Advertisement

Abstract

Hershey and Chase demonstrated in 1952 that DNA is the essential component of a phage particle which enters an E. coli cell upon infection with T2. DNA alone initiates and directs the two major reactions in phage infection: DNA replication, and synthesis of phage-specific proteins. Confirming this role of nucleic acids in the infective process, nucleic acids of viruses separated from virus protein were later shown to be infective. This “infection of cells by the isolated nucleic acid from a virus, resulting in the production of complete virus” has been termed transfection (Földes and Trautner, 1964). By this definition any transfection system is distinct from virus infection in that infectivity is sensitive to nucleases, but resistant to antiserum directed against the virus particle. Transfection has been observed and analyzed in a large number of systems. Thus Gierer and Schramm(1956) and Fraenkel-Conrat et al. (1957) demonstrated the infectivity of TMV-RNA, an observation that has since been made for a large number of other plant viruses. Transfection of animal cells by animal virus RNA and DNA has been demonstrated. Bacteriophage nucleic acids isolated from various RNA and DNA phages could be made infective for bacteria. All these findings as well as the discovery of bacterial transformation substantiate the unique role of nucleic acids as genetic material.

Keywords

Bacillus Subtilis Competent Cell Deoxyribonucleic Acid Phage Particle Mycobacterium Smegmatis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, P., Trautner, T. A.: Formation of an animal virus within a bacterium. Z. Ver-erbungsl. 95, 66–72 (1964).Google Scholar
  2. Alegria, A. H., Kahn, F. M., Marmur, J.: A new assay for phagehydroxymethylases and its use in Bacillus subtilis transfection. Biochemistry 7, 3179–3186 (1968).PubMedCrossRefGoogle Scholar
  3. Anderson, D. L., Hickman, D. D., Reilly, B. E.: Structure of Bacillus subtilis bacteriophage ø 29 and the length of ø29 deoxyribonucleic acid. J. Bact. 91, 2089–2091 (1966).Google Scholar
  4. Anderson, D. L., Mosharrafa, E. T.: Physical and biological properties of phage ø 29 deoxyribonucleic acid. J. Virol. 2, 1185–1190 (1968).PubMedGoogle Scholar
  5. Anagnostopoulos, C., Spizizen, J.: Requirements for transformation in B. subtilis. J. Bact. 81, 741–746 (1961).PubMedGoogle Scholar
  6. Armentrout, R. W., Rutberg, L.: Mapping of prophage and mature deoxyribonucleic acid from temperate Bacillus bacteriophage ø105 by marker rescue. J. Virol. 6, 760–767 (1970).PubMedGoogle Scholar
  7. Armentrout, R. W., Skoog, L., Rutberg, L.: Structure and biological activity of deoxyribonucleic acid from Bacillus bacteriophage ø105: Effects of Escherichia coli exonucleases. J. Virol. 7, 359–371 (1971).PubMedGoogle Scholar
  8. Baltz, R. M.: Infectious DNA of bacteriophage T4. J. molec. Biol. 62, 425–437 (1971).PubMedCrossRefGoogle Scholar
  9. Bayreuther, K. E., Romig, W. R.: Polyoma virus: Production in Bacillus suhstilis. Science 146, 778–779 (1964).PubMedCrossRefGoogle Scholar
  10. Benzinger, R., Delius, H., Jaenisch, R., Hofschneider, P. H.: Preparation and properties of E. coli competent for infectious DNA from bacteriophages øX174 and M13 and RNA from bacteriophage M12. Europ. J. Biochem. 2, 414–428 (1967).PubMedCrossRefGoogle Scholar
