Skip to main content

The Regulation of Cellular Function by Temperature-induced Alterations in Membrane Composition

  • Chapter
Effects of Temperature on Ectothermic Organisms

Abstract

A most pervasive and widespread effect of environmental temperature upon the physiology and biochemistry of ectothermic organisms is reflected in the lipid composition of their membrane systems. It is the intention of this review (1) to briefly summarize the evidence for temperature-induced alterations in membrane lipid composition, (2) to discuss the implications of such alterations in terms of the regulation of membrane function, both barrier and catalytic, and (3) to discuss the regulatory aspects of the lipid biosynthetic pathway which may account for the temperature sensitivity of lipid and membrane composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baranska, J., Wlodawer, P.: Influence of temperature on the composition of fatty acids and on lipogenesis in frog tissues. Comp. Biochem. Physiol. 28, 553–570 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Bright-Gaertner, E., Proulx, P.: Metabolism of phosphoglycerides in Escherichia coli during growth at 37 C and during a cold-induced lag phase. Biochem. Biophys. Acta. 27, 40–49 (1972).

    Google Scholar 

  • Caldwell, R. S.: Thermal compensation of respiratory enzymes in tissues of the goldfish (Carassius auratus L.). Comp. Biochem. Physiol. 31, 79–90 (1969).

    Article  CAS  Google Scholar 

  • Caldwell, R. S., Vernberg, J. F.: The influence of acclimation temperature on the lipid composition of fish gill mitochondria. Comp. Biochem. Physiol. 34, 179–191 (1970).

    Article  CAS  Google Scholar 

  • Chang, S. B., Matson, R. S.: Membrane stability (thermal) and nature of fatty acids in yeast. Biochem. Biophys. Res. Commun. 46, 1529–1535 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Cullen, J., Phillips, M. C., Shipley, G. G.: The effects of temperature on the composition and physical properties of the lipids of Pseudomonas fluorescens. Biochem. J. 125, 733–742 (1971)

    PubMed  CAS  Google Scholar 

  • Cunningham, C. C., Hager, L. P.: Crystalline pyruvate oxidase from Escherichia coli III. phospholipid as an allosteric effector for the enzyme. J. Biol. Chem. 246, 1583–1589 (1971).

    PubMed  CAS  Google Scholar 

  • Endo, A., Rothfield, L.: Studies on a phospholipid requiring bacterial enzyme II. the role of phospholipid in the uridine diphosphate galactose: lipopolysaccharide β-3 galactosyl transferase reaction. Biochem. 8, 3508–3516 (1969).

    Article  CAS  Google Scholar 

  • Farkas, T., Herodek, S.: The effect of environmental temperature on the fatty acid composition of crustacean plankton. J. Lipid. Res. 5, 369–373 (1964).

    PubMed  CAS  Google Scholar 

  • Fleischer, S., Brierley, G., Klouwen, H., Slautterback, D. B.: Studies of the electron transfer system XLVII. The role of phospholipids in electron transfer. J.Biol. Chem. 237, 3264 bis (1962)

    PubMed  CAS  Google Scholar 

  • Fleischer, S., Brierley, G., Klouwen, H., Slautterback, D. B.: Studies of the electron transfer system XLVII. The role of phospholipids in electron transfer. J.Biol. Chem. 237 3272 (1962).

    Google Scholar 

  • Fulco, A. J.: Temperature-mediated hyper-induction of fatty acid desaturating enzyme. Biochem. Biophys. Acta. 218, 558–560 (1970).

    PubMed  CAS  Google Scholar 

  • Fulco, A. J.: The biosynthesis of unsaturated fatty acids by bacilli IV. temperature mediated control mechanisms. J. Biol. Chem. 247, 3511–3519 (1972).

    PubMed  CAS  Google Scholar 

  • Haest, C. W. M., DeGier, J., VanDeenen, L. L. M.: Changes in the chemical and barrier properties of the membrane lipids of E. coli by variation of the temperature of growth. Chem. Phys. Lipids. 3, 413–417 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Hazel, J.: The effect of temperature acclimation upon succinic dehydrogenase activity from the epaxial muscle of the common goldfish (Carassius auratus L.): properties of the enzyme and the effect of lipid extraction. Comp. Biochem. Physiol. 43B, 837–861 (1972a).

    Google Scholar 

  • Hazel, J.: The effect of temperature acclimation upon succinic dehydrogenase activity from the epaxial muscle of the common goldfish (Carassius auratus L.): lipid reactivation of the soluble enzyme. Comp. Biochem. Physiol. 43B, 863–882 (1972b).

    Google Scholar 

  • Hazel, J., Prosser, C. L.: Interpretation of inverse acclimation to temperature. Z. Vergleich. Physiol. 67, 217–228 (1970).

    Article  Google Scholar 

  • Hoar, W. S., Cottle, M. K.: Some effects of temperature acclimatization on the chemical constitution of goldfish tissues. Can. J. Zool. 30, 49–54 (1951).

    Article  Google Scholar 

  • Johnston, P. V., Roots, B. I.: Brain lipid fatty acids and temperature acclimation. Comp. Biochem. Physiol. 11, 303–309 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Kemp, P., Smith, M. W.: Effect of temperature acclimatization on the fatty acid composition of goldfish intestinal lipids. Biochem. J. 117, 9–15 (1970).

    PubMed  CAS  Google Scholar 

  • Kimelberg, H. K., Papahadjopoulos, D.: Phospholipid requirements for (Na+ + K+)-ATPase activity: head group specificity and fatty acid fluidity. Biochem. Biophys. Acta 282, 277–292 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Knipprath, W. G., Mead, J. F.: Influence of temperature on the fatty acid pattern of mosqui-tofish (Gambusia affinis) and guppies (Lebistes retkulatus). Lipids 1, 113–117 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Knipprath, W. G., Mead, J. F.: The effect of environmental temperature on the fatty acid composition and on the in vivo incorporation of 1-14C-acetate in goldfish (Carassius auratus L.). Lipids 3, 121–128 (1967).

    Article  Google Scholar 

  • Kuiper, P. J. C., Livne, A., Meverstein, N.: Changes in lipid composition and osmotic fragility of erythrocytes of hamster induced by heat exposure. Biochem. Biophys. Acta 248, 300–305 (1971).

    PubMed  CAS  Google Scholar 

  • Lyons, J. M., Raison, J. K.: A temperature-induced transition in mitochondrial oxidation: contrast between cold and warm-blooded animals. Comp. Biochem. Physiol. 37, 405–411 (1970a).

    Article  CAS  Google Scholar 

  • Lyons, J. M., Raison, J. K.: Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol. 45, 386–389 (1970b).

    Article  PubMed  CAS  Google Scholar 

  • Morris, R. W., Schneider, M. J.: Brain fatty acids of an Antarctic fish Trematomus bernacchii. Comp. Biochem. Physiol. 28, 1461–1464 (1969).

    Article  CAS  Google Scholar 

  • Mumma, R. O., Fergus, G. L., Sekura, R. D.: The lipids of thermophilic fungi: lipid composition comparisons between thermophilic and mesophilic fungi. Lipids 5, 100–103 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Patterson, G. W.: Effect of culture temperature on fatty acid composition of Chlorella sorokiniana. Lipids 5, 597–600 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Proudlock, J. W., Haslam, J. M., Linnane, A. W.: Specific effect of unsaturated fatty acid depletion on mitochondrial oxidative phosphorylation in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 37, 847–852 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Raison, J. K., Lyons, J. M., Melhorn, R. J., Keith, A. D.: Temperature-induced phase changes in mitochondrial membranes detected by spin labelling. J. Biol. Chem. 246, 4036–4040 (1971a).

    PubMed  CAS  Google Scholar 

  • Raison, J. K., Lyons, J. M., Thomson, W. W.: The influence of membranes on the temperature-induced changes in the kinetics of some respiratory enzymes of mitochondria. Arch. Biochem. Biophys. 142, 83–90 (1971b).

    Article  PubMed  CAS  Google Scholar 

  • Richardson, T., Tappel, A. L.: Swelling offish mitochondria. J. Cell Biol. 13, 43–53 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Roots, B. I.: Phospholipids of goldfish (Carassius auratus L.) brain: the influence of environmental temperature. Comp. Biochem. Physiol. 25, 457–466 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Roots, B. L, Johnston, P. V.: Plasmalogens of the nervous system and environmental temperature. Comp. Biochem. Physiol. 26, 553–560 (1969).

    Google Scholar 

  • Rothfield, L., Finkelstein, A.: Membrane biochemistry. Ann. Rev. Biochem. 37, 463–496 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Sekuzu, I., Jurtshuk, D., Green, D. E.: Studies on the electron transfer system LI. — Isolation and characterization of the D-(-)-β-hydroxybutyric apodehydrogenase from beef heart mitochondria. J. Biol. Chem. 238, 975–982 (1963).

    PubMed  CAS  Google Scholar 

  • Sinensky, M.: Temperature control of phospholipid biosynthesis in Escherichia coli. J. Bacteriol. 106, 449–455 (1971).

    PubMed  CAS  Google Scholar 

  • Smith, M. W., Kemp, P.: Parallel temperature-induced changes in membrane fatty acids and in the transport of amino acids by the intestine of goldfish (Carassius auratus L.). Comp. Biochem. Physiol. 39, 357–366 (1971).

    CAS  Google Scholar 

  • Steim, J. M., Tourtellote, M. E., Reinert, J. C., McElhaney, R. N., Rader, R. L.: Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane. Proc. Natl. Acad. Sci. 63, 104–109 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Tourtellotte, M. E., Branton, D., Keith, A.: Membrane structure: spin labeling and freeze etching of Mycoplasma laidlawii. Proc. Natl. Acad. Sci. 66, 909–916 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Van Deenen, L. L. M.: Membrane lipids and lipophilic proteins. In: Tosteson, D. C. (Ed.): The Molecular Basis of Membrane Function, p. 47–78. Englewood Cliffs, New Jersey: Prentice Hall, Inc. 1969.

    Google Scholar 

  • Verkleij, A. J., Ververgaert, P. H. J., Van Deenen, L. L. M., Elbers, P. F.: Phase transistions of phospholipid bilayers and membranes of Acholeplasma laidlawii visualized by freeze fracturing electron microscopy. Biochem. Biophys. Acta 288, 326–332 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Williams, M. A., Stancliff, R. C., Packer, L., Keith, A. D.: Relation of unsaturated fatty acid composition of rat liver mitochondria to oscillation period, spin label motion, permeability and oxidative phosphorylation. Biochem. Biophys. Acta 267, 444–456 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Wilson, G., Fox, C. F.: Biogenesis of microbial transport systems: evidence for coupled incorporation of newly synthesized lipids and proteins into membranes. J. Mol. Biol. 55, 46–60 (1971).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Hazel, J.R. (1973). The Regulation of Cellular Function by Temperature-induced Alterations in Membrane Composition. In: Wieser, W. (eds) Effects of Temperature on Ectothermic Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65703-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65703-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65705-4

  • Online ISBN: 978-3-642-65703-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics