Skip to main content

Metabolism of Cancer Chemotherapeutic Agents via Pathways Utilized by Endogenous Substrates

  • Chapter
Antineoplastic and Immunosuppressive Agents Part I

Abstract

Cancer chemotherapeutic agents, like other classes of xenobiotics, undergo a variety of metabolic transformations, both anabolic and catabolic in type. The former group of reactions includes such transformations as conversion of purine and pyrimidine analogs, to their pharmacologically active nucleotide forms and incorporation of the latter into nucleic acids. Because of their immediate relevance to the antitumor activity of these agents, and also to mechanisms of acquired resistance to continued therapy, such anabolic conversions have received great attention from investigators in the field of cancer chemotherapy. The catabolic reactions which these drugs undergo, on the other hand, usually result in a partial or complete loss of antitumor activity; the practical impetus toward the study of the latter group of reactions has been the possibility of developing specific inhibitors of such catabolic inactivation, thus increasing the potency and duration of action of the parent form of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, R.H.: Metabolism of anticancer agents in man. Ann. N. Y. Acad. Sci. 179, 432–441 (1971).

    PubMed  CAS  Google Scholar 

  • Adamson, R.H., Loo, T.L., Morris, H.P.: Metabolism of Cl136-Dichloromethotrexate by transplantable liver tumors. Proc. Soc. exp. Biol. (N. Y.) 111, 566–568 (1962).

    CAS  Google Scholar 

  • Adamson, R.H., Ague, S.L., Hess, S.M., Davidson, J. D.: The distribution, excretion and metabolism of hydroxyurea-14C. J. pharmacol. exp. Ther. 150, 322–334 (1965).

    PubMed  CAS  Google Scholar 

  • Allan, P.W., Schnebli, H.P., Bennett, L.L., Jr.: Conversion of 6-mercaptopurine and 6-mercaptopurine ribonucleoside to 6-methylmercaptopurine ribonucleotide in human epidermoid carcinoma no. 2 cells in culture. Biochim. biophys. Acta 114, 647–650 (1966).

    PubMed  CAS  Google Scholar 

  • Baker, B.R., Wood, W.F., Kozma, J.A.: Irreversible enzyme inhibitors. CXXVI. Hydro-carbon interaction with xanthine oxidase by phenyl substitutents on purines and pyrazolo-(3, 4-d)pyrimidines. J. med. Chem. 11, 661–666 (1968).

    PubMed  CAS  Google Scholar 

  • Beer, C.T., Richards, J.F.: The metabolism of Vinca alkaloids. Part II. The fate of tritiated vinblastine in rats. Lloydia 27, 352–360 (1964).

    CAS  Google Scholar 

  • Bennett, L.L., Jr., Brockman, R.W., Schnebli, H.P., Chumley, S., Dixon, G.J., Schabel, F.M., Jr., Dulmadge, E.A., Skipper, H. E., Montgomery, J. A., Thomas, H. J.: Activity and mechanism of action of 6-methylthiopurine ribonucleoside in cancer cells resistant to 6-mercaptopurine. Nature (Lond.) 205, 1276–1279 (1965).

    CAS  Google Scholar 

  • Birnie, G.D., Kroeger, H., Heidelberger, C.: Studies of fluorinated pyrimidines. XVIII. The degradation of 5-fluoro-2′-deoxyuridine and related compounds by nucleoside Phosphorylase. Biochemistry 2, 566–572 (1963).

    PubMed  CAS  Google Scholar 

  • Bresnick, E.: The metabolism in vitro of antitumor imidazolyl derivatives of mercapto-purines. Fed. Proc. 18, 371 (1959).

    Google Scholar 

  • Brockman, R.W.: Biochemical aspects of mercaptopurine inhibition and resistance. Cancer Res. 23, 1191–1201 (1963).

    PubMed  CAS  Google Scholar 

  • Buděšìnský, Z., Jelínek, V., Přikryl, J.: 5-Halogenpyrimidine. I. Darstellung von 4-hydroxy-5-halogenpyrimidinen. Coll. Czech. Chem. Commun. 27, 2550–2560 (1962).

