Skip to main content

Abstract

In insects, as in other animals, the rates of most physiological processes and associated functions are related to body temperature. For the most part insects can be considered as ectotherms. The production of heat by endothermy and the elevation of body temperature have been known for a long time (see Newport, 1837; Bachmetjew, 1899; Dotterweich, 1928; Himmer, 1932; Oosthuizen, 1939; Krogh and Zeuthen, 1941; and others). More recent evidence suggests that flight activity in adults, as well as rate of growth of the immatures in social insects, are sometimes dependent on elaborate mechanisms of temperature regulation. The purpose of this essay is to point out some of the mechanisms whereby individual insects regulate their body temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P. A., Heath, J. E.: Temperature regulation in the sphinx moth, Celerio lineata. Nature (Lond.) 201, 20–22 (1964).

    Article  CAS  Google Scholar 

  • Allen, M. D.: Respiration rates of worker honeybees of different ages and at different temperatures. J. Exptl. Biol. 35, 92–101 (1959).

    Google Scholar 

  • Bachmetjew, P.: Ãœber die Temperatur der Insekten nach Beobachtungen in Bulgarien. Z. Wiss. Zool. 66, 521–604 (1899).

    Google Scholar 

  • Bartholomew, G. A., Casey, T. M.: The effects of ambient temperature on warm-up in the moth, Hyalophora cecropia. J. Exptl. Biol. 58, 503–510 (1973).

    Google Scholar 

  • Bastian, J., Esch, H.: The nervous control of the indirect flight muscles of the honeybee. Z. Vergleich. Physiol. 67, 307–324 (1970).

    Article  Google Scholar 

  • Church, N. S.: Heat loss and body temperature of flying insects. II. Heat conduction within the body and its loss by radiation and convection. J. Expd. Biol. 37, 186–212 (1960).

    Google Scholar 

  • Clench, H. K.: Behavioral Thermoregulation in Butterflies. Ecology 47, 1021–1034 (1966).

    Article  Google Scholar 

  • Corbet, P. S.: A biology of dragonflies, Chicago: Quadrangle Books, Inc. 1963.

    Google Scholar 

  • Digby, P. S. B.: Factors affecting the temperature excess of insects in sunshine. J. Exptl. Biol. 32, 279–298 (1955).

    Google Scholar 

  • Dotterweich, H.: Beiträge zur Nervenphysiologie der Insekten. I. Das Schwirren der Schmetterlinge vor dem Fluge. Zool. Jahrb. Abt. Physiol. 44, 399–450 (1928).

    Google Scholar 

  • Edney, E. B., Barrass, R.: The Body Temperature of the Tsetse fly, Glossina morsitans West-wood (Diptera, Muscidae). J. Insect Physiol. 8, 469–481 (1962).

    Article  Google Scholar 

  • Esch, H., Bastian, J.: Mechanical and electrical activity in the indirect flight muscles of the honeybee. Z. Vergleich. Physiol. 58, 429–440 (1968).

    Article  Google Scholar 

  • Fraenkel, G.: Die Orientierung von Schistocerca gregaria zu strahlender Wärme. Z. Vergleich. Physiol. 13, 300–313 (1930).

    Article  Google Scholar 

  • Franz, H.: Untersuchungen über den Wärmehaushalt der Poikilothermen. Biol. Zentr. 50, 158–182 (1930).

    Google Scholar 

  • Hanegan, J. L., Heath, J. E.: Mechanisms for the control of body temperature in the moth, Hyalophora cecropia. J. Exptl. Biol. 53, 349–362 (1970a).

    Google Scholar 

  • Hanegan, J. L., Heath, J. E.: Activity patterns and energetics of the moth, Hyalophora cecropia. J. Exptl. Biol. 53, 611–627 (1970b).

    CAS  Google Scholar 

  • Heath, J. E., Adams, P. A.: Temperature regulation in the sphinx moth during flight. Nature (Lond.) 205, 309–310 (1965).

    Article  Google Scholar 

  • Heath, J. E., Adams, P. A.: Regulation of heat production by large moths. J. Exptl. Biol. 47, 21–33 (1967).

    CAS  Google Scholar 

  • Heath, J. E., Josephson, R. K.: Body temperature and singing in the Katydid, Neoconoce-phalus robustus (Orthoptera, Tettigoniidae). Biol. Bull. 138, 272–285 (1970).

    Article  Google Scholar 

  • Heath, J. E., Wilkin, P. J.: Temperature responses of the desert cicada, Diceroprocta apache (Homoptera, Cicadidae). Physiol. Zool. 43, 145–154 (1970).

    Google Scholar 

  • Heinrich, B.: Thoracic temperature stabilization by blood circulation in a free-flying moth. Science 168, 580–582 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Heinrich, B.: Temperature regulation of the sphinx moth, Manduca sexta. I. Flight energetics and body temperature during free and tethered flight. J. Expd. Biol. 54, 141–152 (1971).

    CAS  Google Scholar 

  • Heinrich, B.: Temperature regulation in the bumblebee, Bombus pagans: a field study Science 175, 185–187 (1972a)

    Article  PubMed  CAS  Google Scholar 

  • Heinrich, B.: Energetics of temperature regulation and foraging in a bumblebee, Bombus terrícola Kirby. J. Comp. Physiol. 77, 49–64 (1972b).

    Article  Google Scholar 

  • Heinrich, B.: Thoracic temperatures of butterflies in the field near the equator. Comp. Biochem. Physiol. 43A, 459–467 (1972c).

    Article  Google Scholar 

  • Heinrich, B.: Physiology of brood incubation in the bumblebee queen, Bombus vosnesenskii. Nature (Lond.) 239, 223–225 (1972d).

    Article  Google Scholar 

  • Heinrich, B., Bartholomew, G. A.: An analysis of pre-flight warm-up in the sphinx moth, Manduca sexta. J. Exptl. Biol. 55, 223–239 (1972).

    Google Scholar 

  • Heinrich, B., Casey, T. M.: Metabolic rate and enothermy in sphinx moths. J. Comp. Physiol. 82, 195–206 (1973).

    Article  Google Scholar 

  • Heinrich, B., Kammer, A. E.: Activation of the fibrillar muscles in bumblebees during warm-up, thermoregulation and flight. J. Exptl. Biol, (in press).

    Google Scholar 

  • Himmer, A.: Die Temperaturverhältnisse bei den sozialen Hymenopteren. Biol. Rev. 7, 224–253 (1932).

    Article  Google Scholar 

  • Kammer, A. E.: Motor patterns during flight and warm-up in Lepidoptera. J. Exptl. Biol. 48, 89–109 (1968).

    Google Scholar 

  • Kammer, A. E.: Thoracic temperature, shivering and flight in the monarch butterfly, Danaus plexippus (L.), Z. Vergleich. Physiol. 68, 334–344 (1970).

    Article  Google Scholar 

  • Kammer, A. E., Brachi, J.: Role of the wings in the absorption of radiant energy by a butterfly. Comp. Biochem. Physiol. A. 45A, 1057–1063 (1973).

    Article  Google Scholar 

  • Kammer, A. E., Heinrich, B.: Neural control of bumlebee fibrillar muscle during shivering. J. Comp. Physiol. 87, 337–345 (1972).

    Article  Google Scholar 

  • Kevin, P. G., Shorthouse, J. D.: Behavioral thermoregulation by High Arctic butterflies. J. Arctic Inst. N. Amer. 23, 269–279 (1970).

    Google Scholar 

  • Krogh, A., Zeuthen, E.: The mechanism of flight preparation in some insects. J. Exptl. Biol. 18, 1–10 (1941).

    Google Scholar 

  • Machin, K. E., Pringle, J. W. S., Tamasige, M.: The physiology of insect fibrillar muscle IV. The effect of temperature on a flight muscle. Proc. Roy. Soc. B. 155, 493–499 (1962).

    Article  Google Scholar 

  • McCrea, M. J., Heath, J. E.: Dependence of flight on temperature regulation in the moth, Manduca sexta. J. Exptl. Biol. 54, 415–435 (1971).

    CAS  Google Scholar 

  • Neville, A. C., Weis-Fogh, T.: The effect of temperature on locust flight muscle. J. Exptl. Biol. 40, 111–121 (1963).

    Google Scholar 

  • Newport, G.: On the temperature of insects, and its connexion with the functions of respiration and circulation in this class of Invertebrated animals. Phil. Trans. Roy. Soc., London 127 (2), 259–339 (1837).

    Google Scholar 

  • Newsholme, E. A., Crabtree, B., Higgins, S. J., Thornton, S. D., Stuart, C.: The activities of fructose diphosphatase in flight muscles from the bumble-bee and the role of this enzyme in heat generation. Biochem. J. 128, 89–97 (1972).

    PubMed  CAS  Google Scholar 

  • Oosthuizen, M. J.: The body temperature of S amia cecropia Linn. (Lepidoptera, Saturniidae) as influenced by muscular activity. J. Entomol. Soc. S. Afr. 2, 63–73 (1939).

    Google Scholar 

  • Plath, O. E.: Bumblebees and their ways. New York: MacMillan 1934.

    Google Scholar 

  • Stower, W. J., Griffiths, J. F.: The body temperature of the desert locust (Scbistocerca gregaria). Entomol. Exptl. Appl. 9, 127–178 (1966).

    Article  Google Scholar 

  • Vielmetter, W., Physiologie des Verhaltens zur Sonnenstrahlung bei dem Tagfalter Argynnis paphia L. I. Untersuchungen im Freiland. J. Insect Physiol. 2, 13–37 (1958).

    Article  Google Scholar 

  • Watt, W. B.: Adaptive significance of pigment polymorphism in Colias butterflies. I. Variation of melanin pigment in relation to thermoregulation. Evol. 22, 437–458 (1968).

    Article  Google Scholar 

  • Watt, W. B.: Adaptive significance of pigment polymorphism in Colias butterflies, II. Thermoregulation and photoperiodically controlled melanin variation in Colias eurytheme. Proc. Natl. Acad. Sci. 63, 767–774 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Weis-Fogh, T.: Biology and phvsics of locust flight. VIII. Lift and metabolic rate of flying locusts. J. Exptl. Biol. 41, 257–271 (1964).

    CAS  Google Scholar 

  • Weis-Fogh, T.: Energetics of hovering flight in hummingbirds and in Drosophila, J. Exptl. Biol. 56, 79–104 (1972).

    Google Scholar 

  • Wille, A.: A comparative study of the dorsal vessel of bees, Ann. Entomol. Soc. Am. 51, 538–546 (1958).

    Google Scholar 

  • Zebe, E.: Ãœber den Stoffwechsel der Lepidopteren. Z. Vergleich. Physiol. 36, 290–317 (1954).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Heinrich, B. (1973). Mechanisms of Insect Thermoregulation. In: Wieser, W. (eds) Effects of Temperature on Ectothermic Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65703-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65703-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65705-4

  • Online ISBN: 978-3-642-65703-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics