Control theory for random systems

  • Arthur E. BrysonJr.
Part of the IUTAM Symposia book series (IUTAM)


Automatic control is used in connection with goal-oriented, man-made systems. There are several, usually overlapping, reasons for using automatic control: (a) to relieve human operators from tedious, repetitive tasks (e.g., dial telephones, traffic signals, automatic elevators, autopilots), (b) to speed up and/or lower costs of production processes (e.g., chemical process control, automatic cutting and drilling machines), and (c) to control rapidly-changing or complicated systems accurately and safely (e.g., guidance and control of spacecraft, automatic landing of aircraft).


Negative Real Part Random System Root Locus Dynamic Compensator Spectral Density Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bryson, A. E., Ho, Y. C.: Applied Optimal Control, Xerox-Blaisdell, Lexington, Mass., 1969.Google Scholar
  2. Bryson, A. E., Hall, W. E.: Stanford University, SUDAAR Rep. No. 446, November 1971.Google Scholar
  3. Bryson, A. E., Johansen, D. E.: IEEE Trans. Auto. Control 10 (1965) 4–10.MathSciNetCrossRefGoogle Scholar
  4. Bryson, A. E., Luenberger, D. G.: Proc. IEEE 58 (1970) 1803–1811.CrossRefGoogle Scholar
  5. Chandrasekar, S.: Reviews of Modern Physics 15 (1943) 1–89.MathSciNetADSCrossRefGoogle Scholar
  6. Chang, S. S. L.: Synthesis of Optimum Control Systems, New York: McGraw-Hill 1961.Google Scholar
  7. Einstein, A.: Ann. d. Physik 17 (1905) 549 and 19 (1906) 371.Google Scholar
  8. Evans, W. R.: AIEE Trans. Part II 69 (1950) 66–69.Google Scholar
  9. Francis, J. G. F.: Computer J. 4 (1961) 265–271;MathSciNetCrossRefGoogle Scholar
  10. Francis, J. G. F.: Computer J. 4 (1962) 332–345.MathSciNetCrossRefGoogle Scholar
  11. Gunckel, T. L., Franklin, G. F.: Trans. ASME J. Basic Engr., 85-D (1963) 197–201.Google Scholar
  12. Wiener, N.: The Extrapolation, Interpolation, and Smoothing of Stationary Time Series with Engineering Applications, MIT Radiation Lab. Rep., Feb. 1942 (published as a book: New York: Wiley 1949.Google Scholar
  13. Wold, H.: A Study in the Analysis of Stationary Time Series, Uppsala: Almquist and Wiskell 1938MATHGoogle Scholar


  1. Aström, K. J.: Introduction to Stochastic Control Theory.Google Scholar
  2. Boguslavski, I. A.: Methods of Navigation and Control with Incomplete Statistical Information, Moscow, 1970 (In Russian). New York: Academic Press 1970.Google Scholar
  3. Leondes, C. T. (Ed.): AGARDograph No. 139, Nat. Techn. Inform. Serv., Springfield, VA, Feb. 1970.Google Scholar
  4. Letov, A. M.: Dynamics and Control of Flight, Moscow, 1969 (in Russian).Google Scholar
  5. Meditch, J. S.: Stochastic Optimal Linear Estimation and Control, New York: McGraw-Hill 1969.MATHGoogle Scholar
  6. Wilkerson, J. H., Martin, R. S., Peters, G.: Numer. Math. 14 (1970) 219–231.MathSciNetCrossRefGoogle Scholar
  7. Hall, W. E.: Ph. D. Diss., Stanford Univ., Stanford, Calif., 1971.Google Scholar
  8. Joseph, P. D., Tou, J. T.: Trans. AIEE (Applications and Industry) 80 (1961) 193–196.Google Scholar
  9. Kalman, R. E., Bertram, J. E.: Trans. AIEE 77 (1958).Google Scholar
  10. Kalman, R. E., Bucy, R.: Trans. ASME 83D (1961) 95–108.MathSciNetGoogle Scholar
  11. Kalman, R. E., Englar, T. S.: NASA CR-475, June 1966.Google Scholar
  12. Kalman, R. E., Ho, Y. C., Narendra, K. S.: Contrib. to Differential Eqns. 1 (1963) 189–213.MathSciNetGoogle Scholar
  13. Khintchine, A. Ya.: Math. Ann. 109 (1934) 604–615. Also Progr. of Math. Sci., USSR, No. 5, 42–51 (1938).MathSciNetCrossRefGoogle Scholar
  14. Kolmogorov, A. N.: Foundations of the Theory of Probability. New York: Chelsea 1931.Google Scholar
  15. Kolmogorov, A. N.: Bull. Moscow Univ., USSR, Ser. Math. 5 (1941) 13–14.Google Scholar
  16. Langevin, P.: Comptes Rendus 146 (1908) 530.MATHGoogle Scholar
  17. Laning, J. H., Battin, R. H.: Random Processes in Automatic Control, New York: McGraw-Hill 1958.Google Scholar
  18. Letov, A. M.: (3 parts), Automation and Remote Control 21, 1960.Google Scholar
  19. Markov, A. A.: Wahrscheinlichkeitsrechnung, Leipzig 1912.MATHGoogle Scholar
  20. Marlane, A. G. J.: J. Electron, and Control 14 (1963) 643–654.CrossRefGoogle Scholar
  21. Newton, G. C., Gould, L. A., Kaiser, J. F.: Analytical Design of Linear Feedback Control, New York: Wiley 1957.Google Scholar
  22. Planck, M.: Sitz, der Preuss., Akad. 324, 1917.Google Scholar
  23. Phillips, R. S.: Chapters 6 and 7 of Theory of Servo-mechanisms, ed. by James, Nichols, and Phillips: New York: McGraw-Hill 1947.Google Scholar
  24. Potter, J. E.: MIT Expt. Astronomy Lab. Rep. RE-11, Aug. 1964.Google Scholar
  25. Potter, J. E.: SIAM J. Appl. Math. 14 (1966) 496–501.MathSciNetMATHCrossRefGoogle Scholar
  26. Rice, S.O.: Bell System Techn. J. 23 and 24 (1944–1945) 1–162.MathSciNetGoogle Scholar
  27. Rynaski, E.G., Whitbeck, R. F.: Cornell Aero. Lab. Rep. IH-1943-F-1, 193, Oct. 1965. (Also AFFDL-TR-65–28).Google Scholar
  28. Uhlenbeck, G. E., Ornstein, L. S.: Phys. Rev. 36 (1930) 823–841.ADSCrossRefGoogle Scholar
  29. Wang, M. C., Uhlenbeck, G. E.: Reviews of Modern Physics 17 (1945) 323–342.MathSciNetADSMATHCrossRefGoogle Scholar
  30. Wiener, N.: Acta Mathematica 55 (1930) 117–258MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1973

Authors and Affiliations

  • Arthur E. BrysonJr.
    • 1
  1. 1.StanfordUSA

Personalised recommendations