    Google Scholar 

  • Buděšìnský, Z., Přikryl, J., Svátek, E.: 5-Halogenpyrimidine. II. Synthese des 2-hydroxy- 5-fluoropyrimidins. Coll. Czech. Chem. Commun. 30, 3895–3901 (1965).

    Google Scholar 

  • Burchenal, J.H., Murphy, M.L., Ellison, R.R., Sykes, M.P., Tan, T.C., Leone, L.A., Karnofsky, D.A., Craver, L.F., Dargeon, H.W., Rhoads, C.P.: Clinical evaluation of a new antimetabolite, 6-mercaptopurine, in the treatment of leukemia and allied diseases. Blood 8, 965–999 (1953).

    PubMed  CAS  Google Scholar 

  • Calabresi, P., Creasey, W.A., Prusoff, W.H., Welch, A.D.: Clinical and pharmacological studies with 5-iodo-2, -deoxycytidine. Cancer Res. 23, 583–592 (1963).

    PubMed  CAS  Google Scholar 

  • Caldwell, I.C., Henderson, J.F., Paterson, A.R.P.: The enzymic formation of 6-(methyl-mercapto)purine ribonucleoside 5′-phosphate. Can. J. Biochem. 44, 229–245 (1966).

    PubMed  CAS  Google Scholar 

  • Caldwell, I.C., Henderson, J.F., Paterson, A.R.P.: Resistance to purine ribonucleoside analogues in an ascites tumor. Can. J. Biochem. 45, 735–744 (1967).

    PubMed  CAS  Google Scholar 

  • Caldwell, I.C., Henderson, J.F., Paterson, A.R.P.: The metabolism of formycin, an adenosine analogue. Can. J. Biochem. 47, 901–908 (1969).

    PubMed  CAS  Google Scholar 

  • Camiener, G. W.: Studies of the enzymatic deamination of cytosine arabinoside. II. Properties of the deaminase of human liver. Biochem. Pharmacol. 16, 1681–1690 (1967a).

    PubMed  CAS  Google Scholar 

  • Camiener, G. W.: Studies of the enzymatic deamination of cytosine arabinoside. III. Substrate requirements and inhibitors of the deaminase of human liver. Biochem. Pharmacol. 16, 1691–1702 (1967b).

    PubMed  CAS  Google Scholar 

  • Camiener, G.W.: Studies of the enzymatic deamination of ara-cytidine. V. Inhibition in vitro and in vivo by tetrahydrouridine and other reduced pyrimidine nucleotides. Biochem. Pharmacol. 17, 1981–1991 (1968).

    PubMed  CAS  Google Scholar 

  • Camiener, G.W., Smith, C.G.: Studies of the enzymatic deamination of cytosine arabinoside. I. Enzyme distribution and species specificity. Biochem. Pharmacol. 14, 1405–1416 (1965).

    PubMed  CAS  Google Scholar 

  • Canellakis, E.S.: Pyrimidine metabolism. I. Enzymatic pathways of uracil and thymine degradation. J. biol. Chem. 221, 315–322 (1956).

    PubMed  CAS  Google Scholar 

  • Canellakis, E.S.: Pyrimidine metabolism. III. The interaction of the catabolic and anabolic pathways of uracil metabolism. J. biol. Chem. 227, 701–709 (1957).

    PubMed  CAS  Google Scholar 

  • Chalmers, A.H., Knight, P.R., Atkinson, M.R.: Conversion of azathioprine into mercaptopurine and mercaptoimidazole derivatives in vitro and during immunosuppressive therapy. Aust. J. exp. biol. Med. Sci. 45, 681–691 (1967).

    PubMed  CAS  Google Scholar 

  • Chalmers, A.H., Knight, P.R., Atkinson, M.R.: 6-Thiopurines as substrates and inhibitors of purine oxidases: A pathway for conversion of azathioprine into 6-thiouric acid without release of 6-mercaptopurine. Aust. J. exp. biol. Med. Sci. 47, 263–273 (1969).

    PubMed  CAS  Google Scholar 

  • Chaudhuri, N.K., Mukherjee, K.L., Heidelberger, C.: Studies on fluorinated pyrimidines. VII. The degradative pathway. Biochem. Pharmacol. 1, 328–341 (1959).

    Google Scholar 

  • Chu, M.Y.: Incorporation of arabinosyl cytosine into 2–7 S ribonucleic acid and cell death. Biochem. Pharmacol. 20, 2057–2063 (1971).

    PubMed  CAS  Google Scholar 

  • Colvin, M., Bono, V.H., Jr.: The enzymatic reduction of hydroxyurea to urea by mouse liver. Cancer Res. 30, 1516–1519 (1970).

    PubMed  CAS  Google Scholar 

  • Creasey, W.A.: Studies on the metabolism of 5-iodo-2′-deoxycytidine in vitro. Purification of nucleoside deaminase from mouse kidney. J. biol. Chem. 238, 1772–1776 (1963).

    PubMed  CAS  Google Scholar 

  • Davidson, J.D., Oliverio, V.T.: The physiologic disposition of dichloromethotrexate-Cl36 in man. Clin. Pharmacol, and Ther. 6, 321–327 (1965).

    CAS  Google Scholar 

  • Davidson, J.D., Winter, T.S.: Purine nucleotide pyrophosphorylases in 6-mercaptopurine-sensitive and -resistant human leukemias. Cancer Res. 24, 261–267 (1964).

    PubMed  CAS  Google Scholar 

  • Durham, J.P., Ives, D.H.: Deoxycytidine kinase. I. Distribution in normal and neoplastic tissues and interrelationships of deoxycytidine and 1-β-D-arabinofuranosylcytosine phosphorylation. Mol. Pharmacol. 5, 358–375 (1969).

    PubMed  CAS  Google Scholar 

  • Duschinsky, R., Pleven, E., Heidelberger, C.: The synthesis of 5-fluoropyrimidines. J. Amer. chem. Soc. 79, 4559–4560 (1957).

    CAS  Google Scholar 

  • Eastern Cooperative Group In Solid Tumor Chemotherapy: Comparison of antimetabolites in the treatment of breast and colon cancer. J. Amer. Med. Assoc. 200, 770–778 (1967).

    Google Scholar 

  • Elford, H.L.: Effect of hydroxyurea on ribonucleotide reductase. Biochem. biophys. Res. Commun. 33, 129–135 (1968).

    PubMed  CAS  Google Scholar 

  • Elion, G.B.: Biochemistry and pharmacology of purine analogues. Fed. Proc. 26, 898–904 (1967).

    PubMed  CAS  Google Scholar 

  • Elion, G.B., Bieber, S., Hitchings, G. H.: The fate of 6-mercaptopurine in mice. Ann. N. Y. Acad. Sci. 60, 297–303 (1954).

    PubMed  CAS  Google Scholar 

  • Elion, G.B., Mueller, S., Hitchings, G. H.: Studies on condensed pyrimidine systems. XXI. The isolation and synthesis of 6-mercapto-2, 8-purinediol (6-thiouric acid). J. Amer. chem. Soc. 81, 3042–3045 (1959).

    CAS  Google Scholar 

  • Elion, G.B., Callahan, S., Bieber, S., Hitchings, G.H., Rundles, R.W.: A summary of investigations with 6-[(l-methyl-4-nitro-5-imidazolyl)thio]purine (B. W. 57–322). Cancer Chemother. Rep. 14, 93–98 (1961).

    CAS  Google Scholar 

  • Elion, G.B., Callahan, S., Nathan, H., Bieber, S., Rundles, R.W., Hitchings, G.H.: Potentiation by inhibition of drug degradation: 6-Substituted purines and xanthine oxidase. Biochem. Pharmacol. 12, 85–93 (1963a).

    CAS  Google Scholar 

  • Elion, G.B., Callahan, S., Rundles, R.W., Hitchings, G.H.: Relationship between metabolic fates and antitumor activities of thiopurines. Cancer Res. 23, 1207–1217 (1963b).

    PubMed  CAS  Google Scholar 

  • Elion, G.B., Benezra, F.M., Carrington, L.O., Strelitz, R.A.: Metabolic fate of 14C-azathioprine. Fed. Proc. 29, 607 (1970).

    Google Scholar 

  • Farber, S., Diamond, L.K., Mercer, R.D., Sylvester, R.F., Jr., Wolff, J.A.: Temporary remisions in acute leukemia in children produced by folic acid antagonist, 4-amino-pteroyl-glutamic acid (Aminopterin). New Eng. J. Med. 238, 787–793 (1948).

    PubMed  CAS  Google Scholar 

  • Fishbein, W.N., Carbone, P.P.: Hydroxyurea: mechanism of action. Science 142, 1069–1070 (1963).

    PubMed  CAS  Google Scholar 

  • Fölsch, E., Bertino, J.R.: Inactivation by mouse serum of a tightly bound inhibitor of dihydrofolate reductase. Molec. Pharmacol. 6, 95–98 (1970).

    Google Scholar 

  • Geddes, E. W., Falkson, G.: Malignant hepatoma in the Bantu. Cancer 25, 1271–1278 (1970).

    PubMed  CAS  Google Scholar 

  • Gentry, G.A., Morse, P.A., Jr., Dorsett, M.T.: In vivo inhibition of pyrimidine catabolism by 5-cyanouracil. Cancer Res. 31, 909–912 (1971).

    PubMed  CAS  Google Scholar 

  • Guarino, A.M.: Metabolism of cancer chemotherapeutic agents via pathways utilized by xenobiotics. In: Handbook of Experimental Pharmacology, vol. XXXVIII, Part I, Antineoplastic and Immunosuppressive Agents, pp. 218–318 (A. C. Sartorelli and D. G. Johns, Eds.). Berlin-Heidelberg-New York: Springer 1974.

    Google Scholar 

  • Hakala, M.T., Law, L.W., Welch, A.D.: Inhibitory activity of 6-azauracil, 6-uracil methyl sulfone and related compounds on the growth of mouse lymphomas and sarcoma 180. Proc. Amer. Assoc. Cancer Res. 2, 113 (1956).

    Google Scholar 

  • Hamilton, L., Elion, G.B.: The fate of 6-mercaptopurine in man. Ann. N. Y. Acad. Sci. 60, 304–314 (1954).

    PubMed  CAS  Google Scholar 

  • Hebden, H.F., Hadfield, J.R., Beer, C.T.: The binding of vinblastine by platelets in the rat. Cancer Res. 30, 1417–1424 (1970).

    PubMed  CAS  Google Scholar 

  • Heidelberger, C.: Cancer chemotherapy with purine and pyrimidine analogues. Ann. Rev. Pharmacol. 7, 101–124 (1967).

    PubMed  CAS  Google Scholar 

  • Heidelberger, C., Boohar, J., Kampschroer, B.: Fluorinated pyrimidines. XXIV. In vivo metabolism of 5-trifluoromethyluracil-2-C14 and 5-trifluoromethyl-2′-deoxyuridine-2-C14. Cancer Res. 25, 377–381 (1965).

    PubMed  CAS  Google Scholar 

  • Hrodek, O., Vesely, J.: 5-Azacytidine in childhood leukemia. Neoplasma 18, 493–503 (1971).

    PubMed  CAS  Google Scholar 

  • Jacquez, J.A., Sherman, J. H.: Enzymatic degradation of azaserine. Cancer Res. 22, 56–61 (1962).

    PubMed  Google Scholar 

  • Johns, D.G., Hollingsworth, J.W., Cashmore, A.R., Plenderleith, I.H., Bertino, J.R.: Methotrexate displacement in man. J. clin. Invest. 43, 621–629 (1964).

    PubMed  CAS  Google Scholar 

  • Johns, D.G., Iannotti, A.T., Sartorelli, A.C., Booth, B.A., Bertino, J.R.: The identity of rabbit-liver methotrexate oxidase. Biochim. biophys. Acta (Amst.) 105, 380–382 (1965).

    CAS  Google Scholar 

  • Johns, D.G., Iannotti, A.T., Sartorelli, A.C., Bertino, J.R.: On the relative toxicities of methotrexate and aminopterin. Biochem. Pharmacol. 15, 555–561 (1966a).

    PubMed  CAS  Google Scholar 

  • Johns, D.G., Sartorelli, A.C., Bertino, J.R., Iannotti, A.T., Booth, B.A., Welch, A.D.: Enzymic hydroxylation of 5-fluoropyrimidines by aldehyde oxidase and xanthine oxidase. Biochem. Pharmacol. 15, 400–403 (1966b).

    PubMed  CAS  Google Scholar 

  • Jurovčík, M., Raška, K., Šormovă, Z., Šorm, F.: Anabolic transformation of a novel antimetabolite, 5-azacytidine, and evidence for its incorporation into ribonucleic acid. Coll. Czech. Chem. Commun. 30, 3370–3376 (1965).

    Google Scholar 

  • Kaufman, H.E., Nesburn, A.B., Maloney, E.D.: IDU Therapy of herpes simplex. Arch. Ophthalmol. 67, 583–591 (1962).

    PubMed  CAS  Google Scholar 

  • Knox, W.E.: The quinine-oxidizing enzyme and liver aldehyde oxidase. J. biol. Chem. 163, 699–711 (1946).

    PubMed  CAS  Google Scholar 

  • LePage, G.A., Whitecar, J.P., Jr.: Pharmacology of 6-thioguanine in man. Cancer Res. 31, 1627–1631 (1971).

    PubMed  CAS  Google Scholar 

  • Li, L.H., Olin, E.J., Buskirk, H.H., Reineke, L.M.: Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res. 30, 2760–2769 (1970).

    PubMed  CAS  Google Scholar 

  • Loo, T.L., Adamson, R. H.: The enzymic oxidation of certain folic acid antagonists. Biochem. Pharmacol. 11, 170–171 (1962).

    PubMed  CAS  Google Scholar 

  • Loo, T.L., Adamson, R.H.: The metabolite of 3′5′-dichloro-4-amino-4-deoxy-N 10-methyl-pteroylglutamic acid (Dichloromethotrexate). J. med. Chem. 8, 513–515 (1965).

    PubMed  CAS  Google Scholar 

  • Loo, T.L., Lim, C., Johns, D.G.: Enzymic hydroxylation of 6-methylthiopurine by hepatic aldehyde oxidase. Biochim. biophys. Acta (Amst.) 134, 467–469 (1967).

    CAS  Google Scholar 

  • Loo, T.L., Luce, J.K., Sullivan, M.P., Frei, E., III: Clinical pharmacologic observations on 6-mercaptopurine and 6-methylthiopurine ribonucleoside. Clin. Pharmacol. Ther. 9, 180–194 (1968).

    PubMed  CAS  Google Scholar 

  • Loo, T.L., Michael, M.E., Garceau, A.J., Reid, J.C.: 6-Thiouric acid — a metabolite of 6-mercaptopurine. J. Amer. chem. Soc. 81, 3039–3041 (1959).

    CAS  Google Scholar 

  • Mandel, H.G.: The physiological disposition of some anticancer agents. Pharmacol. Rev. 11, 743–838 (1959).

    PubMed  CAS  Google Scholar 

  • Mandel, H.G.: The metabolism of analogs of endogenous substrates: Wider application of a limited concept. In: Handbook of experimental pharmacology, vol. 28, Concepts in Bio-chemical Pharmacology, part 2, pp. 654–683 (B. B. Brodie and J. R. Gillette, Ed.). Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Mazel, P., Henderson, J.F., Axelrod, J.: S-Demethylation by microsomal enzymes. J. Pharmacol, exp. Ther. 143, 1–6 (1964).

    CAS  Google Scholar 

  • Mead, J.A.R., Wood, H.B., Jr., Goldin, A.: Relationship of structure to antitumor activity in compounds related to folic acid. Cancer Chemother. Rep. (Part 2) 1, 273–361 (1968).

    CAS  Google Scholar 

  • Mukherjee, K.L., Heidelberger, C.: Studies on fluorinated pyrimidines. IX. The degradation of 5-fluorouracil-6-C14. J. biol. Chem. 235, 433–437 (1960).

    PubMed  CAS  Google Scholar 

  • Miech, R.P., Parks, R.E., Jr., Anderson, J.H., Jr., Sartorelli, A.C.: An hypothesis on the mechanism of action of 6-thioguanine. Biochem. Pharmacol. 16, 2222–2227 (1967).

    PubMed  CAS  Google Scholar 

  • Miech, R.P., York, R., Parks, R.E., Jr.: ATP-GMP Phosphotransferase. II. Inhibition by 6-thioguanosine (6-thioGMP) of the enzyme isolated from hog brain and sarcoma 180 ascites cells. Molec. Pharmacol. 5, 30–37 (1969).

    CAS  Google Scholar 

  • Minnich, V., Moore, C.V., Smith, D.E., Elliott, G.V.: Studies on the acute toxic effects of 4-aminopteroyl-glutamic acid in dogs, guinea pigs, and rabbits. Arch. Path. 50, 787–799 (1950).

    CAS  Google Scholar 

  • Moore, E.C., LePage, G.A.: The metabolism of 6-thioguanine in normal and neoplastic tissues. Cancer Res. 18, 1075–1083 (1958).

    PubMed  CAS  Google Scholar 

  • Mulligan, L.T., Mellett, L.B.: Inhibition of arabinosyl cytosine deamination by tetra-hydrouridine in the monkey. The Pharmacologist 12, 221 (1970).

    Google Scholar 

  • Nagyvary, J.: Arabinonucleotides. II. The synthesis of 02, 2/-anhydrocytidine-3′-phosphate, a precursor of l-β-D-arabinosylcytosine. J. Amer. chem. Soc. 91, 5409–5410 (1969).

    CAS  Google Scholar 

  • Neil, G.L., Wiley, P.F., Manak, R.C., Moxley, T.E.: Antitumor effect of 1-β-D-arabino-furanosylcytosine 5′-adamantoate (NSC 117614) in L1210 leukemic mice. Cancer Res. 30, 1047–1054 (1970).

    PubMed  CAS  Google Scholar 

  • Oliverio, V.T., Zubrod, C.G.: Clinical pharmacology of the effective antitumor drugs. Ann. Rev. Pharmacol. 5, 335–356 (1965).

    CAS  Google Scholar 

  • PiThovă, P., Pískala, A., PiTha, J., Šorm, F.: Nucleic acid components and their analogues. LXVI. Hydrolysis of 5-azacytidine and its connection with biological activity. Coll. Czech. Chem. Commun. 30, 2801–2811 (1965).

    Google Scholar 

  • Prusoff, W.H., Jaffe, J.J., Günther, H., Welch, A.D.: Studies of the pharmacology and antitumor activity of iododeoxyuridine, an analog of thymidine. Proc. Amer. Assoc. Cancer Res. 3, 54 (1959).

    Google Scholar 

  • Prusoff, W.H., Jaffe, J.J., Günther, H.: Studies in the mouse of the pharmacology of 5-iododeoxyuridine, an analogue of thymidine. Biochem. Pharmacol. 3, 110–121 (1960).

    PubMed  CAS  Google Scholar 

  • Rall, D.P., Pallotta, A.J., Elsea, J.R.: Comparative toxicity of amethopterin, 3′-mono-chloroamethopterin, and 3′, 5′-dichloroamethopterin in rats and dogs. Proc. Amer. Assoc. Cancer Res. 3, 54 (1959).

    Google Scholar 

  • Redetzki, H.M., Redetzki, J.E., Elias, A.L.: Resistance of the rabbit to methotrexate: Isolation of a drug metabolite with decreased toxicity. Biochem. Pharmacol. 15, 425–433 (1966).

    PubMed  CAS  Google Scholar 

  • Reilly, H. C.: Studies on the fate of azaserine in the animal body. Bact. Proc. 54, 79 (1954a).

    CAS  Google Scholar 

  • Reilly, H.C.: Inactivation of azaserine by a liver enzyme. Fed. Proc. 13, 279 (1954b).

    Google Scholar 

  • Remy, C.N.: Metabolism of thiopyrimidines and thiopurines. S-Methylation with S-adenosyl-methionine transmethylase and catabolism in mammalian tissues. J. biol. Chem. 238, 1078–1084 (1963).

    PubMed  CAS  Google Scholar 

  • Reyes, P., Heidelberger, C.: Fluorinated pyrimidines. XXV. The inhibition of thymidylate synthetase from Ehrlich ascites carcinoma cells by pyrimidine analogs. Biochim. biophys. Acta (Amst.) 103, 177–179 (1965).

    CAS  Google Scholar 

  • Rundles, R.W., Laszlo, J., Itoga, T., Hobson, J.B., Garrison, F.E., Jr.: Clinical and hematologic study of 6-((l-methyl-4-nitro-5-imidazolyl)thio) purine (B. W. 57–322) and related compounds. Cancer Chemother. Rep. 14, 99–115 (1961).

    PubMed  CAS  Google Scholar 

  • Rundles, R.W., Wyngaarden, J.B., Hitchings, G.H., Elion, G.B., Silberman, H. R.: Effects of a xanthine oxidase inhibitor on thiopurine metabolism, hyperuricemia, and gout. Trans. Ass. Amer. Physicians 76, 126–140 (1963).

    CAS  Google Scholar 

  • Rutman, R.J., Cantarow, A., Paschkis, K.E.: Studies in 2-acetylaminofluorene carcinogenesis. III. The utilization of uracil-2-C14 by preneoplastic rat liver and rat hepatoma. Cancer Res. 14, 119–123 (1954).

    PubMed  CAS  Google Scholar 

  • Sarcione, E.J., Stutzman, L.: A comparison of the metabolism of 6-mercaptopurine and its 6-methyl analog in the rat. Cancer Res. 20, 387–392 (1960).

    PubMed  CAS  Google Scholar 

  • Sartorelli, A. C.: Approaches to the combination chemotherapy of transplantable neoplasms. Prog. Exp. Tumor Res. 6, 228–288 (1965).

    PubMed  CAS  Google Scholar 

  • Sartorelli, A.C., Creasey, W.A.: The antineoplastic and biochemical effects of some 5-fluoropyrimidines. Cancer Res. 27, 2201–2206 (1967).

    PubMed  CAS  Google Scholar 

  • Sartorelli, A.C., Creasey, W.A.: Cancer chemotherapy. Ann. Rev. Pharmacol. 9, 51–72 (1969).

    PubMed  CAS  Google Scholar 

  • Scannell, J.P., Hitchings, G.H.: Thioguanme in deoxyribonucleic acid from tumors of 6-mercaptopurine-treated mice. Proc. Soc. exp. Biol. (N. Y.) 122, 627–629 (1966).

    CAS  Google Scholar 

  • Schnebli, H.P., Hill, D.L., Bennett, L.L., Jr.: Purification and properties of adenosine kinase from human tumor cells of type H. Ep. No. 2. J. biol. Chem. 242, 1997–2004 (1967).

    PubMed  CAS  Google Scholar 

  • Sheen, M.R., Kim, B.K., Parks, R.E., Jr.: Purine nucleoside Phosphorylase from human erythrocytes. III. Inhibition by the inosine analog formycin B of the isolated enzyme and of nucleoside metabolism in intact erythrocytes and sarcoma 180 cells. Molec. Pharmacol. 4, 293–299 (1968).

    CAS  Google Scholar 

  • Sheen, M.R., Martin, H.F., Parks, R.E., Jr.: The interaction of the nucleoside analogues, formycins A and B, with xanthine oxidase and hepatic aldehyde oxidase. Molec. Pharmacol. 6, 255–265 (1970).

    CAS  Google Scholar 

  • Šorm, F., Veselý, J.: The activity of a new antimetabolite, 5-azacytidine, against lymphoid leukemia in AK mice. Neoplasma 11, 123–130 (1964).

    PubMed  Google Scholar 

  • Stanulović, M., Chaykin, S.: Aldehyde oxidase: Catalysis of the oxidation of N 1-methyl- nicotinamide and pyridoxal. Arch. Biochem. Biophys. 145, 27–34 (1971).

    PubMed  Google Scholar 

  • Stock, J.A.: Other antitumor agents. In: Experimental chemotherapy, vol. 5, Chemotherapy of neoplastic diseases, Part II, pp. 333–416. (R. J. Schnitzer and F. Hawking, Eds.). New York-London: Academic Press 1967.

    Google Scholar 

  • Tomchick, R., Saslaw, L.D., Waravdekar, V.S.: Mouse kidney cytidine deaminase. Purification and properties. J. biol. Chem. 243, 2534–2537 (1968).

    PubMed  CAS  Google Scholar 

  • Umezawa, H., Sawa, T., Fukugawa, Y., Koyama, G., Murase, M., Hamada, M., Takeguchi, T.: Transformation of Formycin to Formycin B and their biological activities. J. Antibiot. (Tokyo) 18A, 178–181 (1965).

    Google Scholar 

  • Valerino, D.M., Johns, D.G., Zaharko, D.S., Oliverio, V.T.: Studies of the metabolism of methotrexate by intestinal flora — I. Identification and study of biological properties of the metabolite 4-amino-4-deoxy-N 10-methylpteroic acid. Biochem. Pharmacol. 21, 821–832 (1972).

    PubMed  CAS  Google Scholar 

  • Vogel, C.L., Adamson, R.H., Devita, V.T., Johns, D.G., Kyalwazi, S.K.: Preliminary clinical trials of dichloromethotrexate in hepatocellular carcinoma. Cancer Chemother. Rep. 56 (1972).

    Google Scholar 

  • Wolpert, M.K., Damle, S.P., Brown, J.E., Sznycer, E., Agrawal, K.C., Sartorelli, A.C.: The role of phosphohydrolases in the mechanism of resistance of neoplastic cells to 6-thiopurines. Cancer Res. 31, 1620–1626 (1971).

    PubMed  CAS  Google Scholar 

  • Wolpert, M.K., Farquhar, D., Johns, D.G.: Methotrexate esters as substrates for mammalian liver aldehyde oxidase. Abstr. Fifth International Congress on Pharmacology, 255 (1972).

    Google Scholar 

  • Young, C.W., Burchenal, J.H.: Cancer chemotherapy. Ann. Rev. Pharmacol. 11, 369–386 (1971).

    PubMed  CAS  Google Scholar 

  • Zaharko, D.S., Bruckner, H., Oliverio, V.T.: Antibiotics alter methotrexate metabolism and excretion. Science 166, 887–888 (1969).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Johns, D.G. (1974). Metabolism of Cancer Chemotherapeutic Agents via Pathways Utilized by Endogenous Substrates. In: Sartorelli, A.C., Johns, D.G. (eds) Antineoplastic and Immunosuppressive Agents Part I. Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology, vol 38 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65678-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65678-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65680-4

  • Online ISBN: 978-3-642-65678-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics