 (1969).Google Scholar
  23. Grula, E.A., Smith, G.L., Grula, M.: Cell division in Erwinia: inhibition of nuclear body division in filaments grown in penicillin or mitomycin C. Science 161, 164 (1968).PubMedGoogle Scholar
  24. Hanawalt, P.C.: Cellular recovery from photochemical damage. In: Giese, A.C. (Ed.): Photophysiology, Vol. 4, p. 203. New York: Academic Press 1968.Google Scholar
  25. Hata, T., Nomura, S., Umesawa, I.: Antitumor activity of antibiotic G-253. Antimicr. Agents and Chemother. S 543 (1966).Google Scholar
  26. Hata, T., Sano, Y., Sugawara, R., Matsuma, A., Kanamori, K., Shima, T., Hoshi, T.: Mitomycin, a new antibiotic from streptomyces. J. Antibiot. (Tokyo) 9, 141 (1956).Google Scholar
  27. Higuchi, M., Goto, K., Fujimoto, M., Namiki, O., Kiguchi, G.: Effect of inhibitors of nucleic acid and protein synthesis on the induced synthesis of bacteriochlorophyll and δ-aminolevulinic acid synthetase by Rhodopseudomonas spheroides. Biochim. biophys. Acta (Amst.) 95, 94–110 (1965).Google Scholar
  28. Howard-Flanders, P.: DNA repair. Ann. Rev. Biochem. 37, 175–200 (1968).PubMedGoogle Scholar
  29. Iijima, T., Hagawara, A.: Mutagenic action of mitomycin C on E. coli. Nature (Lond.) 185, 395–396 (1960).Google Scholar
  30. Ionesco, M., Ryter, A., Schaeffer, P.: Sur une bactériophage hérbérge par la souche marburg de bacillus subtilis. Ann. Inst. Pasteur 107, 764–776 (1964).Google Scholar
  31. Iyer, V.N., Szybalski, W.: A molecular mechanism of mitomycin action: linking of complementary DNA strands. Proc. nat. Acad. Sci. (Wash.) 50, 355–362 (1963).Google Scholar
  32. Iyer, V.N., Szybalski, W.: Mitomycins and porfiromycins: chemical mechanism of activation and cross-linking of DNA. Science 145, 55–58 (1964).PubMedGoogle Scholar
  33. Kato, N., Okabayashi, K., Mizuno, H.: The degradation of ribosomal RNA in E. coli by mitomycin C and AF-5, preferential inhibitors of DNA synthesis. J. Biochem. 67, 175–184 (1970).PubMedGoogle Scholar
  34. Kersten, H.: Action of mitomycin C on nucleic acid metabolism in tumor and bacterial cells. Biochim. biophys. Acta (Amst.) 55, 558–560 (1962a).Google Scholar
  35. Kersten, H.: Zur Wirkungsweise von Mitomycin C. I. Einfluß von Mitomycin C auf den Desoxyribonucleinsäure-Abbau in ruhenden Bakterien. Hoppe-Seyler’s Z. physiol. Chemie 829, 31–39 (1962 b).Google Scholar
  36. Kersten, H., Kersten, W.: Zur Wirkungsweise von Mitomycin C. II. Einfluß von Mitomycin, C.loramphenicol and Mg2+ auf den RNA- und DNA-Stoffwechsel in Bakterien. Hoppe- Seyler’s Z. physiol. Chemie 334, 141–153 (1963).Google Scholar
  37. Kersten, H., Kersten, W.: Inhibitors acting on DNA and their use to study DNA replication and repair. In: Bücher, T., Sies, H. (Eds.): Inhibitor tools in cell research, p. 11. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  38. Kersten, H., Kersten, W., Leopold, G., Schnieders, B.: Effect of mitomycin C on DNAase and RNA in E. coli. Biochim. biophys. Acta (Amst.) 80, 521–523 (1964).Google Scholar
  39. Kim, J.H., Gelbard, A.S., Perez, A.G., Eidinoff, M.L.: Effect of 5-bromo-deoxyuridine on nucleic acid and protein synthesis and viability in HeLa cells. Biochim. biophys. Acta (Amst.) 134, 388–394 (1967).Google Scholar
  40. Kit, S., Piekarski, J.L., Dubbs, D.R.: Effects of 5-fluorouracil, actinomycinD and mitomycin C on the induction of thymidine kinase by vaccinia-infected L-cells. J. molec. Biol. 7, 497–510 (1963).PubMedGoogle Scholar
  41. Knolle, P., Kaudewitz, F.: Degree of host control on RNA production of an RNA phage. Abstracts, VI Internat. Congr. Biochem. 3, 234 (1964).Google Scholar
  42. Kodoma, M.: The interaction of mitomycin C with deoxyribonucleic acid in vitro. J. Biochem. (Tokyo) 61, 162–167 (1967).Google Scholar
  43. Kohn, K.W., Steigbigel, N.H., Spears, C.L.: Crosslinking and repair of DNA in sensitive and resistant strains of E. coli treated with nitrogen mustard. Proc. nat. Acad. Sci. (Wash.) 53, 1154–1161 (1965).Google Scholar
  44. Korn, D., Weissbach, A.: Thymineless induction in E. coli K12λ. Biochim. biophys. Acta (Amst.) 61, 775–790 (1962).Google Scholar
  45. Lawley, P.D., Brookes, P.: Further studies on the alkylation of nucleic acids and the constituent nucleotides. Biochem. J. 89, 127–138 (1963).PubMedGoogle Scholar
  46. Lawley, P.D., Brookes, P.: Interstrand cross-linking of DNA by difunctional alkylating agents. J. molec. Biol. 25, 143–160 (1967).PubMedGoogle Scholar
  47. Lein, J., Heinemann, B., Gourevitch, A.: Induction of lysogenic bacteria as a method of detecting potential antitumor agents. Nature (Lond.) 196, 783–784 (1962).Google Scholar
  48. Lemmel, E.M., Good, R.A.: Tolerance of cell mediated immune responses after in vitro treatment of competent cells with mitomycin C. Nature (Lond.) 221, 1164–1165 (1969).Google Scholar
  49. Leopold, G., Schnieder S., B., Kersten, H., Kersten, W.: The effect of mitomycin C on ribosomes and soluble ribonucleic acid in Escherichia coli. Biochemische Zeitschrift 343, 423–432 (1965).PubMedGoogle Scholar
  50. Lerman, M.I., Benyumovich, M.S.: Effect of mitomycin C on protein synthesis in human neoplastic cell lines. Nature (Lond.) 206, 1231–1232 (1965).Google Scholar
  51. Levine, M.: Effect of mitomycin C on interactions between temperate phages and bacteria. Virology 13, 493–499 (1961).PubMedGoogle Scholar
  52. Lindqvist,B., Sinsheimer, R.L.: The use of mitomycin C as a selective inhibitor of host DNA synthesis in ΦX 174-infected HCr− cells. Fed. Proc. 25, 651 (1966).Google Scholar
  53. Lipsett, M.N., Weissbach, A.: The site of alkylation of nucleic acids by mitomycin. Biochemistry 4, 206–211 (1965).Google Scholar
  54. Magee, W.E., Miller, O. V.: Dissociation of the synthesis of host and viral deoxyribonucleic acid. Biochim. biophys. Acta (Amst.) 55, 818–826 (1962).Google Scholar
  55. Mahler, I.: Effect of mitomycin C on five excision-repair mutants of B. subtilis. Biochem. biophys. Res. Com. 25, 73–79 (1966).PubMedGoogle Scholar
  56. Matsunoto, I., Kozaka, M., Takagi, Y.: Analysis of the acid-soluble deoxyribosidic compounds accumulated in mitomycin C treated bacteria. J. Biochemistry (Tokyo) 60, 653–659 (1966).Google Scholar
  57. McFall, E.: Effects of 32P decay on enzyme synthesis. J. molec. Biol. 3, 219–224 (1961).PubMedGoogle Scholar
  58. Moore, G. E.: Effects of mitomycin C in 346 patients with advanced cancer. Cancer Chemother. Rep. 52, 672–684 (1968).Google Scholar
  59. Murakami, H.: Electron aspects of the mode of action of the mitomycin molecule. J. Theor. Biol. 10, 236–250 (1966).PubMedGoogle Scholar
  60. Nakata, Y., Nakata, K., Sakamoto, Y.: On the action mechanism of mitomycin C. Biochem. biophys. Res. Comm. 6, 339 - 343 (1962).Google Scholar
  61. Natori, S., Horiguchi, T., Mizuno, D.: Absence of ribonuclease in Alcaligenes faecalis and a possible mechanism of RNA degradation in this bacterium. Biochem. biophys. Acta (Amst.) 134, 337–346 (1967).Google Scholar
