Cellular Membranes as Amplifiers of Hormonal Action

  • Earl F. WalborgJr.
  • N. Burr Furlong

Abstract

Hormonal regulation of cellular processes can be described in terms of molecule-mediated information transfer, initiated by the interaction of hormone and a cellular receptor. The basic elements of such a system have been described by Hechter (1966):

“… two complementary aspects are involved in the primary reaction of hormone with its receptor-one cybernetic, the other energetic. The cybernetic component involves (a) the environmental informational message brought to the cell by hormone which is selectively received by a macromolecule coded to recognize and discriminate between closely related molecular structures and (b) the translation of the message into intracellular language of information signals, which then flow through the cell to diverse effector sites. The energetic component involves amplification of the message so that it may be transmitted with an energy content sufficient to ‘trigger’ the underlying effector mechanisms….”

Keywords

Permeability Recombination Fluoride Polypeptide Glucocorticoid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benson, A.: On the Orientation of Lipids in Chloroplast and Cell Membranes. J. Am. Oil Chem. Soc., 43:265, 1966.PubMedCrossRefGoogle Scholar
  2. 2.
    Birnbaumer, L., Pohl, S. L., and Rodbell, M.: The Glucagon-sensitive Adenyl Cyclase System in Plasma Membranes of Rat Liver II. Comparison between Glucagon and Fluoride Stimulated Activities. J. Biol. Chem., 246:1857–1860, 1971.PubMedGoogle Scholar
  3. 3.
    Bowness, J. M.: Epinephrine: Cascade Reactions and Glycogenolytic Effects. Science, 152:1370–1371, 1966.PubMedCrossRefGoogle Scholar
  4. 4.
    Braun, T. and Hechter, O.: Glucocorticoid Regulation of ACTH Sensitivity of Adenyl Cyclase in Rat Fat Cell Membranes. Proc. Natl. Acad. Sci., U. S., 66:995–1001, 1970.CrossRefGoogle Scholar
  5. 5.
    Briggs, C. E. and Haldane, J. B. S.: A Note on the Kinetics of Enzyme Action. Biochem. J., 19:338–343, 1925.PubMedGoogle Scholar
  6. 6.
    Changeux, J. P., Thiery, J., Tung, Y., and Kittel, C.: On the Cooperativity of Biological Membranes. Proc. Natl. Acad. Sci., U. S., 57:335–341, 1967.CrossRefGoogle Scholar
  7. 7.
    Danielli, J. F. and Davson, H.: A Contribution to the Theory of Permeability of Thin Films. J. Cell. Comp. Physiol., 5:495–508, 1935.CrossRefGoogle Scholar
  8. 8.
    Davoren, P. R. and Sutherland, E. W.: The Cellular Location of Adenyl Cyclase in the Pigeon Erythrocyte. J. Biol. Chem., 238:3016–3023, 1963.PubMedGoogle Scholar
  9. 9.
    Green, D. E., Allmann, D. W., Bachmann, E., Baum, H., Kopaczyk, K., Korman, E. F., Lipton, S., MacLennan, D. H., McConnell, D. G., Perdue, J. F., Rieske, J. S., and Tzagoloff, A.: Formation of Membranes by Repeating Units. Arch. Biochem. Biophys., 119:312–335, 1967.PubMedCrossRefGoogle Scholar
  10. 10.
    Green, D. E. and Pardue, J. F.: Correlation of Mitochondrial Structure and Function. Ann. N. Y. Acad. Sci., 137:667–684, 1966.PubMedCrossRefGoogle Scholar
  11. 11.
    Hechter, O.: Hormone Action at the Cell Membrane. In: P. Karlson (ed.), Mechanisms of Hormone Action — A NATO Advanced Study Institute, pp. 61–82. New York: Academic Press, 1966.Google Scholar
  12. 12.
    Henri, V.: Lois Generales de l’Action des Diastases. Hermann, Paris, 1903.Google Scholar
  13. 13.
    Hill, A. V.: The Possible Effects of the Aggregation of the Molecules of Haemoglobin on Its Dissociation Curves. J. Physiol. (London), 40:iv, 1910.Google Scholar
  14. 14.
    Korn, E. D.: Structure and Function of the Plasma Membrane. A Biochemical Perspective. J. Gen. Physiol., 52:257–278, 1968.PubMedCrossRefGoogle Scholar
  15. 15.
    Lenard, J. and Singer, S. J.: Protein Conformation in Cell Membrane Preparations as Studied by Optical Rotary Dispersion and Circular Dichroism. Proc. Natl. Acad. Sci., U. S., 56:1828–1835, 1966.CrossRefGoogle Scholar
  16. 16.
    Ling, G. N.: A New Model for the Living Cell: A Summary of the Theory and Recent Experimental Evidence in Its Support. In: G. H. Bourne and J. F. Danielli (ed.), Review of Cytology, pp. 42–68. New York: Academic Press, 1969.Google Scholar
  17. 17.
    Lucy, J. A.: Globular Lipid Micelles and Cell Membranes. J. Theoret. Biol., 7:360–373, 1964.CrossRefGoogle Scholar
  18. 18.
    Michaelis, L. and Menten, M. L.: Die Kinetik der Invertinwirkung. Biochem. Z., 49:333–353, 1913.Google Scholar
  19. 19.
    Pohl, S. L., Birnbaumer, L., and Rodbell, M.: The Glucagon-sensitive Adenyl Cyclase System in Plasma Membranes of Rat Liver I. Properties. J. Biol. Chem., 246:1849–1856, 1971.PubMedGoogle Scholar
  20. 20.
    Pohl, S. L., Birnbaumer, L. and Rodbell, M.: Glucagon-sensitive Adenyl Cyclase in Plasma Membrane of Hepatic Parenchyme Cells. Science, 164:566, 1969.PubMedCrossRefGoogle Scholar
  21. 21.
    Robertson, J. D.: The Ultrastructure of Cell Membranes and Their Derivatives. Biochem. Soc. Symp., 16:143, 1959.Google Scholar
  22. 22.
    Robison, G. A., Butcher, R.W., and Sutherland, E.W.: Cyclic AMP. Ann. Rev. Biochem., 37:149, 1968.PubMedCrossRefGoogle Scholar
  23. 23.
    Robison, G. A., Butcher, R. W. and Sutherland, E. W.: Adenyl Cyclase as an Adrenergic Receptor. Science, 139:703–723, 1967.Google Scholar
  24. 24.
    Rodbell, M., Krans, H. M. J., Pohl, S. L., and Birnbaumer, L.: The Glucagon-sensitive Adenyl Cyclase System in Plasma Membranes of Rat Liver III. Binding of Glucagon: Methods of Assay and Specificity. J. Biol. Chem., 246:1861–1871, 1971.PubMedGoogle Scholar
  25. 25.
    Rodbell, M., Krans, H. M. J., Pohl, S. L., and Birnbaumer, L.: The Glucagon-sensitive Adenyl Cyclase System in Plasma Membranes of Rat Liver IV. Effects of Guanyl Nucleotides on Binding of 125I-Glucagon. J. Biol. Chem., 246:1872–1876, 1971.PubMedGoogle Scholar
  26. 26.
    Rodbell, M., Birnbaumer, L., Pohl, S. L., and Krans, H. M. J.: The Glucagon-sensitive Adenyl Cyclase System in Plasma Membranes of Rat Liver V. An Obligatory Role of Guanyl Nucleotides in Glucagon Action. J. Biol. Chem., 246:1877–1882, 1971.PubMedGoogle Scholar
  27. 27.
    Schwartz, I. L. and Hechter, O.: Insulin Structure and Function. Am. J. Med., 40:165–712, 1966.CrossRefGoogle Scholar
  28. 28.
    Turkington, R. W.: Stimulation of RNA Synthesis in Isolated Mammary Cells by Insulin and Prolactin Bound to Sephrarose. Biochem. Biophys. Res. Commun., 41:1362, 1970.PubMedCrossRefGoogle Scholar
  29. 29.
    Vanderkooi, G. and Green, D., E.: Biological Membrane Structure, I. The Protein Crystal Model for Membranes. Proc. Natl. Acad. Sci., U.S., 66:615–621, 1970.CrossRefGoogle Scholar
  30. 30.
    Vanderkooi, G. and Sundaralingam, M.: Biological Membrane Structure, II. A Detailed Model for the Retinal Rod Outer Segment Membrane. Proc. Natl. Acad. Sci., U. S., 67:233–238, 1970.CrossRefGoogle Scholar
  31. 31.
    Yamashita, S. and Racker, E.: Resolution and Reconstitution of the Mitochondrial Electron Transport System. II. Reconstitution of Succinoxidase from Individual Components. J. Biol. Chem., 244:1220–1227, 1969.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1974

Authors and Affiliations

  • Earl F. WalborgJr.
  • N. Burr Furlong

There are no affiliations available

Personalised recommendations