Advertisement

Diffusion

  • Joseph V. Smith

Abstract

Diffusion in feldspars undoubtedly takes place by many types of processes. A simplified distinction assigns movement down grain boundaries and through dislocations to non-volume diffusion, and movement through the near-perfect crystal units to volume diffusion (often called lattice diffusion). The former is only partly determined by the bonding properties of the crystal structure, and is strongly dependent on the grain size and on macroscopic imperfections. The latter is more strongly dependent on the bonding properties since it must depend principally on migration of atoms into point defects principally affected by neighboring atoms nearly in regular sites. Migration of an atom into a defect normally produces a new defect so that further opportunity for diffusion occurs. Over a long period of time at lower temperatures where new defects are not spontaneously produced, diffusion is reduced by migration of defects to sinks.

Keywords

Apparent Diffusion Coefficient Arrhenius Plot Hydrothermal Condition Volume Diffusion Alkali Feldspar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramov, V.A., Anfilogov, V.N. (1970): Characteristics of potassium and sodium diffusion in alkali feldspars. Ezheg., Inst. Geokhim., Sib Otd., Akad. Nauk SSSR 1969, 312–313. In Russian. Chern. Abstr., 114352z.Google Scholar
  2. Abramov, V.A., Brandt, S. B., Anfilogov, V.N. (1972): Kinetics of homogenization of microc1ine perthite between 400 and 1000°C. DAN 202, 104–105. Trans. from DAN 202, 166–168.Google Scholar
  3. Amirkhanov, K. I., Brandt, S. B., Bartnitskii, E. N. (1959): Diffusion of radiogenic argon in feldspars. DAN 125, no. 6, 1345–1347. English translation in 1960, 210–212.Google Scholar
  4. Anderson, D.E. (1972): Cation diffusion in alkali feldspar glasses. Abstr. V5 of Am. Geophys. Union Mtg., San Francisco.Google Scholar
  5. Baadsgaard, H., Lipson, J., Folinsbee, R. E. (1961): The leakage of radiogenic argon from sanidine. GCA 25, 147–157.Google Scholar
  6. Bailey, A. (1971): Comparison of low-temperature with high-temperature diffusion of sodium in albite. GCA 35, 1073–1081.Google Scholar
  7. Bottinga, Y., Weill, D. F. (1972): The viscosity of magmatic silicate liquids: a model for calculation. AJS 272, 438–475.Google Scholar
  8. Bowen, N. L. (1934): Viscosity data for silicate melts. Trans. Am. Geophys. Union, 15th Ann. Mtg., pt. 1, 249–255.Google Scholar
  9. Brown, W.L. (1965): Crystallographic aspects of feldspars in metamorphism. In: Pitcher, W.S., Flinn, G. W. (Eds.): Controls of metamorphism. pp. 342–351. London: Oliver and Boyd.Google Scholar
  10. Christophe-Michel-Lévy, M. (1967): Sur Ie mécanisme de «l’échange» Na-K par voie hydrothermaledans l’albite. BSFMC 90, 411–413.Google Scholar
  11. Christophe-Michel-Lévy, M. (1968): Observations microscopiques de l’échange Na-K dans les feldspaths alcalins. BSFMC 91, 503–507.Google Scholar
  12. Crank, J. (1956): The mathematics of diffusion. Oxford: University Press.Google Scholar
  13. Debron, G., Wyart, J., Sabatier, G. (1968): Quelques observations sur la transformation hydrothermale de l’albite basse-température en albite haute-température. Compt. Rend. Acad. Sci. (Paris) 267, Ser. D, 1345–1350.Google Scholar
  14. Debron, G., Wyart, J., Sabatier, G. (1969): Sur les mecanismes de la transformation de l’albite basse température dans la forme haute température. Compt. Rend. Acad. Sci. (Paris) 268, Ser. D, 889–890.Google Scholar
  15. Dietz, E. D., Baak, T., Blau, H. H. (1970): The superheating of an albite feldspar. ZK 132, 340–360.CrossRefGoogle Scholar
  16. Donnay, G., Wyart, J., Sabatier, G. (1959): Structural mechanism of thermal and compositional transformations in silicates. ZK 112, 161–168.CrossRefGoogle Scholar
  17. Eberhard, E. (1967): Zur Synthese der Plagioklase. SMPM 47, 385–398.Google Scholar
  18. Eitel, w. (1964–1966): Silicate science. New York: Academic Press.Google Scholar
  19. Evernden, J.F., Curtis, G.H., Kistler, R., Obradovich, J. (1960): Argon diffusion in glauconite, microcline, sanidine, leucite and phlogopite. AJS 258, 583–604.Google Scholar
  20. Fechtig, H., Gentner, W., Zahringer. J. (1960): Argonbestimmungen an Kaliummineralien. VII. Diffusionverluste von Argon in Mineralien und ihre Auswirkung auf die Kalium-Argon-Altersbestimmung. GCA 19, 70–79.Google Scholar
  21. Fechtig, H., Gentner, W., Kalbitzer, S. (1961): Argonbestimmungen an Kaliummineralien. IX. Messungen zu den verschiedenen Arten der Argondiffusion. GCA 25, 297–311.Google Scholar
  22. Foland, K.A. (1971): Diffusion of Ar40 and alkalis in orthoclase. Progr. Geol. Soc. Am. Mtg. Washington, D. C., 568.Google Scholar
  23. Foland, K.A. (1972): Cation partitioning and diffusion in orthoclase. Abstr. 2.8 in program for Advanced Study Institute on Feldspars, July 1972, Manchester.Google Scholar
  24. Foland, K. A., Giletti, B.J. (1972): Na, K and Rb diffusion in orthoclase. Amer. Geophys. Union Mtg., abstr. V141 in Transactions, 557.Google Scholar
  25. Frechen, J., Lippolt, H.J. (1965): Kalium-Argon-Daten zum Alter des Laacher Vulkanismus, der Rheinterrassen und der Eiszeiten. Eiszeitalter und Gegenwart 16, 5.Google Scholar
  26. Gay, P., Roy, N. N. (1968): The mineralogy of the potassium-barium feldspar series. III. Sub-solidus relationships. MM 36, 914–932.Google Scholar
  27. Gerling, E. K., Morozowa, I. M. (1958): The kinetics of argon liberation from microcline-perthite. Geochemistry no. 7, 775–781.Google Scholar
  28. Gerling, E. K., Levskii, L. K., Morozova, I. M. (1963): On the diffusion of radiogenic argon from minerals. Geochemistry 6, 551–555.Google Scholar
  29. Goldsmith, J.R. (1952): Diffusion in plagioclase feldspars. JG 60, 288–291.Google Scholar
  30. Hofmaier, G. (1968): Viskositat und Struktur fliissiger Silikate. Berg u. Hiittenm. Monatsh. Montan. Hochschule in Loeben 113, 270–281.Google Scholar
  31. Jagitsch, R., Olsson, M.-G. (1954): Geologische Diffusionen in kristallisierten Phasen: Mischkristallbildung in Na-K-Feldspaten. Internat. Symp. Reactivity Solids, Gothenburg Proc., 463–470.Google Scholar
  32. Jensen, M. L. (1952): Solid diffusion of radioactive sodium in perthite. AJS 250, 808–821.Google Scholar
  33. Kani, K. (1935): Viscosity phenomena of the system KAISi3O8-NaAISi3O8 and of perthite at high temperatures. Proc. Imp. Acad. Japan 11, 334–336.Google Scholar
  34. Kozu, S., Kani, K. (1935): Viscosity measurements of the ternary system diopside-albite-anorthite at high temperature. Proc. Imp. Acad. (Tokyo) 11, 383–385.Google Scholar
  35. Kucher, M. I. (1972): Diffusion of nitrogen in microcline. Geochemistry International 9, 506. Trans. from Geokhimiya, no. 6, 730–734.Google Scholar
  36. Lin, T.-H., Yund, R. A. (1972):Potassium and sodium self-diffusion in alkali feldspar. CMP 34, 177–184.Google Scholar
  37. Mackenzie, W. S. (1957): The crystalline modifications of NaAISi3O8. AJS 255, 481–516.Google Scholar
  38. Mackenzie, W. S., Smith, J. V. (1961): Experimental and geological evidence for the stability of alkali feldspars. CCILM 8, 53–69.Google Scholar
  39. Manecki, A. (1970): Investigations of the alkali metasomatism in feldspars. Polska Akademia Nauk, Komisja Nauk Mineralogicznych. Prace Mineralogiczne, no. 21, 94 pp.Google Scholar
  40. Manning, J. R. (1968): Diffusion kinetics for atoms in crystals. Princeton: Van Nostrand.Google Scholar
  41. Maury, R. (1968): Conductibilité électrique des tectosilicates. I. Méthode et résultats experimentaux. II. Discussion des resultats, BSFMC 91, 267–278 and 355–366.Google Scholar
  42. McCaffery, R. S., Lorig, C. H., Goff, I. N., Oesterle, J. F., Fritsche, O.O. (1931): Determination of viscosity of blast furnace slags. Am. Inst. Mining and Metall. Engineers Tech. Publ, no. 383, 27–140.Google Scholar
  43. McConnell, J. D. C., McKie, D. (1960): The kinetics of the ordering process in triclinic NaAISi3O8. MM 32, 436–454.Google Scholar
  44. McKie, D., McConnell, J. D. C. (1963): The kinetics of the low to high transformation in albite. I. Amelia albite under dry conditions. MM 33, 581–588.Google Scholar
  45. Merigoux, H. (1967): Étude des réactions d’échange dans les feldspaths alcalins. Compt. Rend. Acad. Sci. (Paris) 264, 2965–2967.Google Scholar
  46. Merigoux, H. (1968): Étude de la mobilité de l’oxygene dans les feldspaths alcalins. BSFMC 91, 51–64.Google Scholar
  47. Mueller, R. F. (1967): Mobility of the elements in metamorphism. JG 75, 565–582.Google Scholar
  48. Norman, J.H., Winchell, P., Dixon, J.M., Roos, B.W., Korts, R.F. (1970): Spheres: diffusion-controlled fission product release and adsorption. Adv. Chern. Ser., no. 93, 13–34, American Chemical Society.Google Scholar
  49. O’Neil, J.R., Taylor, H.P., Jr. (1967): The oxygen isotope and cation exchange chemistry of feldspars. AM 52, 1414–1437.Google Scholar
  50. Orville, P. M. (1962): Alkali metasomatism and feldspars. NGT 42, no. 2, 283–316.Google Scholar
  51. Orville, P. M. (1963): Alkali ion exchange between vapor and feldspar phases. AJS 261, 201–237.Google Scholar
  52. Petrović, R. (1972a): Alkali ion diffusion in alkali feldspars. Ph. D. thesis, Yale University.Google Scholar
  53. Petrović, R. (1972b): Diffusion of alkali ions in alkali feldspars. Abstr. 2.7 in program for Advanced Study Institute on Feldspars, July 1972, Manchester.Google Scholar
  54. Petrovic, R. (1973): The effect of coherency stress on the mechanism of the reaction albite + K +⇋ K-feldspar + Na + and on the mechanical state of the resulting feldspar. CMP 41, 151–170.Google Scholar
  55. Reynolds, J. H. (1957): Comparative study of argon content and argon-diffusion in mica and feldspar. GCA 12, 177–184.Google Scholar
  56. Riebling, E. F. (1966): Structure of sodium aluminosilicate melts containing at least 50 mole-% SiO2 at 1500° C. J. Chern. Phys. 44, 2857–2865.CrossRefGoogle Scholar
  57. Rosenqvist, I. T. (1949): Some investigations of the crystal chemistry of silicates. I. Diffusion of Pb and Ra in feldspar. Acta Chemica Scandinavia 3, 569–583.CrossRefGoogle Scholar
  58. Rosenqvist, I. T. (1952): The metamorphic facies and the feldspar minerals. Univ. Bergen Årbok, Naturvit. rekke, no. 4, 1–108.Google Scholar
  59. Rossin, R., Bersan, J., Urbain, G. (1964): Étude de la viscosité de laitiers liquides appartenant au systeme ternaire SiO2-Al2O3-CaO. Rev. Hautes Températures et Refractaires 1, 159–170.Google Scholar
  60. Schneider, T. R. (1957): Röntgenographische und optische Untersuchung der Umwandlung Albit-Analbit-Monalbit. ZK 109, 245–271.CrossRefGoogle Scholar
  61. Sippel, R.F. (1963): Sodium self diffusion in natural minerals. GCA 27, 107–120.Google Scholar
  62. Spencer, E. (1937): The potash-soda-felspars. I. Thermal stability. MM 24, 453–494.Google Scholar
  63. Tuttle, O. F., Bowen, N. L. (1950): High-temperature albite and contiguous feldpars. JG 58, 572–583.Google Scholar
  64. Viswanathan, K. (1971): A new X-ray method to determine the anorthite content and structural state of plagioc1ases. CMP 30, 332–335.Google Scholar
  65. Weill, D. F., Grieve, R. A., McCallum, I. S., Bottinga, Y. (1971): Mineralogy-petrology of lunar samples. Microprobe studies of samples 12021 and 12022; viscosity of melts of selected lunar compositions. Proc. Second Lunar Sci. Conf. 1 413–430. M.LT. Press.Google Scholar
  66. Winchell, P. (1971): Diffusion of 24Na, 124Sb, and 134Cs in melts from the albite-sodium disilicate system. J. Am. Ceram. Soc. 54, 63–64.CrossRefGoogle Scholar
  67. Wyart, J., Sabatier, G. (1956): Mobilité des ions alcalins et alcalino-terreaux dans les feldspaths. BSFMC 79, 444–448.Google Scholar
  68. Wyart, J., Sabatier, G. (1958): Mobilité des ions silicium et aluminium dans les cristaux de feldspath. BSFMC 81, 223–226.Google Scholar
  69. Wyart, J., Sabatier, G. (1959): Nouvelles observations sur la mobilite des ions silicium et aluminium dans les cristaux de feldspath. BSFMC 82, 216.Google Scholar
  70. Perrin, R. (1959): Remarques sur une recente note de J. Wyart et G. Sabatier. “As above”. BSFMC 82, 325.Google Scholar
  71. Zimmermann, J.-L., Leutwein, F. (1968): Contribution a l’étude de la libération de l’argon contenu dans les minéraux: application a la méthode de datation K-A. Compt. Rend. Acad. Sci. (Paris) Ser. D, 267, 22–24.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • Joseph V. Smith
    • 1
  1. 1.Department of the Geophysical SciencesThe University of ChicagoChicagoUSA

Personalised recommendations