  11. Benzinger, R., Kleber, I.: Transfection of E. coli and Salmonella typhimurium sphero-plasts: Host-controlled restriction of infectious bacteriophage P22 deoxyribonucleic acid. J. Virol. 8, 197–202 (1971).PubMedGoogle Scholar
  12. Benzinger, R., Kleber, I., Huskey, R.: Transfection of Escherichia coli spheroplasts. 1. General facilitation of double-stranded deoxyribonucleic acid infectivity by protamine sulfate. J. Virol. 7, 646–650 (1971).PubMedGoogle Scholar
  13. Birdsell, D. C., Hathaway, G. M., Rutberg, L.: Characterization of temperate Bacillus bacteriophage ø105 J. Virol. 4, 264–270 (1969).PubMedGoogle Scholar
  14. Biswal, N., Kleinschmidt, A. K., Spatz, H. Gh., Trautner, T. A.: Physical properties of the DNA of bacteriophage SP50. Molec. gen. Genet. 100, 39–55 (1967).PubMedCrossRefGoogle Scholar
  15. Bodmer, W. F., Ganesan, A. T.: Biochemical and genetic studies of integration and recombination in Bacillus subtilis transformation. Genetics 50, 717–738 (1964).PubMedGoogle Scholar
  16. Bott, K. F., Wilson, G. A.: Development of competence in the Bacillus subtilis transformation system. J. Bact. 94, 562–570 (1967).PubMedGoogle Scholar
  17. Bradley, D.E.: The isolation and morphology of some new bacteriophages specific for Bacillus and Acetobacter species. J. gen. Microbiol. 41, 233–241 (1965).PubMedGoogle Scholar
  18. Brenner, S., Stent, G. S.: Bacteriophage growth in protoplasts of Bacillus megaterium. Biochim. biophys. Acta (Amst.) 17, 473–475 (1955).PubMedCrossRefGoogle Scholar
  19. Burkholder, P. R., Giles, Jr. N. H.: Induced biochemical mutations in Bacillus subtilis. Amer. J. Bot. 34, 345–348 (1947).CrossRefGoogle Scholar
  20. Cahn, F. H., Fox, M. S.: Fractionation of transformable bacteria from competent cultures of Bacillus subtilis on renografin gradients. J. Bact. 95, 867–875 (1968).PubMedGoogle Scholar
  21. Chilton, M. D.: Transforming activity in both complementary strands of Bacillus subtilis DNA. Science 157, 817–819 (1967).PubMedCrossRefGoogle Scholar
  22. Chow, L. T., Boice, L., Davidson, N.: Map of the partial sequence homology between DNA molecules of Bacillus subtilis bacteriophage SPO2 and ø105. J. molec. Biol. 68, 391–400 (1972).PubMedCrossRefGoogle Scholar
  23. Coukoulis, H., Campbell, L. L.: Transformation in Bacillus amyloliquefaciens. J. Bact. 105, 319–322 (1971).PubMedGoogle Scholar
  24. Dishman, B.: The Role of Molecular Configuration in Transfection of B. subtilis with Bacteriophage DNA. Ph. D. Thesis, University of Texas, 1972.Google Scholar
  25. Dubes, G. R.: Methods for Transfecting cells with nucleic acids of animal Viruses: A review. Basel: Birkhäuser Verlag 1971.Google Scholar
  26. Dubnau, D., Davidoff-Abelson, R.: Fate of transforming DNA following uptake by competent B. subtilis. I. Formation and properties of the donor-recipient complex. J. molec. Biol. 56, 209 (1971).PubMedCrossRefGoogle Scholar
  27. Eiserling, F. A., Romig, W. R.: Studies of Bacillus subtilis bacteriophages: Structural characterization by electron microscopy, J. Ultrastruct. Res. 6, 540–546 (1962).PubMedCrossRefGoogle Scholar
  28. Epstein, H. T.: Transfection enhancement by ultraviolet light. Biochem. biophys. Res. Commun. 27, 258–262 (1967).PubMedCrossRefGoogle Scholar
  29. Epstein, H. T.: Factors affecting bacterial competence for transfection and transfection enhancement. Bact. Rev. 32, 313–319 (1968).PubMedGoogle Scholar
  30. Epstein, H. T., Mahler, I.: Mechanisms of enhancement of SP82 transfection. J. Virol. 2, 710–715 (1968).PubMedGoogle Scholar
  31. Erickson, R. J.: New ideas and data on competence and DNA entry in transformation of Bacillus subtilis. Curr. Top. Mircrobiol. Immunol. 53, 149–199 (1970).Google Scholar
  32. Földes, J., Trautner, T. A.: Infectious DNA from a newly isolated B. subtilis phage. Z. Vererbungsl. 95, 57–65 (1964).CrossRefGoogle Scholar
  33. Fraenkel-Conrat, H., Singer, B., Williams, R. C.: Infectivity of viral nucleic acid. Biochim. biophys. Acta (Amst.) 25, 87–96 (1957).PubMedCrossRefGoogle Scholar
  34. Freifelder, D.: A novel method for the release of bacteriophage DNA. Biochem. biophys. Res. Commun. 18, 141–144 (1965).PubMedCrossRefGoogle Scholar
  35. Gabor, M., Hotchkiss, R. D.: Manifestation of linear organization in molecules of pneumococcal transformation. Proc. nat. Acad. Sci. (Wash.) 56, 1441–1448 (1966).PubMedCrossRefGoogle Scholar
  36. Gierer, A., Schramm, G.: Infectivity of ribonucleic acid from tobacco mosaic virus. Nature (Lond.) 177, 702–703 (1956).PubMedCrossRefGoogle Scholar
  37. Goldberg, E. B.: The amount of DNA between genetic markers in phage T4. Proc. nat. Acad. Sci. (Wash.) 56, 1457–1463 (1966).PubMedCrossRefGoogle Scholar
  38. Goulian, M., Kornberg, A., Sinsheimer, R. L.: Enzymatic synthesis of DNA, XXIV. Synthesis of infectious phage øX174 DNA. Proc. nat. Acad. Sci. (Wash.) 58, 2321–2328 (1967).PubMedCrossRefGoogle Scholar
  39. Green, D. M.: Infectivity of DNA isolated from Bacillus subtilis bacteriophage SP82, J. molec. Biol. 10, 438–451 (1964).PubMedCrossRefGoogle Scholar
  40. Green, D. M.: Intracellular inactivation of infective SP82 bacteriophage DNA. J. molec. Biol. 22, 1–13 (1966a).CrossRefGoogle Scholar
  41. Green, D. M.: Physical and genetic characterization of sheared infective SP82 Bacteriophage DNA, J. molec. Biol. 22, 15–22 (1966b).CrossRefGoogle Scholar
  42. Green, D. M.: Gene dislinkage in transfection of SP82G phage DNA. Genetics 60, 673–680 (1968).PubMedGoogle Scholar
  43. Green, D. M., Laman, D.: The organization of gene function in SP82 G. J. Virol. 9, 1033–1046 (1972).PubMedGoogle Scholar
  44. Green, D. M., Urban, M. I.: Recombination and transfection mapping of cistron 5 of bacteriophage SP82G, Genetics 70, 187–203 (1972).PubMedGoogle Scholar
  45. Guthrie, G. D., Sinsheimer, R. L.: Observations on the infection of bacterial protoplasts with the deoxyribonucleic acid of bacteriophage øX174, Biochim. biophys. Acta (Amst.) 72, 290–297 (1963).PubMedCrossRefGoogle Scholar
  46. Gwinn, D. D., Thorne, C. B.: Helper phage-dependent transfection in Bacillus subtilis, Biochem. biophys. Res. Commun. 25, 260–266 (1966).PubMedCrossRefGoogle Scholar
  47. Haas, M., Yoshikawa, H.: Defective bacteriophage PBSH in Bacillus subtilis. I. Induction, purification, and physical properties of the bacteriophage and its deoxyribonucleic acid, J. Virol. 3, 233–247 (1969).PubMedGoogle Scholar
  48. Harm, W., Rupert, C.: Infection of transformable cells of Haemophilus influenzae by bacteriophage and bacteriophage DNA. Z. Vererbungsl. 94, 336–348 (1963).PubMedCrossRefGoogle Scholar
  49. Havender, W. R., Trautner, T. A.: Genetic and transfection studies with B. subtilis phage SP50. II. Temperature-sensitive mutants and the establishment of a linear linkage map. Molec. gen. Genet. 116, 51–67 (1972).PubMedCrossRefGoogle Scholar
  50. Havender, W. R., Trautner, T. A.: Genetic and transfection studies with B. subtilis phage SP50. III. Biological effects of DNA cleavage and the physical basis of the map. Molec. gen. Genet. 116, 51–57 (1972).PubMedCrossRefGoogle Scholar
  51. Hershey, A. D., Chase, M.: Independent functions of viral protein and nucleic acid in growth of bacteriophage, J. gen. Physiol. 36, 39–56 (1952).PubMedCrossRefGoogle Scholar
  52. Hirokawa, H.: Transfecting deoxyribonucleic acid of Bacillus bacteriophage ø29 that is pro tease-sensitive, Proc. nat. Acad. Sci. (Wash.) 69, 1555–1559 (1972).PubMedCrossRefGoogle Scholar
  53. Hogness, D. S., Simmons, J. R.: Breakage of Adg DNA: Chemical and genetic characterization of each isolated half-molecule. J. molec. Biol. 9, 411–438 (1964).PubMedCrossRefGoogle Scholar
  54. Hotz, G., Mauser, R.: Infectious DNA from coliphage T1, I. Some properties of the spheroplast assay system. Molec. gen. Genet. 104, 178–194 (1969).PubMedCrossRefGoogle Scholar
  55. Inselburg, J. W., Eremenko-Volpe, T., Greenwald, L., Meadow, W. L., Marmur, J.: Physical and genetic mapping of the SPO2 prophage on the chromosome of Bacillus subtilis 168. J. Virol. 3, 627–628 (1969).PubMedGoogle Scholar
  56. Kahan, E.: A genetic study of temperature-sensitive mutants of the B. subtilis phage SP82. Virology 30, 650–660 (1966).PubMedCrossRefGoogle Scholar
  57. Kaiser, A. D.: The Production of phage chromosome fragments and their capacity for genetic transfer. J. molec. Biol. 4, 275–287 (1962).PubMedCrossRefGoogle Scholar
  58. Kaiser, A. D., Hogness, D.: The transformation of E. coli with DNA isolated from bacteriophage Adg, J. molec. Biol. 2, 392–415 (1960).PubMedCrossRefGoogle Scholar
  59. Kaiser, A. D., Inman, R. B.: Cohesion and the biological activity of bacteriophage lambda DNA. J. molec. Biol. 13, 78–91 (1965).PubMedCrossRefGoogle Scholar
  60. Klotz, G.: Direction of SPPl DNA replication in transfected B. subtilis cells. Molec. gen. Genet. 120, 95–100 (1973).PubMedCrossRefGoogle Scholar
  61. Klotz, G., Spatz, H. Ch.: A biological assay for intracellular phage DNA. J. Molec. gen. Genet. 110, 367–373 (1971)CrossRefGoogle Scholar
  62. Levine, J. S., Strauss, H.: Lag period characterizing the entry of transforming DNA into Bacillus subtilis. J. Bact. 89, 281–287 (1965).PubMedGoogle Scholar
  63. Liljemark, W. F., Anderson, D. L.: Structure of Bacillus subtilis bacteriophage ø29 and ø 25 deoxyribonucleic acid. J. Virol. 6, 107–113 (1970).PubMedGoogle Scholar
  64. Mandel, M., Berg, A.: Cohesive sites and helper phage function of P2, lambda, and 186 DNAs. Proc. nat. Acad. Sci. (Wash.) 60, 265–268 (1968).PubMedCrossRefGoogle Scholar
  65. Mandel, M., Higa, A.: Calcium-dependent bacteriophage DNA infection. J. molec. Biol. 53, 159–162 (1970).PubMedCrossRefGoogle Scholar
  66. May, P., May, E., Granboulan, P., Marmur, J.: Ultrastructure du bacteriophage 2 C et propriétés de son DNA. Ann. Inst. Pasteur 115, 1029–1046 (1968).Google Scholar
  67. McAllister, W. T.: Bacteriophage infection. Which end of the SP82G genome goes in first? J. Virol. 5, 194–198 (1970).Google Scholar
  68. McAllister, W. T., Green, D. M.: Bacteriophage SP82G inhibition of an intracellular deoxyribonucleic acid inactivation process in Bacillus subtilis. J. Virol. 10, 51–59 (1972).PubMedGoogle Scholar
  69. Méndez, E., Ramirez, G., Salas, M., Vinuela, E.: Structural proteins of bacteriophage ø29. Virology 45, 567–576 (1971).PubMedCrossRefGoogle Scholar
  70. Mosharrafa, E. T., Schachtele, C. F.R., Eilly, B. E., Anderson, D. L.: Complementary strands of bacteriophage ø29 deoxyribonucleic acid: Preparative separation and transcription studies. J. Virol. 6, 855–864 (1970).PubMedGoogle Scholar
  71. Nester, E. W., Stocker, B. A. D.: Biosynthetic latency in early states of deoxyribonucleic acid transformation in Bacillus subtilis. J. Bact. 86, 785–796 (1963).PubMedGoogle Scholar
  72. Okubo, S., Romig, W. R.: Comparison of ultraviolet sensitivity of Bacillus subtilis bacteriophage SPO2 and its infectious DNA. J. molec. Biol. 14, 130–142 (1965).PubMedCrossRefGoogle Scholar
  73. Okubo, S., Romig, W. R.: Impaired transformability of Bacillus subtilis mutant sensitive to mitomycin C and ultraviolet radiation. J. molec. Biol. 15, 440–454 (1966).PubMedCrossRefGoogle Scholar
  74. Okubo, S., Strauss, B., Stodolski, M.: The possible role of recombination in the infection of competent Bacillus subtilis by bacteriophage deoxyribonucleic acid. Virology 24, 552–562 (1964).PubMedCrossRefGoogle Scholar
  75. Okubo, S., Yanagida, T., Fujita, D. J., Ohlsson-Wilhelm, B. M.: The genetics of bacteriophage SPO1. Biken Journal 15, 81–97 (1972).PubMedGoogle Scholar
  76. Oostindier-Braaksma, E., Epstein, H. T.: DNA fixation and development of transformability and transfectability in Bacillus subtilis. Molec. gen. Genet. 108, 23–27 (1970).PubMedCrossRefGoogle Scholar
  77. Ortin, S., Vinuela, E., Salas, M., Vasquez, C.: Phage ø29 DNA protein complex in circular DNA. Nature (Lond.) New Biol. 234, 275–277 (1971).CrossRefGoogle Scholar
  78. Reilly, B. E., Spizizen, J.: Bacteriophage deoxyribonucleate infection of competent Bacillus subtilis. J. Bact. 89, 782–790 (1965).PubMedGoogle Scholar
  79. Riva, S., Polsinelli, M.: Relationship between competence for transfection and for transformation. J. Virol. 2, 587–593 (1968).PubMedGoogle Scholar
  80. Riva, S., Polsinelli, M., Falaschi, A.: A new phage of Bacillus subtilis with infectious DNA having separable strands. J. molec. Biol. 35, 347–356 (1968).PubMedCrossRefGoogle Scholar
  81. Romig, W. R.: Infection of Bacillus subtillis with phenol-extracted bacteriophages. Virology 16, 452–459 (1962).PubMedCrossRefGoogle Scholar
  82. Romig, W. R.: Infectivity of Bacillus subtilis bacteriophage deoxyribonucleic acids extracted from mature particles and from lysogenic hosts. Bact. Rev. 32, 349–357 (1968).PubMedGoogle Scholar
  83. Rottländer, E., Trautner, T. A.: Genetic and transfection studies with B. subtilis phage SP50. I. Phage mutants with restricted growth on B. subtilis strain 168. Molec. gen. Genet. 108, 47–60 (1970).PubMedCrossRefGoogle Scholar
  84. Russo, V. E. A.: On the Physical Structure of λ Recombinant DNA. Molec. gen. Genet. 122, 353–366 (1973).PubMedCrossRefGoogle Scholar
  85. Rutberg, L.: Mapping of a temperate bacteriophage active on Bacillus subtilis. J. Virol. 3, 38–44 (1969).PubMedGoogle Scholar
  86. Rutberg, L., Armentrout, R. W.: Low-frequency rescue of a genetic marker in deoxyribonucleic acid from Bacillus bacteriophage ø105 by superinfecting bacteriophage. J. Virol. 6, 768–771 (1970).PubMedGoogle Scholar
  87. Rutberg, L., Hoch, J. A., Spizizen, J.: Mechanism of transfection with deoxyribonucleic acid from the temperate Bacillus bacteriophage ø105 J. Virol. 4, 50–57 (1969).PubMedGoogle Scholar
  88. Rutberg, L., Rutberg, B.: Characterization of infectious deoxyribonucleic acid from temperate Bacillus bacteriophage ø105 J. Virol. 5, 604–608 (1970).PubMedGoogle Scholar
  89. Rutberg, L., Rutberg, B.: Growth of bacteriophage ø105 and its deoxyribonucleic acid in radiation-sensitive mutants of Bacillus subtilis. J. Virol. 8, 919–921 (1971).PubMedGoogle Scholar
  90. Sarkar, S.: Assay of infectivity of nucleic acids. Methods in Virology 2, p. 607–644. New York: Academic Press 1970.Google Scholar
  91. Schachtele, C. F., Oman, R. W., Anderson, D. L.: Effect of elevated temperature on DNA synthesis in phage ø29 infected Bacillus amyloliquefaciens. J. Virol. 6, 430–437 (1970).PubMedGoogle Scholar
  92. Siegel, E. C., Marmur, J.: Temperature-sensitive induction of bacteriophage in Bacillus subtilis 168, J. Virol. 4, 610–618 (1969).PubMedGoogle Scholar
  93. Singh, R. N., Pítale, M. P.: Enrichment of Bacillus subtilis transformants by zonal centrifugation. Nature (Lond.) 213, 1262–1263 (1967).CrossRefGoogle Scholar
  94. Sjöström, J. E., Lindberg, M., Philipson, L.: Transfection of Staphylococcus aureus with bacteriophage deoxyribonucleic acid. J. Bact. 109, 285–291 (1972).PubMedGoogle Scholar
  95. Spatz, H. Ch.: A determination of the efficiency of uptake of SP 50 DNA in transfection of B. subtilis by mutual exclusion. Molec. gen. Genet. 117, 125–128 (1972).PubMedCrossRefGoogle Scholar
  96. Spatz, H. Ch., Trautner, T. A.: One way to do experiments on gene conversion? Molec. gen. Genet. 109, 84–106 (1970).PubMedCrossRefGoogle Scholar
  97. Spatz, H. Ch., Trautner, T. A.: The role of recombination in transfection. Molec. gen. Genet. 113, 174–190 (1971).PubMedGoogle Scholar
  98. Spiegelman, S., Haruna, I., Pace, R. N., Mills, D. R., Peterson, R.: Studies in the replication of viral RNA. J. cell. comp. Physiol. 70, 35–64 (1967).Google Scholar
  99. Spizizen, J., Reilly, E., Evans, A. H.: Microbial transformation and transfection. Ann. Rev. Microbiol. 20, 371–400 (1966).CrossRefGoogle Scholar
  100. Strauss, N. S.: Configuration of transforming DNA during entry into Bacillus subtilis. J. Bact. 89, 288–293 (1965).PubMedGoogle Scholar
  101. Strauss, N. S.: Further evidence concerning the configuration of transforming DNA during entry into Bacillus subtilis. J. Bact. 91, 702–708 (1966).PubMedGoogle Scholar
  102. Szybalski, W.: Use of cesium sulfate for equilibrium density-gradient centrifugation. In: Methods in Enzymology, Vol. XIIb. p. 330–360. New York and London: Academic Press 1968.Google Scholar
  103. Tevethia, M. J., Mandel, M.: Nature of the ethylenediaminetetra-acetic acid requirement for transformation of Bacillus subtilis with single-stranded DNA J. Bact. 101, 844–850 (1970).PubMedGoogle Scholar
  104. Tevethia, M. J., Mandel, M.: Effects of pH on transformation of Bacillus subtilis with single-stranded DNA. J. Bact. 106, 802–807 (1971).PubMedGoogle Scholar
  105. Tichy, P., Rytir, V., Kohoutova, M.: Genetic transformation and transfection of Bacillus subtilis spheroplasts. Folia Microbiol. 13, 510 (1968).CrossRefGoogle Scholar
  106. Tokunaga, T., Nakamura, R. M.: Infection of competent Mycobacterium smegmatis with DNA extracted from bacteriophage B1. J. Virol. 2, 110–117 (1968).PubMedGoogle Scholar
  107. Tokunaga, T., Sellers, M.: Infection of Mycobacterium smegmatis with D29 phage DNA. J. exp. Med. 119, 139–149 (1964).PubMedCrossRefGoogle Scholar
  108. Trautner, T. A., Spatz, H. Ch., Behrens, B., Pawlek, B., Behncke, M.: Exchange between complementary strands of DNA? Advanc. Biosci. 8, 79–86 (1972).Google Scholar
  109. Tsien, H. C., Mosharrafa, E. T., Hickman, D. D., Hagen, E. W., Schachtele, C. F., Anderson, D. L.: Studies with bacteriophage ø29 and its infectious DNA. Proceedings Summer School on Uptake of Informational Molecules. Mol. Belgium 1970. In press.Google Scholar
  110. Tsien, H. C., Reilly, B. E., Anderson, D. L.: Gene transfer by bacteriophage ø29 DNA fragments. Bact. Proc. 1970.Google Scholar
  111. Van De Pol, J. H., Veldhuisen, G., Cohen, J. A.: Phage transformation: A new criterion for the biological activity of bacteriophage DNA. Biochim. biophys. Acta (Amst.) 48, 417–418 (1961).CrossRefGoogle Scholar
  112. Veldhuisen, G., Goldberg, E. B.: Genetic transformation of bacteriophage T4. In: Methods in Enzymology, vol. 128, p. 858–863. New York and London: Academic Press 1968.Google Scholar
  113. Welker, N. E., Campbell, L. L.: Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis, J. Bacc. 94, 1124–1130 (1967).Google Scholar
  114. Williams, G. L., Green, D.M.: Early extracellular events in infection of competent Bacillus subUlis by DNA of bacteriophage SP82G, Proc. nat. Acad. Sci. (Wash.) 69, 1545–1549 (1972).PubMedCrossRefGoogle Scholar
  115. Wilson, G. A., Bott, K. F.: Nutritional factors influencing the development of competence. In Bacillus subtilis transformation system. J. Bact. 95, 1439–1449 (1968).PubMedGoogle Scholar
  116. Yasunaka, K., Tsukamoto, H., Okubo, S., Horiochi, T.: Isolation and properties of suppressor-sensitive mutants of Bacillus subtilis bacteriophage SPO2. J. Virol. 5, 819–821 (1970).PubMedGoogle Scholar
  117. Young, E. T., Sinsheimer, K. L.: Vegetative bacteriophage λ DNA. I. Infectivity in a spheroplast assay. J. molec. Biol. 30, 147–164 (1967).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1973

Authors and Affiliations

  • T. A. Trautner
  • H. Ch. Spatz
    • 1
  1. 1.Max-Planck-Institut für Molekulare GenetikBerlin 33Germany

Personalised recommendations