  62. Niitani, H., Suzuki, A., Shimoyama, M., Kimura, K.: Effect of mitomycin C injection on lysosomal enzymic activities of Yoshida ascites sarcoma. Gann 55, 447–449 (1964).PubMedGoogle Scholar
  63. Nowell, P.C.: Mitotic inhibition and chromosome damage by mitomycin in human leucocyte cultures. Exp. cell Res. 33, 445–449 (1964).PubMedGoogle Scholar
  64. Ogilvie, A., Kersten, W., Kersten, H.: Involvement of the ‹rel gene› in the transient depression of stable RNA synthesis by quinones. Arch. int. Physiol. Biochim. 80, 611–612 (1972).Google Scholar
  65. Okamoto, K., Mudd, J.A., Mangan, J., Huang, W.M., Subbaiah, T.V., Marmur, J.: Properties of the defective phage of B. subtilis. J. molec. Biol. 34, 413–428 (1968a).PubMedGoogle Scholar
  66. Okamoto, K., Mudd, J.A., Marmur, J.: Conversion of B. subtilis DNA to phage DNA following mitomycin C induction. J. molec. Biol. 34, 429–437 (1968 b).Google Scholar
  67. Okubo, S., Romig, W.R.: Impaired transformability of B. subtilis mutant sensitive to mitomycin C and ultraviolet radiation. J. molec. Biol. 15, 440–454 (1966).PubMedGoogle Scholar
  68. Otsuji, N.: The effect of glucose on the induction of lambda phage formation by mitomycin C. Biken’s J. 4, 235–241 (1961).Google Scholar
  69. Otsuji, N.: DNA synthesis and lambda phage development in a lysogenic strain of E. coli K12. Biken’s J. 5, 9–19 (1962).Google Scholar
  70. Papirmeister, B., Davison, C.: Unbalanced growth and latent killing of E. coli following exposure to sulfur mustard. Biochim. biophys. Acta (Amst.) 103, 70–92 (1965).Google Scholar
  71. Parkin, I. L., Chiga, M.: Dissociation of DNA synthesis and mitosis by mitomycin C in regenerating rat liver. Fed. Proc. 25, 480 (1966).Google Scholar
  72. Patrick, J.B., Williams, R.P., Meyer, W.E., Fulmor, W., Cosulich, D.B., Broschard,R. W., Webb, J. S.: Aziridinomitosenes: a new class of antibiotics related to the mitomycins. J. Amer. chem. Soc. 86, 1889–1890 (1964).Google Scholar
  73. Rasmussen, R. E., Painter, R. B.: Radiation stimulated DNA synthesis in cultured mammalian cells. J. cell. Biol. 29, 11–19 (1966).PubMedGoogle Scholar
  74. Rauth, A.M.: Evidence for the dark reactivation of mitomycin C anti-infection damage in mouse cells. Ned. Tijdschr. Geneesh. 110, 101 (1966).Google Scholar
  75. Reich, E., Franklin, R.M.: Effect of mitomycin C on the growth of some animal viruses. Proc. nat. Acad. Sci. (Wash.) 47, 1212–1217 (1961).Google Scholar
  76. Ross, V.C., Solymosi, J.: Induction of thymidine kinase in L-132 cells: dependence of protein synthesis and time of mitomycin action. Fed. Proc. 26, 291 (1967).Google Scholar
  77. Roth, R.H., Remers, W.A., Weiss, M.J.: The mitomycin antibiotics. Synthetic studies. XIII. Indoloquinone analogs with variation at C-5. J. org. Chem. 31, 1012–1015 (1966).PubMedGoogle Scholar
  78. Rott, R., Saber, S., Scholtissek, C.: Effect on myxovirus of mitomycin C, actinomycin D and pretreatment of the host cell with ultraviolet light. Nature (Lond. 205, 1187–1190 (1965).Google Scholar
  79. Runner, M.N., Yoshida, S.: Differential depression of DNA synthesis in the isolated embryo. Teratology 1, 221 (1968).Google Scholar
  80. Sakuchi, G., DeWitt, C.W.: Immunosuppressive activity of mitomycin C. Transplantation 5, 248–255 (1967).Google Scholar
  81. Schwartz, H.S., Sodergren, J.E., Philips, F.S.: Mitomycin C: chemical and biological studies on alkylation. Science 142, 1181–1183 (1963).PubMedGoogle Scholar
  82. Seaman, E., Tarmy, E., Marmur, J.: Inducible phages of B. subtilis. Biochemistry 3, 607–613 (1964).PubMedGoogle Scholar
  83. Setlow, R.B.: The photochemistry, photobiology and repair of polynucleotides. Progr. Nucleic acid Res. 8, 257–295 (1968).Google Scholar
  84. Setlow, R.B., Carrier, W.: Pyrimidine dimers in ultraviolet-irradiated DNAs. J. molec. Biol. 17, 237–254 (1966).Google Scholar
  85. Shatkin, A.H., Reich, E., Franklin, R.M., Tatum, E.L.: Effect of mitomycin C on mammalian cells in culture. Biochim. biophys. Acta (Amst.) 55, 277–289 (1962).Google Scholar
  86. Shaw, M.W., Cohen, M.M.: Chromosome exchanges in human leucocytes induced by mitomycin C. Genetics 51, 181–190 (1965).PubMedGoogle Scholar
  87. Shiba, S., Terawaki, A., Taguchi,T., Kawamata, J.: Studies on the effect of mitomycin C on nucleic acid metabolism in E. coli strain B. Biken’s J. 1, 179–193 (1958).Google Scholar
  88. Shiio,T., Weinbaum, G., Takahashi, H., Maruo, B.: Chromatographic analysis of nucleotidic compounds in Bacillus subtilis. J. gen. appl. Microbiol. 8, 178 (1962).Google Scholar
  89. Sinclair, W.K.: Hydroxyurea: differential lethal effects on cultured mammalian cells during the cell cycle. Science 150, 1729–1731 (1965).PubMedGoogle Scholar
  90. Sinkus,A.G.: Effects of mitomycin C on chromosomes in the human cell culture. Tsitologiya 11, 933 (1969).Google Scholar
  91. Smith-Kielland,I.: The effect of mitomycin C on deoxyribonucleic acid and messenger ribonucleic acid in E. coli. Biochim. biophys. Acta (Amst.) 114, 254–263 (1966a).Google Scholar
  92. Smith-Kielland, I.: The effect of mitomycin C on ribonucleic acid synthesis in growing cultures of E. coli. Biochim. biophys. Acta (Amst.) 119, 486–491 (1966b).Google Scholar
  93. Stein, G.S., Rothstein, H.: Mitomycin C may inhibit mitosis by reducing “G2” RNA synthesis. Curr. Mod. Biology 2, 254–263 (1968).Google Scholar
  94. Stickler, D. J., Tucher, R.G., Kay, D.: Bacteriophage-like particles released from Bacillus subtilis after induction with hydrogen peroxide. Virology 26, 142–145 (1965).PubMedGoogle Scholar
  95. Strauss, B.S.: DNA repair mechanisms and their relation to mutation and recombination. Curr. Top. Microbiol. Immunol. 44, 1–85 (1968).PubMedGoogle Scholar
  96. Strauss, B.S., Rubbins, M.: DNA methylated in vitro by a monofunctional alkylating agent as a substrate for a specific nuclease from Micrococcus lysodeikticus. Biochim. biophys. Acta (Amst.) 161, 68–75 (1968).Google Scholar
  97. Studzinski, G.P., Cohen, L.S.: Mitomycin C induced increases in the activities of the deoxyribonucleases of HeLa cells. Biochem. biophys. Res. Commun. 23, 506–512 (1966).Google Scholar
  98. Studzinski, G.P., Cohen, L.S., Roseman, J., Schweitzer, L.: Elevation of deoxyribonuclease activities in HeLa cells treated with selective inhibitors of DNA synthesis. Biochem. biophys. Res. Comm. 25, 313–319 (1966).Google Scholar
  99. Suzuki, H., Kilgore, W. W.: Mitomycin C: effect on ribosomes of E. coli. Science 146, 1585–1587 (1964).PubMedGoogle Scholar
  100. Szybalski, W.: Special microbiological systems. II. Observation on chemical mutagenesis in microorganisms. Ann. N.Y. Acad. Sci. 76, 475–489 (1958).PubMedGoogle Scholar
  101. Szybalski, W.: Chemical reactivity of chromosomal DNA as related to mutagenicity: studies with human cell lines. Cold Spring Harbor Symposia quant. Biol. 29, 151–159 (1964).Google Scholar
  102. Szybalski, W., Arneson, V.G.: Reductive activation and inactivation of mitomycin as studied with human and bacterial cell cultures. Molec. Pharmacol. 1, 202–204 (1965).Google Scholar
  103. Szybalski, W., Iyer, V.N.: Cross-linking of DNA by enzymatically or chemically activated mitomycins and porfiromycins, bifunctionally “alkylating” antibiotics. Fed. Proc. 23, 946–951 (1964a).PubMedGoogle Scholar
  104. Szybalski, W., Iyer, V.N.: Binding of C14-labeled mitomycin or porfiromycin to nucleic acids. Microbial Genetics Bull. 21, 16 (1964b).Google Scholar
  105. Szybalski, W., Iyer, V.N.: The mitomycins and porfiromycins. In: Antibiotics, vol. 1. ( D. Gottlieb and P.D. Shaw, Eds.) Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  106. Takagi, Y.: Action of mitomycin C. Japan. J. med. Sci. Biol. 16, 246–249 (1963).Google Scholar
  107. Takeno, T., Nagata, T., Mizunoya, T.: Photosuppression of mitomycin-induced lambda- phage development. Nature (Lond.) 218, 295–296 (1968).Google Scholar
  108. Temin, H.A., Mizutani, S.: RNA-dependent DNA-polymerase in virions of Rous sarcoma virus. Nature (Lond.) 226, 1211–1213 (1970).Google Scholar
  109. Terawaki, A., Greenberg, J.: Post-treatment breakage of mitomycin C induced cross-links in deoxyribonucleic acid of E. coli, Biochim. biophys. Acta (Amst.) 119, 540–546 (1966).Google Scholar
  110. Tereshin, I.M.: On mechanism of action of mitomycin C on genetic transformation in hemolytic streptococci. Antibiotiki 9, 796 (1969).Google Scholar
  111. Tomasz, M.: Novel assay of 7-alkylation of guanine residues in DNA application to nitrogen mustard, triethylenemelanine and mitomycin C. Biochim. biophys. Acta (Amst.) 213, 288–295 (1970).Google Scholar
  112. Tsukamura, M., Tsukamura, S.: Mutagenic effect of mitomycin C on Mycobacterium and its combined effect with ultraviolet irradiation. Japan. J. Microbiol. 6, 53–58 (1962).Google Scholar
  113. Vigier, P., Golde, A.: Action de l’actinomycine D et de la mitomycine C sur le development du virus de Rous. Compt. Rend. Acad. Sci. 258, 389–392 (1964a).Google Scholar
  114. Vigier, P., Golde, A.: Effects of actinomycin D and mitomycin C on development of Rous sarcoma virus. Virology 23, 511–519 (1964b).PubMedGoogle Scholar
  115. Vincent, P.C., Reeve, T.S., Brittle, N., Nicholis, A., Richards, M.: The effect of cytotoxic drugs on serum albumin in the rat. Aust. J. exp. biol. med. Sci. 45, 427–435 (1967).PubMedGoogle Scholar
  116. Wacker, A.: Molecular mechanisms of radiation effects. Progr. nucleic acid Res. molec. Biol. 1, 369–399 (1963).Google Scholar
  117. Wakaki, S., Marumo, H., Tomioka, K., Shimizu, G., Kato, E., Kamada, H., Kudo, S., Fujimoto, Y.: Isolation of new fractions of antitumor mitomycins. Antibiot. and Chemother. 8, 228 (1958).Google Scholar
  118. Wannemacher, R.W., Wannemacher, C.F., Yatvin, M.B.: Amino acid regulation of synthesis of ribonucleic acid and protein in the liver of rats. Biochem. J. 124, 385 — 392 (1971).PubMedGoogle Scholar
  119. Webb, J.S., Cosulich, D.B., Mowat, J.H., Patrick, J.B., Broschard, R.W., Meyer, W.E., Williams, R. P., Wolf, C.F., Fulmor, W., Pidacks, C., Lancaster, J. E.: The structures of mitomycin A, B and C, and porfiromycin. Part I. J. Amer. chem. Soc. 84, 3185–3187 (1962).Google Scholar
  120. Weissbach, A., Lisio, A.: Alkylation of nucleic acids by mitomycin C and porfiromycin. Biochemistry 4, 196–200 (1965).Google Scholar
  121. White, H.L., White, J.R.: The binding of porfiromycin to the deoxyribonucleic acid. J. Elisha Mitchell Sci. Soc. 81, 37 (1965).Google Scholar

Copyright information

© Springer-Verlag Berlin • Heidelberg 1975

Authors and Affiliations

  • H. Kersten

There are no affiliations available

Personalised recommendations