Skip to main content

Temperature Relations of Ectotherms: A Speculative Review

  • Chapter
Effects of Temperature on Ectothermic Organisms

Abstract

The interpretation of the temperature relationships of ectothermic animals has already run through two phases and we now appear to be experiencing the beginning of a third. In the first phase ectotherms were regarded as being at the mercy of the environment, an interpretation best expressed by Krogh’s so-called “normal curve” (Krogh, 1914). In the second phase, dating from about 1936 (Fox, 1936; Spärck, 1936; Thorson, 1936; Schlieper, 1950; Precht et al., 1955; Bullock, 1955; Prosser, 1958), the emphasis was placed upon the homeostatic character of metabolic processes. And now, in the third phase, the metabolism of such organisms is seen to be considerably more complicated: various temperature ranges are thought to be associated with different systemic states, involving, to some extent, specific ionic distributions as well as alternative enzyme and metabolic patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aleksiuk, M.: Temperature-dependent shifts in the metabolism of a cool temperate reptile, Thamnophis sir talis parietalis. Comp. Biochem. Physiol. 39A, 495–503 (1971).

    Article  Google Scholar 

  • Anderson, T. R.: Temperature adaptation and the phospholipids of membranes in goldfish (Carassius auratus). Comp. Biochem. Physiol. 3, 663–687 (1970).

    Google Scholar 

  • Ashby, W. R.: Design for a Brain. New York: John Wiley & Sons 1952.

    Google Scholar 

  • Atherton, W. D., Aitken, A.: Growth, nitrogen metabolism and fat metabolism in Salmo gairdneri, Rich. Comp. Biochem. Physiol. 36, 719–747 (1970).

    Article  CAS  Google Scholar 

  • Baldwin, J., Hochachka, P. W.: Functional significance of isoenzymes in thermal acclimatization: acetylcholinesterase from trout brain. Biochem. J. 116, 883–887 (1970).

    PubMed  CAS  Google Scholar 

  • Behrisch, H. W.: Temperature and the regulation of enzyme activity in poikilotherms. Regulatory properties of fructose diphosphatase from muscle of the Alaskan king crab. Biochem. J. 121, 399–409 (1971).

    PubMed  CAS  Google Scholar 

  • Behrisch, H. W.: Molecular mechanism of adaptation to low temperature in marine poikilotherms. Some regulatory properties of dehydrogenases from two arctic species. Mar. Biol. 13, 267–275 (1972).

    Article  CAS  Google Scholar 

  • Bishop, L. G., Gordon, M. S.: Thermal Adaptation of Metabolism in Anuran Amphibians. In: Prosser, C. L. (Ed.): Publ. no. 84, 263–280. Am. Assoc. Adv. Sci., Washington, D. C. 1967.

    Google Scholar 

  • Björkman, O., Pearcy, R., Harrison, A. T., Mooney, H.: Photosynthetic Adaptation to High Temperatures: A Field Study in Death Valley, California. Science 175, 786–789 (1972).

    Article  PubMed  Google Scholar 

  • Blanquet, R. S.: Temperature acclimation in the medusa, Chrysaora quinquecirrha. Comp. Biochem. Physiol. 43B, 717–723 (1972).

    Google Scholar 

  • Brattstrom, B. H.: Amphibia. In: Whittow, G. C. (Ed.): Comparative Physiology of Thermoregulation, Vol. I, p. 135–166. New York and London: Academic Press 1970.

    Google Scholar 

  • Buffington, J. D.: Temperature acclimation of respiration in Culex pipienspipiens (Diptera: Culicidae) and the influence of seasonal selection. Comp. Biochem. Physiol. 30, 865–878 (1969).

    Article  Google Scholar 

  • Bullock, T. H.: Compensation for temperature in the metabolism and activity of poikilotherms. Biol. Rev. 30, 311–342 (1955).

    Article  CAS  Google Scholar 

  • Burkhardt, D.: Die Erregungsvorgänge sensibler Ganglienzellen in Abhängigkeit von der Temperatur. Biol. Zentr. 78, 22–62 (1959).

    Google Scholar 

  • Bygrave, F. L.: The ionic environment and metabolic control. Nature (London) 214,667–671 (1976).

    Article  Google Scholar 

  • Caldwell, R. S.: Thermal compensation of respiratory enzymes in tissues of the goldfish (Carassius auratus L.). Comp. Biochem. Physiol. 31, 79–93 (1969).

    Article  CAS  Google Scholar 

  • Caldwell, R. S., Vernberg, F. J.: The influence of acclimation temperature on the lipid composition of fish gill mitochondria. Comp. Biochem. Physiol. 34, 179–191 (1970).

    Article  CAS  Google Scholar 

  • Cassuto, Y.: Oxidative activities of liver mitochondria from mammals, birds, reptiles and amphibia as a function of temperature. Comp. Biochem. Physiol. 39B, 919–923 (1971).

    Google Scholar 

  • Clever, U.: Genaktivitäten in den Riesenchromosomen von Chironomus tentans und ihre Beziehungen zur Entwicklung. I. Genaktivierung durch Ecdyson. Chromosoma (Berlin) 12, 607–675 (1961).

    Article  CAS  Google Scholar 

  • D’Ajello, V., Bettini, S., Grasso, A.: Effect of temperature on the endogeneous activity of Periplaneta americana L. nerve cord. Riv. Parassit 28, 71–78 (1967).

    Google Scholar 

  • Das, A. B., Prosser, C. L.: Biochemical changes in tissues of goldfish acclimated to high and low temperatures - I. Protein synthesis. Comp. Biochem. Physiol. 21, 449–467 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Davies, P. S.: Physiological ecology of Patella. I. The effect of body size and temperature on metabolic rate. J. Marine Biol. Assoc. U. K. 46, 647–658 (1966).

    Article  Google Scholar 

  • Davison, T. F.: The effect of temperature on oxidative phosphorylation in isolated flight muscle sarcosomes. Comp. Biochem. Physiol. 38B, 21–34 (1971).

    Google Scholar 

  • Dean, J. M.: The metabolism of tissues of thermally acclimated trout (Salmo gairdneri). Comp. Biochem. Physiol. 29, 185–496 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Dierolf, B. M., Brink, P. R.: Effects of thermal acclimation on cable constants of the earthworm median giant axon. Comp. Biochem. Physiol. 44A, 401–406 (1973).

    Article  Google Scholar 

  • Dixon, M., Webb, E. C.: Enzymes, 2nd ed. London: Longmans, Green and Co. 1964.

    Google Scholar 

  • Dunlap, D. G.: Influence of temperature and duration of acclimation, time of day, sex and body weight on metabolic rates in the hylid frog, Acris crepitans. Comp. Biochem. Physiol. 31, 555–570 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Dunlap, D. G.: Acutely measured metabolic rate-temperature curves in the cricket frog, Acris crepitans. Comp. Biochem. Physiol. 38A, 1–16 (1971).

    Article  Google Scholar 

  • Ekberg, D. R.: Respiration in tissues of goldfish adapted to high and low temperatures. Biol. Bull. 114, 308–316 (1958).

    Article  CAS  Google Scholar 

  • Ekberg, D. R.: Aerobe und anaerobe Stoffwechselprozesse bei der Temperaturadaptation von Karauschen. Zool. Anz. 24, 78–80 (1961).

    Google Scholar 

  • Evans, R. M., Purdie, F. C., Hickman Jr., C. P.: The effect of temperature and photoperiod on the respiratory metabolism of rainbow trout (Salmo gairdneri). Can. J. Zool. 40, 107–118 (1962).

    Article  CAS  Google Scholar 

  • Fitzpatrick, L. C., Bristol, J. R., Stokes, R. M.: Thermal acclimation and metabolism in the Allegheny mountain salamander Desmognathus ochrophaeus. Comp. Biochem. Physiol. 40A, 681–688 (1971).

    Article  Google Scholar 

  • Fox, H. M.: The activity and metabolism of poikilothermal animals in different latitudes. I, p. 945–955. Proc. Zool. Soc., London 1936.

    Google Scholar 

  • Freed, J. M.: Properties of muscle phosphofructokinase of cold- and warm-acclimated Carassius auratus. Comp. Biochem. Physiol. 39B, 747–764 (1971a).

    Google Scholar 

  • Freed, J. M.: Temperature effects on muscle phosphofructokinase of the Alaskan King Crab, Paralithodes camtschatica. Comp. Biochem. Physiol. 39B, 765–774 (1971b).

    Google Scholar 

  • Friedman, H., Lu, P., Rich, A.: Ribosomal Subunits produced by Cold Sensitive Initiation of Protein Synthesis. Nature 223, 909–913 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Fry, F. E. J., Hochachka, P. W.: Fish. In: Whittow, G. C. (Ed.): Comparative Physiology of Thermoregulation, Vol. I, p. 79–134. New York: Academic Press 1970.

    Google Scholar 

  • Fuhrman, J., Fuhrman, A.: Oxygen consumption of animals and tissues as a function of temperature. J. Gen. Physiol. 42, 715–722 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Fulco, A. J.: The biosynthesis of unsaturated fatty acids by bacilli. IV. Temperature-mediated control mechanisms. J. Biol. Chem. 247, 3511–3519 (1972).

    PubMed  CAS  Google Scholar 

  • Furch, K.: Der Einfluß einer Vorbehandlung mit konstanten und wechselnden Temperaturen auf die Hitzeresistenz von Gammarus salinus und Idotea baltica. Mar. Biol. 15, 12–34 (1972).

    Article  Google Scholar 

  • Harwood, R. F., Takata, N.: Effect of photoperiod and temperature on fatty acid composition of the mosquito Culex tarsails. J. Insect Physiol. 11, 711–716 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Haschemeyer, A. E. V.: Studies on the control of protein synthesis in low temperature acclimation. Comp. Biochem. Physiol. 28, 535–552 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Hazel, J., Prosser, C. L.: Interpretation of inverse Acclimation to Temperature. Z. Vergleich. Physiol. 67, 217–228 (1970).

    Article  Google Scholar 

  • Hickman, C. P., McNabb, R. A., Nelson, J. S., van Breeman, E. D., Comfort, D.: Effect of cold acclimation on electrolyte distribution in rainbow trout (Salmo gairdneri). Can. J. Zool. 42, 577–597 (1964).

    Article  CAS  Google Scholar 

  • Hoar, W. S.: Photoperiodism and thermal resistance of goldfish. Nature 178, 364–365 (1956).

    Article  Google Scholar 

  • Hochachka, P. W.: Organization of metabolism during temperature compensation. In: Prosser, C. L. (Ed.): Molecular Mechanisms of Temperature Adaptation, p. 177–203. Am. Assoc. Adv. Sci., Washington 1967.

    Google Scholar 

  • Hochachka, P. W.: Action of temperature on branch points in glucose and acetate metabolism. Comp. Biochem. Physiol. 25, 107–118 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Hochachka, P. W.: Enzymatic Adaptations to Deep-Sea Life. Oregon State Press (in press).

    Google Scholar 

  • Hochachka, P. W., Hayes, F. R.: The effect of temperature acclimation on pathways of glucose metabolism in the trout. Can. J. Zool. 40, 261–270 (1962).

    Article  CAS  Google Scholar 

  • Hochachka, P. W., Lewis, J. K.: Enzyme variants in thermal acclimation: trout liver citrate synthetases. J. Biol. Chem. 245, 6567–6573 (1970).

    PubMed  CAS  Google Scholar 

  • Hochachka, P. W., Somero, G. N.: Biochemical adaptation to the environment. In: Hoar, W. S., Randall, D. J. (Eds.): Fish Physiology, Vol. VI, p. 99–156. New York: Academic Press 1971.

    Google Scholar 

  • Hochachka, P. W., Somero, G. N.: Biochemical Strategies in Environmental Adaptation. Philadelphia: Saunders Publ. 1973.

    Google Scholar 

  • Hofer, R.: Einfluß von Temperatur, Photoperiode und Jahreszeiten auf Verdauung und Atmung zweier Froscharten: Rana ridibunda (bzw. R. esculentd) und Rana temporaria. Zool. Jb. Physiol. 76, 507–530 (1972).

    CAS  Google Scholar 

  • Holzer, H.: Intrazelluläre Regulation des Stoffwechsels. Naturwiss. 50, 260–270 (1963).

    Article  CAS  Google Scholar 

  • Houston, A. H., Madden, J. A.: Environmental temperature and plasma electrolyte regulation in the carp, Cyprinus carpio. Nature 217, 969–970 (1968).

    Article  CAS  Google Scholar 

  • Houston, A. H., Madden, J. A., De Wilde, M. A.: Environmental temperature and the body fluid system of the freshwater teleost-IV. Water-Electrolyte regulation in thermally acclimated carp, Cyprinus carpo. Comp. Biochem. Physiol. 34, 805–818 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Howell, B. J., Baumgardner, F. W., Bondi, K., Rahn, H.: Acid-base balance in cold-blooded vertebrates as a function of body temperature. Am. J. Physiol. 218, 600–606 (1970).

    PubMed  CAS  Google Scholar 

  • Hubert, E. J., Villanueva, A., Gonzales, A., Marcus, F.: Univalent cation activation of fructose 1,6-diphosphatase. Arch. Biochem. Biophys. 138, 590–597 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Jankowsky, H.-D.: Der Einfluß des Blutes auf den Sauerstoffverbrauch des isolierten Muskelgewebes von Schleien (Tinea tinea L.). Zool. Anz. 172, 233–239 (1964).

    CAS  Google Scholar 

  • Jankowsky, H.-D.: The effect of temperature on the metabolic level of the eel Anguilla vulgaris L. Helgoländer Wiss. Meeresuntersuch. 13, 402–407 (1966).

    Article  Google Scholar 

  • Jensen, D. W.: The effect of temperature on transmission at the neuromuscular junction of the sartorius muscle of Rana pipiens. Comp. Biochem. Physiol. 41A, 685–695 (1972).

    Article  Google Scholar 

  • Joyce, C. M.: The effect of environmental temperature on succinic dehydrogenase activity in the ear skin of the rabbit. Proc. Roy. Irish Acad., Sect. B, no. 21, 65, 425–435 (1967).

    Google Scholar 

  • Jungreis, A. M., Hooper, A. B.: Physiological properties of cold resistance adaptation in the fresh-water crayfish Orconectes virilis. Comp. Biochem. Physiol. 26, 91–100 (1968).

    Article  Google Scholar 

  • Kanungo, M. S., Prosser, C. L.: Physiological and biochemical adaptation of goldfish to cold and warm temperatures. I. Standard and active oxygen comsumptions of cold- and warm-acclimated goldfish at various temperatures. J. Cellular Comp. Physiol. 54, 259–263 (1959).

    Article  CAS  Google Scholar 

  • Kasbohm, P.: Der Einfluß des Lichtes auf die Temperaturadaptation bei Rana temporaria. Helgoländer Wiss. Meeresuntersuch. 16, 157–178 (1967).

    Article  Google Scholar 

  • Katz, B.: Nerve, Muscle and Synapse. New York: McGraw-Hill 1966.

    Google Scholar 

  • Kenney, J. W., Richards, A. G.: Differences between leg and flight muscle of the giant water bug, Lethocerus americanus. Entomol. News 66, 29–36 (1955).

    Google Scholar 

  • Kerkut, G. A., Ridge, R. M. A. P.: The effect of temperature changes on the resting potential of crab, insect and frog muscle. Comp. Biochem. Physiol. 3, 64–70 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Kerkut, G. A., Ridge, R. M. A. P.: The effect of temperature changes on the activity of the neurons of the snail, Helix aspersa. Comp. Biochem. Physiol. 5, 283–295 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Krogh, A.: The quantitative relation between temperature and standard metabolism in animals. Intern. Z. Physik.-chem. Biol. 1, 491–508 (1914).

    CAS  Google Scholar 

  • Künnemann, H., Laudien, H., Precht, H.: Der Einfluß von Temperaturänderungen auf Enzyme der Fischmuskulatur. Versuche mit Goldorfen Idus idus. Mar. Biol. 7, 71–81 (1970).

    Article  Google Scholar 

  • Lagerspetz, K. Y., Tirri, R.: Transmitter substances and temperature acclimation in Anodonta (Pelecypoda). Ann. Zool. Fenn. 5, 396–400 (1968).

    Google Scholar 

  • Laserre, P., Renaud-Mornant, J.: Interpretation ecophysiologique des effets de temperature et de salinite sur Fintensite respiratoire de Derocheilocaris remanei biscayensis Delamare 1953 (Crustacea, Mystacorarida) C. R. Acad. Sc. Paris 272, 1159–1162 (1971).

    Google Scholar 

  • Lenartowicz, E., Niemierko, S.: The effect of low temperature and starvation on carbohydrate metabolism in larvae of Galleria mellonella L. J. Insect Physiol. 14, 451–462 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Maetz, J.: Branchial sodium exchange and ammonia excretion in the goldfish Carassius auratus. Effects of ammonia-loading and temperature changes. J. Exptl. Biol. 56, 601–620 (1972).

    Google Scholar 

  • Mangum, C. F.: Temperature sensitivity of metabolism in offshore and intertidal onuphid polychaetes. Mar. Biol. 17, 108–114 (1972).

    Google Scholar 

  • Mangum, C. F., Oakes, M. J., Shick, J. M.: Rate-Temperature responses in scyphozoan medusae and polyps. Mar. Biol. 15, 298–303 (1972).

    Article  Google Scholar 

  • Mangum, C. F., Sassaman, C.: Temperature sensitivity of active and resting metabolism in a polychaetous annelid. Comp. Biochem. Physiol. 30, 111–116 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Massey, V., Curti, B., Ganther, H.: A temperature dependent conformational change in D-amino acid oxidase and its effect on catalysis. J. Biol. Chem. 241, 2347–2357 (1966).

    PubMed  CAS  Google Scholar 

  • McLaren, I. A.: Effects of temperature on growth of Zooplankton, and the adaptive value of vertical migration. J. Fisheries Res. Board Can. 20, 685–727 (1963).

    Article  Google Scholar 

  • McLeese, D. W., Wilder, D. G.: The activity and catchability of the lobster (Homarus americams) in relation to temperature. J. Fisheries Res. Board Can. 15, 1345–1354 (1958).

    Article  Google Scholar 

  • Meuwis, A., Heuts, M. J.: Temperature dependence of breathing rate in carp. Biol. Bull. (Woods Hole) 112, 97–107 (1957).

    Article  Google Scholar 

  • Midelfort, C. F., Mehler, A. F.: Deamidation in vivo of an asparagine residue of rabbit muscle aldolase. Proc. U.S. Natl. Acad. Sci. 69, 1816–1819 (1972).

    Article  CAS  Google Scholar 

  • Miller, L. K.: Caudal nerve function as related to temperature in some Alaskan mammals. Comp. Biochem. Physiol. 21, 679–686 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Miller, L. K., Dehlinger, P. J.: Neuromuscular function at low temperatures in frogs from cold and warm climates. Comp. Biochem. Physiol. 28, 915–921 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Miller, L. C., Mizell, S.: Seasonal variation in heart rate response to core temperature changes. Comp. Biochem. Physiol. 42A, 773–779 (1972).

    Article  Google Scholar 

  • Moon, T. W., Hochachka, P. W.: Effect of thermal acclimation on multiple forms of the liver soluble NADP+-linked isocitrate dehydrogenase in the family Salmonidae. Comp. Biochem. Physiol. 40B, 207–213 (1971).

    Google Scholar 

  • Motais, R., Isaia, J.: Temperature-dependence of permeability to water and to sodium of the gill epithelium of the eel Anguilla anguilla. J. Exptl. Biol. 56, 587–600 (1972).

    Google Scholar 

  • Murray, R. W.: Temperature Receptors. In: Lowenstein, O. (Ed.): Adv. Comp. Physiol. Biochem, Vol. 1, p. 117–175. New York and London: Academic Press 1962.

    Google Scholar 

  • Mutchmor, J. A., Richards, A. G.: Low temperature tolerance in insects in relation to the influence of temperature on muscle apyrase activity. J. Insect Physiol. 7, 141–158 (1961).

    Article  Google Scholar 

  • Myers, R. D., Veale, W. L.: Body temperature: possible ionic mechanism in the hypothalamus controlling set point. Science 170, 95–97 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Newell, R. C., Northcroft, H. R.: The relationship between cirral activity and oxygen uptake in Balanus balanoides. J. Marine Biol. Assoc. U.K. 45, 387–403 (1965).

    Article  Google Scholar 

  • Newell, R. C., Northcroft, H. R.: A re-interpretation of the effect of temperature on the metabolism of certain marine invertebrates. J. Zool. 151, 277–298 (1967).

    Google Scholar 

  • Newell, R. C., Pye, V. I.: Seasonal changes in the effect of temperature on the oxygen consumption of the winkle Littorina littorea (L.) and the mussel Myülus edulis (L.). Comp. Biochem. Physiol. 34, 367–383 (1970a).

    Article  Google Scholar 

  • Newell, R. C., Pye, V. I.: The influence of thermal acclimation on the relation between oxygen consumption and temperature in Littorina littorea (L.) and Mytilus edulis (L.). Comp. Biochem. Physiol. 34, 385–397 (1970 b).

    Article  Google Scholar 

  • Newell, R. C., Pye, V. I.: Quantitative aspects of the relationship between metabolism and temperature in the winkle Littorina littorea (L.). Comp. Biochem. Physiol. 38B, 635–650 (1971a).

    Google Scholar 

  • Newell, R. C., Pye, V. I.: Temperature-induced variations in the respiration of mitochondria from the winkle, Littorina littorea (L.). Comp. Biochem. Physiol. 40B, 249–261 (1971b).

    Google Scholar 

  • Newell, R. C., Pye, V. I.: Variations in the relationship between oxygen consumption, body size and summated tissue metabolism in the winkle Littorina littorea. J. Marine Biol. Assoc. U.K. 51, 315–338 (1971c).

    Article  Google Scholar 

  • Nopp, H.: Temperaturbezogene Regulationen des Sauerstoffverbrauches und der Herzschlagrate bei einigen Landpulmonaten. Z. Vergleich. Physiol. 50, 641–656 (1965).

    Article  Google Scholar 

  • Packer, L.: Relation of structure to energy coupling in rat liver mitochondria. Federation Proc. 29, 1533–1540 (1970).

    CAS  Google Scholar 

  • Pandey, K. K.: Isozyme Specificity to Temperature. Nature New Biol. 239, 27–28 (1972).

    PubMed  CAS  Google Scholar 

  • Pfleiderer, G., Zwilling, R.: Die molekulare Evolution proteolytischer Enzyme. Naturwiss. 59, 396–405 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Precht, H.: Wechselwarme Tiere und Pflanzen. In: Precht, H., Christophersen, J., Hensel, H. (Eds.): Temperatur und Leben, S. 1–177. Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Precht, H.: Concepts of the temperature adaptation of unchanging reaction systems of coldblooded animals. In: Prosser, C. L. (Ed.): Physiological Adaptation, p. 50–78. Am. Physiol. Soc, Washington, D. C. 1958.

    Google Scholar 

  • Precht, H.: Anpassungen wechselwarmer Tiere im normalen Temperaturbereich und ihre Ursachen. Naturw. Rundschau 11, 438–442 (1964).

    Google Scholar 

  • Precht, H.: Über die Bedeutung des Blutes für die Temperaturadaptation von Fischen. Zool. Jb. Physiol. 71, 313–327 (1964).

    Google Scholar 

  • Precht, H.: Der Einfluß „normaler“Temperaturen auf Lebensprozesse bei wechselwarmen Tieren unter Ausschluß der Wachstums- und Entwicklungsprozesse. Helgoländer Wiss. Meeresuntersuch. 18, 487–548 (1968).

    Article  Google Scholar 

  • Precht, H., Christophersen, J.: Temperaturadaptation des Cilienepithels isolierter Kiemen und Fühlerspitzen von Mollusken. Z. Wiss. Zool. 171, 197–209 (1955).

    Google Scholar 

  • Prosser, C. L.: General Summary: The Nature of Physiological Adaptation. In: Prosser, C. L. (Ed.): Physiological Adaptation, p. 167–180. Am. Physiol. Soc., Washington, D.C. 1958.

    Google Scholar 

  • Prosser, C. L.: In: Prosser, C. L., Brown, Jr., F. A. (Eds.): Comparative Animal Physiology, 2nd ed. Philadelphia, Pa.: Saunders 1961.

    Google Scholar 

  • Prosser, C. L.: Molecular Mechanisms of Temperature Adaptation in Relation to Speciation. Am. Ass. Adv. Sci., Washington, D. C. 84, 351–376 (1967).

    Google Scholar 

  • Prosser, C. L., Mackay, W., Kato, K.: Osmotic and ionic concentrations in Alaskan fish and goldfish from different temperatures. Physiol. Zool. 43, 81–89 (1970).

    CAS  Google Scholar 

  • Prosser, C. L., Precht, H., Jankowsky, H. D.: Nervous control of metabolism during temperature acclimation of fish. Naturwiss. 52, 168–169 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Raison, J. K., Lyons, J. M., Thomson, W. W.: The influence of membranes on the temperature-induced changes in the kinetics of some respiratory enzymes of mitochondria. Arch. Biochem. Biophys. 142, 83–90 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Rao, K. P.: Physiology of acclimation to low temperature in poikilotherms. Science 137, 682–683 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Rao, K. P.: Biochemical correlates of Temperature Acclimation. In: Prosser, C. L. (Ed.): Molecular Mechanisms of Temperature Adaptation, p. 227–244 (1967).

    Google Scholar 

  • Rao, K. P., Bullock, T. H.: Q10 as a function of size and habitat temperature in poikilotherms. Am. Naturalist 88, 33–44 (1954).

    Article  Google Scholar 

  • Reinert, J. C., Steim, J. M.: Calorimetric detection of a membrane-lipid phase transition in living cells. Science 168, 1580–1582 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Richards, A. G.: The effect of temperature on heart beat frequency in the cockroach, Peri-planeta americana. J. Insect. Physiol. 9, 597–606 (1963).

    Article  Google Scholar 

  • Richards, A. G.: The generality of temperature effects on developmental rate and on oxygen consumption in insect eggs. Physiol. Zool. 37, 199–211 (1964).

    Google Scholar 

  • Roberts, J. L.: Metabolic responses of fresh-water sunfish to seasonal photoperiods and temperatures. Helgoländer Wiss. Meeresuntersuch. 9, 459–473 (1964).

    Article  Google Scholar 

  • Roberts, J. L.: Systemic versus cellular acclimation to temperature by poikilotherms. Helgoländer Wiss. Meeresuntersuch. 14, 451–465 (1966).

    Article  Google Scholar 

  • Roots, B. I., Johnston, P. V.: Plasmalogens of the nervous system and environmental temperature. Comp. Biochem. Physiol. 26, 553–560 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Roots, B. I., Prosser, C. L.: Temperature acclimation and the nervous system in fish. J. Exptl. Biol. 39, 617–630 (1962).

    CAS  Google Scholar 

  • Roux, C.: Les variations de la courbe metabolisme temperature de Gammarus lacustris G.O. Sas (Crustace, Amphipode) sous Pinfluence de clivers facteurs ecologiques. Crustaceana, Suppl. 3, 287–296 (1972).

    Google Scholar 

  • Saroja, K.: Studies on the oxygen consumption in earthworms. Ph. D. Thesis, Sri Venkateswara Univ., India (1962).

    Google Scholar 

  • Sassaman, C., Mangum, C. P.: Patterns of temperature adaptation in North American Atlantic coastal actinians. Mar. Biol. 7, 123–130 (1970).

    Article  Google Scholar 

  • Schlieper, C.: Temperaturbezogene Regulationen des Grundumsatzes bei wechselwarmen Tieren. Biol. Zentr. 69, 216–226 (1950).

    Google Scholar 

  • Scholander, P. F., Flagg, W., Walters, V., Irving, L.: Climatic adaptation in arctic and tropical poikilotherms. Physiol. Zool. 26, 67–92 (1953).

    Google Scholar 

  • Seymour, M. K.: Effects of temperature change on irrigation rate in Arenkola marina (L.). Comp. Biochem. Physiol. 43A, 553–564 (1972).

    Article  Google Scholar 

  • Smit, H.: Influence of temperature on the rate of secretion in the brown bullhead Ictalurus nebulosus. Comp. Biochem. Physiol. 21, 125–132 (1967).

    Article  Google Scholar 

  • Smith, M. W., Kemp, P.: Parallel temperature-induced changes in membrane fatty acids and in the transport of amino acids by the intestine of goldfish (Carassius auratus L.). Comp. Biochem. Physiol. 39B, 357–365 (1971).

    Google Scholar 

  • Somero, G. N.: Pyruvate kinase variants of the Alaskan king crab: evidence for a temperature-dependent interconversion between two forms having distinct and adaptive kinetic properties. Biochem. J. 114, 237–241 (1969).

    PubMed  CAS  Google Scholar 

  • Somero, G. N.: Enzymic mechanisms of temperature compensation: immediate and evolutionary effects of temperature on enzymes of aquatic poikilotherms. Am. Naturalist 103, 517–530 (1969).

    Article  CAS  Google Scholar 

  • Somero, G. N.: Molecular mechanisms of temperature compensation in aquatic poikilotherms. In: South, F. E. et al. (Eds.): Hibernation and Hypothermia, Perspectives and Challenges, p. 55–80. Amsterdam: Elsevier Publ. Comp. 1972.

    Google Scholar 

  • Somero, G. N., Giese, A. C., Wohlschlag, D. E.: Cold adaptation of the antarctic fish Trematomus bernacchii. Comp. Biochem. Physiol. 26, 223–233 (1968).

    Article  Google Scholar 

  • Somero, G. N., Hochachka, P. W.: Biochemical adaptation to the environment. Amer. Zool. 11, 159–167 (1971).

    Google Scholar 

  • Spärck, R.: On the relation between metabolism and temperature in some marine lamellibranchs and its ecological and zoogeographical importance. Kgl. Danske Videnskab. Selskab, Biol. Medd. 13, 1–27 (1936).

    Google Scholar 

  • Steim, J. M., Tourtelotte, M. E., Reinert, J. C, McElhaney, R. N., Rader, R. L.: Calorimet-ric evidence for the liquid-crystalline state of lipids in a biomembrane. Proc. Natl. Acad. Sci. U.S. 63, 104–109 (1969).

    Article  CAS  Google Scholar 

  • Stier, T. J. B., Bock, H. C.: Seasonal changes of heart rate-temperature relationships in toads. Proc. Soc. Exptl. Biol. Med. 123, 149–151 (1966).

    CAS  Google Scholar 

  • Straub, M.: Weitere Untersuchungen zur Temperaturadaptation der Sauerstoffbindung des Blutes von Rana esculenta L. Z. Vergleich. Physiol. 39, 507–523 (1957).

    Article  Google Scholar 

  • Thorson, G.: On larval development, growth and metabolism of arctic marine bottom invertebrates compared with those of other seas. Medd. Grønland 100, 1–155 (1936)

    Google Scholar 

  • Träuble, H.: Phasenumwandlungen in Lipiden. Mögliche Schaltprozesse in biologischen Membranen. Naturwiss. 58. 277–284 (1971).

    Article  PubMed  Google Scholar 

  • Träuble, H.: Phasenumwandlungen in Lipiden. Mögliche Schaltprozesse in biologischen Membranen. Jg. H. 6, 277–284 (1971).

    Google Scholar 

  • Tribe, M. A., Bowler, K.: Temperature dependence of “standard metabolic rate” in a poikilotherm. Comp. Biochem. Physiol. 25, 427–436 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Umminger, B. L.: Physiological studies on supercooled killifish (Fundulus heteroclitus). I. Serum inorganic constituents in relation to osmotic and ionic regulation at subzero temperatures. J. Exptl. Zool. 172, 283–302 (1969).

    Article  CAS  Google Scholar 

  • Valen, E.: Oxygen consumption in relation to temperature in some poikilotherms. Acta Physiol. Scand. 42, 358–362 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Vernberg, F. J.: The oxygen consumption of two species of salamanders at different seasons of the year. Physiol. Zool. 25, 243–249 (1952).

    Google Scholar 

  • Vernberg, F. J.: Studies on the physiological variation between tropical and temperate zone fiddler crabs of the genus Uca. II. Oxygen consumption of whole organisms. Biol. Bull. 117, 163–184 (1959).

    Article  CAS  Google Scholar 

  • Vernberg, F. J.: Studies on the physiological variation between tropical and temperate zone fiddler crabs of the genus Uca. III. The influence of temperature acclimation on oxygen consumption of whole organisms. Biol. Bull. 117, 582–593 (1959).

    Article  Google Scholar 

  • Wernick, A., Künnemann, H.: Der Einfluß der Temperatur auf die Substrat-Affinität der Laktat-Dehydrogenase aus Fischen. Mar. Biol. 18, 32–36 (1973).

    Article  CAS  Google Scholar 

  • Widdows, J., Bayne, B. L.: Temperature acclimation of Mytilus edulis with reference to its energy budget. J. Marine Assoc. U.K. 51, 827–843 (1971).

    Article  Google Scholar 

  • Wieser, W.: O/N ratios of terrestrial isopods at two temperatures. Comp. Biochem. Physiol. 43A, 859–868 (1972).

    Article  Google Scholar 

  • Wieser, W., Fritz, H., Reichel, K.: Jahreszeitliche Steuerung der Atmung von Arianta arbustorum (Gastropoda). Z. Vergleich. Physiol. 70, 62–79 (1970).

    Article  Google Scholar 

  • Wieser, W., Nopp-Pammer, E.: Effects of temperature and moulting cycle on melanin synthesis in the newt, Triturus cristatus. Comp. Biochem. Physiol. 24, 1015–1025 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Yielding, K. L.: Regulation of protein activity and turnover through specific modifications in structure. In: Rechcigl, M. (Ed.): Enzyme Synthesis and Degradation in Mammalian Systems, p. 141–164.

    Google Scholar 

  • Basel, Karger 1971. Zahn, M.: Jahreszeitliche Veränderungen der Vorzugstemperaturen von Scholle (Pleuronectes platessa Linne) und Bitterling (Rhodeus serkeus Pallas), S. 652–580. Verhandl. Deut. Zool. Ges., München. Leipzig: Akad. Verlag 1963.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Wieser, W. (1973). Temperature Relations of Ectotherms: A Speculative Review. In: Wieser, W. (eds) Effects of Temperature on Ectothermic Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65703-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65703-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65705-4

  • Online ISBN: 978-3-642-65703-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics