Skip to main content

Environmental Factors Affecting the Acclimatory Responses of Ectotherms

  • Chapter
Effects of Temperature on Ectothermic Organisms

Abstract

Patterns of Acclimatory Responses in Ectotherms Most studies on thermal acclimation of whole organisms have involved direct or indirect measurements of the effects of short-term experimental temperature change on easily measurable phenomena such as growth rates (Dehnel, 1955), heart rates (Segal, Rao and James, 1953; Pickens, 1965; Ahsanullah and Newell, 1971), cirral activity in barnacles (Crisp and Ritz, 1967 a, b; Ritz and Foster, 1968), feeding rates (Rao, 1953 a, b), radular activity (Newell, Pye and Ahsanullah, 1971a) or temperature tolerance (Fry, 1957; Vernberg, Schlieper and Schneider, 1963; Newell, Pye and Ahsanullah, 1971b). As is well-known, the rates of activity commonly vary directly with experimental temperature with aQ 10 of approximately 2.0 over the normal environmental temperature range of the organism. Higher values than 2.0 for the Q 10 are obtained at low experimental temperatures and lower values than this at high experimental temperatures. Compensation for long-term changes in temperature has been discussed in detail by Bullock (1955), Precht, Christophersen and Hensel (1955), Prosser (1955, 1958), Precht (1958) and Prosser and Brown (1961). Briefly, one may recognise (a) a relatively non-specific increase in enzyme concentration in response to cold acclimation, (b) translation or (c) rotation of the rate: temperature curve or a combination of these responses following thermal acclimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahsarmllah, M., Newell, R. C.: Factors affecting the heart rate of the shore crab Carcinus maenas (L.). Comp. Biochem. Physiol. 39A, 277–287 (1971).

    Article  Google Scholar 

  • Barnes, H., Barnes, M.: Seasonal changes in the acutely determined oxygen consumption and effect of temperature for three common cirripedes, Balanus balanoides (L), B. balanus (L) and Chthamalus stellatus (Poli). J. Exp. Mar. Biol. Ecol. 4, 35–50 (1969).

    Google Scholar 

  • Barnes, H., Barnes, M., Finlayson, D. M.: The metabolism during starvation of Balanus balanoides. J. Marine Biol. Assoc. U.K. 43, 213–233 (1963).

    Article  CAS  Google Scholar 

  • Baslow, M. M., Nigrelli, R. F.: Effects of thermal acclimation on brain Cholinesterase activity of the killifish, Fundulus heteroclitus. Zoologica 49, 41–51 (1964).

    CAS  Google Scholar 

  • Bullock, T. H.: Compensation for temperature in the metabolism and activity of poikilotherms. Biol. Rev. 30, 311–342 (1955).

    CAS  Google Scholar 

  • Collardeau-Roux, C.: Influence de la température sur la consommation d’oxygène de quelques larves de Trichoptères. Hydrobiologica 18, 252–264 (1966).

    Article  Google Scholar 

  • Crisp, D. J., Ritz, D. A.: Changes in temperature tolerance of Balanus balanoides during its life-cycle. Helgoländer Meeresuntersuch. 15, 98–115 (1967 a).

    Article  Google Scholar 

  • Crisp, D. J., Ritz, D. A.: Temperature acclimation in barnacles. J. Exp. Mar. Biol. Ecol. 1, 236–256 (1967b).

    Article  Google Scholar 

  • Dehnel, P. A.: Rate of growth of gastropods as a function of latitude. Physiol. Zool. 28, 115–144 (1955).

    Google Scholar 

  • Fry, F. E. J.: Effects of the environment on animal activity. Univ. Toronto Stud. Biol. 55 (Publ. Ontario Fish. Res. Lab.) 68, 1–62 (1947).

    Google Scholar 

  • Fry, F. E. J.: The lethal temperature as a tool in taxonomy. Ann. Biol. 33, 205–219 (1957a).

    Google Scholar 

  • Fry, F. E. J.: The aquatic respiration of fish. In: Brown, M. E. (Ed.): The Physiology of fishes 1, p. 1–63. New York: Academic Press (1957b).

    Google Scholar 

  • Gray, J.: The mechanism of ciliary movement III. The effect of temperature. Proc. Roy. Soc. (Lond.) (B) 95, 6–15 (1923).

    Article  CAS  Google Scholar 

  • Gunter, G.: Temperature. In: Hedgpeth, J. W. (Ed.): Treatise on Marine Ecology and Palaeoecology. Mem. (67) Geol. Soc. Am. 1, 159–184 (1957).

    Google Scholar 

  • Halcrow, K., Boyd, C. M.: The oxygen consumption and swimming activity of the amphipod Gammarus oceanicus at different temperatures. Comp. Biochem. Physiol. 23, 233–242 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Hannon, J. P.: Effect of prolonged cold exposure on components of the electron transport system. Am. J. Physiol. 198, 740–744 (1960).

    PubMed  CAS  Google Scholar 

  • Harmon, J. P., Vaughan, D. A.: Effect of prolonged cold exposure on the glycolytic enzymes of liver and muscle. Am. J. Physiol. 198, 375–380 (1960).

    Google Scholar 

  • Hochachka, P. W.: Isoenzymes in metabolic adaptation of a poikilotherm and subunit relationships in lactic dehydrogenases of goldfish. Arch. Biochem. Biophys. 111, 96–103 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Hochachka, P. W.: Organisation of metabolism during temperature compensation. In: Prosser, C. L. (Ed.): Molecular Mechanisms of Temperature Adaptation, p. 177–203, Am. Assoc. Advan. Sci. (84), Washington D. C. (1967).

    Google Scholar 

  • Hochachka, P. W., Somero, G. N.: Biochemical adaptation to the environment. In: Hoar, W. S., Randall, D.J. (Eds.): Fish Physiology 6, p. 99–156. New York: Academic Press (1971).

    Google Scholar 

  • McFarland, W. N., Pickens, P. E.: The effects of season, temperature and salinity on standard and active oxygen consumption of the grass shrimp Palaemonetes vulgaris (Say). Can. J. Zool. 43, 571–585 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Newell, R. C.: The effect of temperature fluctuation on the metabolism of intertidal invertebrates. Am Zool. 9, 293–307 (1969).

    Google Scholar 

  • Newell, R. C.: Biology of Intertidal Animals, p. 555. London: Logos Press (1970).

    Google Scholar 

  • Newell, R. C., Northcroft, H. R.: The relationship between cirral activity and oxygen up-take in Balanus balanoides. J. Marine Biol. Assoc. U.K. 45, 387–403 (1965).

    Article  Google Scholar 

  • Newell, R. C., Northcroft, H. R.: A re-interpretation of the effect of temperature on the metabolism of certain marine invertebrates. J. Zool. (Lond.) 151, 277–298 (1967).

    Google Scholar 

  • Newell, R. C., Pye, V. I.: Seasonal changes in the effect of temperature on the oxygen consumption of the winkle Littorina littorea (L.) and the mussel Mytilus edulis L. Comp. Biochem. Physiol. 34, 367–383 (1970a).

    Article  Google Scholar 

  • Newell, R. C., Pye, V. I.: The influence of thermal acclimation on the relation between oxygen consumption and temperature in Littorina littorea (L). and Mytilus edulis L. Comp. Biochem. Physiol. 34, 385–397 (1970b).

    Article  Google Scholar 

  • Newell, R. C., Pye, V. I.: Quantitative aspects of the relationship between metabolism and temperature in the winkle Littorina lit torea (L.). Comp. Biochem. Physiol. 38 B, 635–650 (1971a).

    Google Scholar 

  • Newell, R. C., Pye, V. I.: Temperature-induced variations in the respiration of mitochondria from the winkle Littorina littorea (L.). Comp. Biochem. Physiol. 40B, 249–261 (1971b).

    CAS  Google Scholar 

  • Newell, R. C., Pye, V. I., Ahsanullah, M.: Factors affecting the feeding rate of the winkle Littorina littorea. Marine Biol. 9, (2) 138–144 (1971a).

    Article  Google Scholar 

  • Newell, R. C., Pye, V. I., Ahsanullah, M.: The effect of thermal acclimation on the heat tolerance of the intertidal prosobranchs Littorina littorea (L.) and Monodonta lineata (Da Costa). J. Exptl. Biol. 54, 525–533 (1971b).

    CAS  Google Scholar 

  • Pickens, P. E.: Heart rates of mussels as a function of latitude, intertidal height and acclimation temperature. Physiol. Zool. 38, 390–405 (1965).

    Google Scholar 

  • Precht, H.: Concepts of temperature adaptation of unchanging reaction systems of cold-blooded animals. In: Prosser, C. L. (Ed.): Physiological Adaptation, p. 50–78. Am. Physiol. Soc., Washington, D. C. (1958).

    Google Scholar 

  • Precht, H., Christophersen, J., Hensel, H.: Temperatur und Leben, p. 514. Berlin-Göttingen -Heidelberg: Springer 1955.

    Google Scholar 

  • Prosser, C. L.: Physiological variation in animals. Biol. Rev. 30, 229–262 (1955).

    Article  CAS  Google Scholar 

  • Prosser, C. L.: The nature of physiological adaptation. In: Prosser, C. L. (Ed.): Physiological Adaptation, p. 167–180. Am. Physiol. Soc, Washington, D. C. (1958).

    Google Scholar 

  • Prosser, C. L.: Acclimation of Poikilothermic vertebrates to low temperatures. In: Hannon, J. P., Viereck, E. (Eds.): Comparative physiology of temperature regulation, III, p. 1–44. Arctic Aeromedical Lab., Fort Wainwright, Alaska (1962).

    Google Scholar 

  • Prosser, C. L., Brown, F. A.: Comparative Animal Physiology, 2nd ed., p. 688. Philadelphia: Saunders (1961).

    Google Scholar 

  • Rao, K. P.: Rate of water propulsion in Mytilus californianus as a function of latitude. Biol. Bull. (Woods Hole) 104, 171–181 (1953a).

    Article  Google Scholar 

  • Rao, K. P.: Shell weight as a function of intertidal height in a littoral population of pelecypods. Experimentia 9, 465 (1953b).

    Article  Google Scholar 

  • Rao, K. P.: Biochemical correlates of temperature acclimation. In: Prosser, C. L. (Ed.): Molecular Mechanisms of Temperature Adaptation, p. 227–244. Am. Assoc. Advan. Sci., Symp. (84), Washington, D. C. (1967).

    Google Scholar 

  • Ritz, D. A., Foster, B. A.: Comparison of the temperature responses of barnacles from Britain, South Afrika and New Zealand, with special reference to temperature acclimation in Elminius modestus. J. Marine Biol. Assoc. U. K. 48, 545–559 (1968).

    Article  Google Scholar 

  • Roberts, J. L.: Metabolic responses of freshwater sunfish to seasonal photoperiods and temperatures. Helgoländer Wiss. Meeresuntersuch. 9, 459–473 (1964).

    Article  Google Scholar 

  • Roberts, J. L.: Metabolic compensations for temperature in sunfish. In: Prosser, C. L. (Ed.): Molecular Mechanisms of Temperature Adaptation, p. 245–262. Amer. Assoc. Advan. Sci., Symp. (84), Washington, D. C. 1967.

    Google Scholar 

  • Roux, C, Roux, A. L.: Température et métabolisme respiratoire d’espèces sympatriques de gammares du groupe pulex (Crustacés, Amphipodes). Ann. de Limnol. 3, 3–16 (1967).

    Article  Google Scholar 

  • Segal, E., Rao, K. P., James, T. W.: Rate of activity as a function of intertidal height within populations of littoral molluscs. Nature (Lond.) 172, 1108–1109 (1953).

    Article  Google Scholar 

  • Siefken, M., Armitage, K. B.: Seasonal variations in metabolism and organic nutrients in three Diaptomus (Crustacea: Copepoda). Comp. Biochem. Physiol. 24, 591–609 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Somero, G. N.: Enzymic mechanisms of temperature compensations: Immediate and evolutionary effects of temperature on enzymes of aquatic poikilotherms. Am. Naturalist 103, 517–530 (1969).

    Article  CAS  Google Scholar 

  • Somero, G. N., Hochachka, P. W.: Isoenzymes and short-term compensation in poikilotherms: Activation of lactate dehydrogenase isoenzymes by temperature decreases. Nature (Lond.) 233, 194–195 (1969).

    Article  Google Scholar 

  • Southward, A. J.: The relationship between temperature and rhythmic cirral activity in some cirripedia considered in connection with their geographical distribution. Helgoländer Wiss. Meeresuntersuch. 10, 391–403 (1964).

    Article  Google Scholar 

  • Vernberg, F. J., Schlieper, C., Schneider, D. E.: The influence of temperature and salinity on ciliary activity of excised gill tissue of molluscs from North Carolina. Comp. Biochem. Physiol. 8, 271–285 (1963).

    Article  Google Scholar 

  • Vernon, H. M.: The relation of the respiratory exchange of cold-blooded animals to temperature. J. Physiol. (Lond.) 21, 443–496 (1897).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Newell, R.C. (1973). Environmental Factors Affecting the Acclimatory Responses of Ectotherms. In: Wieser, W. (eds) Effects of Temperature on Ectothermic Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65703-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65703-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65705-4

  • Online ISBN: 978-3-642-65703-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics