The Mitochondrial DNA of Malignant Cells

  • Claude A. Paoletti
  • Guy Riou
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 3)


Mitochondria have multiple functions: they control the energetic balance of animal cells and are thus essential for their survival; they are involved in the metabolism of sugars and lipids and are responsible for the synthesis of some polynucleotides and proteins. The mitochondria are the targets for the thyroid hormones.


Malignant Cell Ethidium Bromide Buoyant Density Rous Sarcoma Virus Polyoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anai, M., Hirahashi, T., Tagaki, Y.: A desoxyribonuclease which requires nucleoside triphosphate from Micrococcus lysodeikticus. I. Purification and characterization of the desoxyribonuclease activity. J. biol. Chem. 245, 767 (1970).PubMedGoogle Scholar
  2. Anai, M., Hirahashi, T., Yamanaka, M., Takagi, Y.: A desoxyribonuclease which requires nucleoside triphosphate from Micrococcus lysodeikticus. II. Studies on the role of nucleoside triphosphate. J. biol. Chem. 245, 775 (1970).PubMedGoogle Scholar
  3. Arca, M., Caneva, R., Frontali, L.: Effect of acridities on DNA synthesis in vitro: base composition of product and inhibition in the presence of different primers. Biochim. biophys. Acta (Amst.) 217, 548 (1970).Google Scholar
  4. Ashwell, M., Work, T. S.: The biogenesis of mitochondria. Ann. Rev. Biochem. 39, 251 (1970).PubMedGoogle Scholar
  5. Askew, J. B., Fechner, R. E., Bentick, D. C., Jenson, A. B.: Epithelial and myoepithelial oncocytes. Arch. Otolaryng. 93, 46 (1971).PubMedGoogle Scholar
  6. Attardi, G., Attardi, B.: The informational role of mitochondrial DNA. Park City International Symposia on Problems in Biology. I — RNA in development (1969).Google Scholar
  7. Attardi, B., Attardi, G.: Fate of mitochondrial DNA in human mouse somatic cell hybrids. Proc. Nat. Acad. Sci. (Wash.) 69, 129 (1972).Google Scholar
  8. Baker, R., Doniger, J., Tessman, I.: Roles of parental and progeny DNA in two mechanisms of phage S 13 recombination. Nature (Lond.) New Biol. 230, 23 (1971).Google Scholar
  9. Barbour, S. D., Clark, A. J.: Biochemical and genetic studies of recombination proficiency in Escherichia coli. I. Enzymatic activity associated with rec B+ and rec C+ genes. Proc. nat. Acad. Sci. (Wash.) 65, 955 (1970).Google Scholar
  10. Bauer, W., Vinograd, J.: The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV 40 DNA in the presence and absence of dye. J. molec. Biol. 33, 141 (1968).PubMedGoogle Scholar
  11. Bauer, W., W., Vinograd, J.: The interaction of closed circular DNA with intercalative dyes. III. Dependence of the buoyant density upon superhelix density and base composition. J. molec. Biol. 54, 281 (1970).PubMedGoogle Scholar
  12. Bazeral, M., Helinski, D. R.: Circular DNA forms of colicinogenic factors E1, E2 and E3 from Escherichia coli. J. molec. Biol. 36, 185 (1968).Google Scholar
  13. Becher, M.: Elektronenmikroskopische Untersuchungen an Onkozyten eines Adenolymphoms. Acta biol. med. germ. 13, 615 (1964).PubMedGoogle Scholar
  14. Becker, A., Hurwirtz, J.: Current thoughts on the replication of DNA. Progress in Nucleic Acid Research and Molecular Biology 11, 423 (1971).PubMedGoogle Scholar
  15. Benedetti, E. L., Bernhard, W.: Recherches ultrastructurales sur le virus de la leucemie erythroblastique du poulet. J. Ultrastruct. Res. 1, 309 (1958).PubMedGoogle Scholar
  16. Bernardi, G.: Chromatography of nucleic acids on hydroxyapatite. I. Chromatography of native DNA. Biochim. biophys. Acta (Amst.) 174, 423 (1969).Google Scholar
  17. Bernardi, G., Carnevali, F., Nicolaieff, A., Piperno, G., Tecce, G.: Separation and characterization of a satellite DNA from a yeast cytoplasmic “petite” mutant. J. molec. Biol. 37, 493 (1968).PubMedGoogle Scholar
  18. Bernardi, G., Fuares, M., Piperno, G., Slonimski, P. P.: Mitochondrial DNA’s from respiratory sufficient and cytoplasmic respiratory-deficient mutant yeast. J. molec. Biol. 48, 23 (1970).PubMedGoogle Scholar
  19. Bernhard, W.: Some problems of fine structure in tumor cells. Progr. exp. Tumor Res. (Basel) 3, 1 (1963).Google Scholar
  20. Bernhard, W.: Ultrastructure of the cancer cell. In: Handbook of molecular cytology, p. 687 (Lima de Faria, A., Ed.). Amsterdam, London: Publishing Company 1969.Google Scholar
  21. Bernhard, W., Tournier, P.: Modification persistante des mitochondries dans des cellules tumorales de Hamster transformées par l’adenovirus 12. Int. J. Cancer 1, 61 (1966).PubMedGoogle Scholar
  22. Bisalputra, T., Burton, H.: On the chloroplast DNA membrane complex in Sphacelaria sp. J. Microscopie 9, 661 (1970).Google Scholar
  23. Borst, P.: Biochemistry and function of mitochondria. In: Handbook of molecular cytology, p. 914 (Lima de Faria, A., Ed.). Amsterdam, London: Publishing Company 1969.Google Scholar
  24. Borst, P.: Mitochondrial nucleic acids. Ann. Rev. Biochem. 41, 333 (1972).PubMedGoogle Scholar
  25. Borst, P., Kroon, A. M.: Mitochondrial DNA: physico-chemical properties, replication and genetic function. Int. Rev. Cytol. 26, 107 (1969).PubMedGoogle Scholar
  26. Bourgaux, P., Bourgaux-Ramoisy, D., Seilers, P.: The replication of the ring-shaped DNA of polyoma virus. II. Identification of molecules at various stages of replication. J. molec. Biol. 59, 195 (1971).PubMedGoogle Scholar
  27. Bourgaux-Ramoisy, D., Van Tieghem, N., Bourgaux, P.: Fractionation of polyoma virus DNA on hydroxypatite: dependence on tertiary structure. J. gen. Virol. 1, 589 (1967).PubMedGoogle Scholar
  28. Bujard, H.: Electron microscopy of single-stranded DNA. J. molec. Biol. 49, 125 (1970).PubMedGoogle Scholar
  29. Burd, J. F., Wells, R. D.: Effects of incubation conditions of the nucleotide sequences of DNA products of unprimed DNA polymerase reactions. J. molec. Biol. 53, 435 (1970).PubMedGoogle Scholar
  30. Buttin, G., Wright, M. R.: Enzymatic DNA degradation in E. coli. — Its relationship to synthesis processes at the chromosome level. Cold Spr. Harb. Symp. quant. Biol. 33, 259 (1968).Google Scholar
  31. Cairns, J., Denhardt, T. D.: Effect of cyanide and carbon monoxide on the replication of bacterial DNA in vivo. J. molec. Biol. 36, 335 (1968).PubMedGoogle Scholar
  32. Carnevali, F., Morpurgo, G., Tecce, G.: Cytoplasmic DNA from “petite” colonies of Saccharomyces cerevisiae: a hypothesis on the nature of the mutation. Science 163, 1331 (1969).PubMedGoogle Scholar
  33. Chang, L. O., Schnaitman, C. A., Morris, H. P.: Comparison of the mitochondrial membrane proteins in rat liver and hepatoma. Cancer Res. 31, 108 (1971).PubMedGoogle Scholar
  34. Clayton, D. A., Vinograd, J.: Circular dimer and catenated forms of mitochondrial DNA in human leukaemic leukocytes. Nature (Lond.) 216, 652 (1967).Google Scholar
  35. Clayton, D. A., Smith, C. A., Jordan, J. M., Teplitz, M., Vinograd, J.: Occurrence of complex mitochondrial DNA in normal tissues. Nature (Lond.) 220, 976 (1968)Google Scholar
  36. Clayton, D A, Smith, C A., Vinograd, J.: Complex mitochondrial DNA in normal and neoplastic tissue. Fed. Proc. 48, 532 (1969).Google Scholar
  37. Clayton, D. A., Vinograd, J.: Complex mitochondrial DNA in leukemic and normal human myeloid cells. Proc. nat. Acad. Sci. (Wash.) 62, 1077 (1969).Google Scholar
  38. Clayton, D. A., Davis, R., Vinograd, J.: Homology and structural relationships between the dimeric and monomeric circular forms of mitochondrial DNA from human leukemic leukocytes. J. molec. Biol. 47, 137 (1970).PubMedGoogle Scholar
  39. Clayton, D. A., Teplitz, R. L., Nabholz, M., Dovey, H., Bodmer, W.: Mitochondrial DNA of human mouse cell hybrids. Nature (Lond.) 234, 560 (1971).Google Scholar
  40. Coen, D., Deutsch, J., Netter, P., Petrochilo, E., Slonimski, P. P.: Mitochondrial genetics: methodology and phenomenology. In: Control of organelle development. Symp. Soc. exp. Biol. XXIV. Cambridge: Univ. Press 1970.Google Scholar
  41. Cohen, S. N., Miller, C. A.: Non-chromosomal antibiotic resistance in bacteria. II. Molecular nature of R factors isolated from Proteus mirabilis and Escherichia coli. J. molec. Biol. 50, 671 (1970).PubMedGoogle Scholar
  42. Corneo, G., Ginelli, E., Polli, E.: A satellite DNA isolated from human tissues. J. molec. Biol. 23, 619 (1967).PubMedGoogle Scholar
  43. Corneo, G., Ginelli, E., Polli, E.: Repeated sequences in human DNA. J. molec. Biol. 48, 319 (1970).PubMedGoogle Scholar
  44. Cozzarelli, N. R., Kelly, R. G., Kornberg, A.: A minute circular DNA from Escherichia coli 15. Proc. nat. Acad. Scie. (Wash.) 60, 992 (1968).Google Scholar
  45. Crabtree, H. G.: Observations on the carbohydrate metabolism of tumours. Biochem. J. 23, 536 (1929).PubMedGoogle Scholar
  46. Curtis, P. J., Burdon, M. G., Smellie, R. M. S.: The purification from rat liver of a nuclease hydrolysing ribonucleic acid and deoxyribonucleic acid. Biochem. J. 98, 813 (1966).PubMedGoogle Scholar
  47. Cuzin, F., Vogt, M., Dickman, M., Berg, P.: Induction of virus multiplication in 3 T 3 cells transformed by a thermosensitive mutant of polyoma virus: II. Formation of oligomeric polyoma DNA molecules. J. molec. Biol. 47, 317 (1970).PubMedGoogle Scholar
  48. Davern, C.: Molecular aspects of genetic recombination. Progress in Nucleic Acid Research and Molecular Biology 11, 229 (1971).PubMedGoogle Scholar
  49. Davidson, N., Widholm, J., Nandi, U. S., Jensen, R., Olivera, B. M., Wang, J. C.: Preparation and properties of native Crab dAT. Proc. nat. Acad. Sci. (Wash.) 53, 111 (1965).Google Scholar
  50. Dawid, I., Blackler, A. W.: Maternal and Cytoplasmic inheritance of mitochondrial DNA in Xenopus. Develop. Biol. 29, 152 (1972).PubMedGoogle Scholar
  51. Debreceni, N., Behme, J., Ebisuzaki, K.: A DNA dependent ATPase from E. coli infected with bacteriophage T 4. Biochem. biophys. Res. Commun. 41, 115 (1970).PubMedGoogle Scholar
  52. Denhardt, D. T., Burgess, A. B.: DNA replication in vitro. I. Synthesis of single-stranded ∅X 174 DNA in crude lysates of ∅ × 174 infected E. coli. Cold Spr. Harb. Symp. quant. Biol. 33, 449 (1968).Google Scholar
  53. Delvin, T. M., Pruss, M. P.: Proc. Amer. Ass. Cancer 3, 315 (1962).Google Scholar
  54. Eason, R., Vinograd, J.: Superhelix density heterogeneity of intracellular Simian virus 40 deoxyribonucleic acid. J. Virol. 7, 1 (1971).PubMedGoogle Scholar
  55. Edelman, M., Verma, I. M., Herzog, R., Galun, E., Littauer, U. Z.: Physicochemical properties of mitochondrial ribosomal RNA from fungi. Europ. J. Biochem. 19, 372 (1971).Google Scholar
  56. Emmelot, P., Bos, J. C., Brombacher, P. S., Hampe, J. F.: Studies on isolated tumour mitochondria: biochemical properties of mitochondria from hepatomas with special reference to a transplanted rat hepatoma of the solid type. Brit. J. Cancer 13, 348 (1959).PubMedGoogle Scholar
  57. Ericsson, J. L. E., Seljelid, R., Orrenius, S.: Comparative light and electron microscopic observations of the cytoplasmic matrix in renal carcinomas. Virchows Arch. path. Anat. 341, 204 (1966).Google Scholar
  58. Frederic, J.: Recherches cytologiques sur le chondriome normal ou soumis à l’experimentation dans des cellules vivantes cultivées in vitro. Thèse Université de Liège, Faculté de Médecine 1958.Google Scholar
  59. Freifelder, D.: Mechanism of inactivation of coliphage T 7 by X-rays. Proc. nat. Acad. Sci. (Wash.) 54, 128 (1965).Google Scholar
  60. Fuke, M., Thomas, C. A., Jr.: Isolation of open circular DNA molecules by retention in agar gels. J. molec. Biol. 52, 395 (1970).PubMedGoogle Scholar
  61. Ganesan, A. T.: Adenosine-triphosphate dependent synthesis of biologically active DNA by azide poisoned bacteria. Proc. nat. Acad. Sci. (Wash.) 68, 1296 (1971).Google Scholar
  62. Ganesan, A. T., Lederberg, J.: A cell membrane bound fraction of bacteria DNA. Biochem. biophys. Res. Commun. 18, 824 (1965).Google Scholar
  63. Gazzolo, C., De The, G., Vigier, P., Sarna, P. S.: Présence de particules à l’aspect de nucléocapsides associées aux mitochondries dans des cellules de Hamster transformées par le virus de Rous. C. R. Acad. Sci. (Paris) 268, 1668 (1969).Google Scholar
  64. Georgatsos, J. G., Symeonidis, A.: A deoxyribonuclease from mammary tumours of C3H mice preferentially hydrolysing heat denatured DNA. Nature (Lond.) 206, 1362 (1965).Google Scholar
  65. Goebel, W.: Replication of the colicinogenic factor col E 1 in two temperature sensitive mutants of E. coli defective in DNA replication. Europ. J. Biochem. 5, 311 (1970).Google Scholar
  66. Goebel, W.: Formation of complex col E 1 DNA by replication. Biochim. biophys. Acta (Amst.) 232, 32 (1971).Google Scholar
  67. Goebel, W., Helinski, D. R.: Generation of higher multiple circular DNA forms in bacteria. Proc. nat. Acad. Sci. (Wash.) 61, 1406 (1968).Google Scholar
  68. Goldmark, P. J., Linn, S.: An endonuclease activity from Escherichia coli absent from certain rec-strains. Proc. nat. Acad. Sci. (Wash.) 67, 434 (1970).Google Scholar
  69. Goldring, E., Grossman, L., Krupnick, D., Cryer, D. R., Marmur, J.: The “petite” mutation in yeast. I. Loss of mitochondrial DNA during petite induction with ethidium bromide. J. molec. Biol. 52, 323 (1970).PubMedGoogle Scholar
  70. Gordon, C. N., Rush, M., Warner, R. C.: Complex replicative form molecules of bacteriophages ∅X 174 and S 13 su 105. J. molec. Biol. 47, 495 (1970).PubMedGoogle Scholar
  71. Grause, G. F.: Alterations of DNA base composition in bacteria. Progress in Nucleic Acid Research and Molecular Biology (Davidson, J. N., Cohn, W. E., Eds.). 8, 49 (1968).Google Scholar
  72. Gross, N. J., Rabinowitz, M.: Synthesis of new strands of mitochondrial and nuclear deoxyribonucleic acid by semiconservative replication. J. biol. Chem. 244, 1563 (1969).PubMedGoogle Scholar
  73. Gross, N. J., Nicholas, J., Godfrey, S., Getz, G. S., Rabinowitz, M.: Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J. biol. Chem. 244, 1552 (1969).PubMedGoogle Scholar
  74. Gross, N. J.: Control of mitochondria turnover under the influence of thyroid hormone. J. Cell Biol. 48, 29 (1971).PubMedGoogle Scholar
  75. Guerineau, M., Grandchamp, C., Paoletti, C., Slonimski, P.: Characterization of a new class of circular DNA molecules in yeast. Biochem. biophys. Res. Commun. 42, 550 (1971).Google Scholar
  76. Guerineau, M., Buffenoir, C., Paoletti, C.: Mitochondrial DNA during the differentiation of the respiratory functions in yeast. In preparation.Google Scholar
  77. Hall, M R., Meinke, W., Goldstein, D. A., Lerner, R. A.: Synthesis of cytoplasmic membrane-associated DNA in lymphocyte nucleus. Nature (Lond.) New Biology 234, 227 (1971).Google Scholar
  78. Harrison, B. D., Roberts, I. M.: Association of tobacco ratde virus with mitochondria. J. gen. Virol. 3, 121 (1968).PubMedGoogle Scholar
  79. Harrison, B. D., Stefanac, Z., Robert, I. M.: Role of mitochondria in the formation of X-bodies in cells of Nicotiana clevelandii infected by tobacco rattle viruses. J. gen. Virol. 6, 127 (1970).Google Scholar
  80. Hatta, T., Nakamoto, T., Takagi, Y., Ushiyama, R.: Cytological abnormalities of mitochondria induced by infection with cucumber green mottle mosaic virus. Virology 45, 272 (1971).Google Scholar
  81. Helinski, D. R., Clewel, D. B.: Circular DNA. Ann. Rev. Biochem. 40, 899 (1971).PubMedGoogle Scholar
  82. Hershey, A. D., Burgi, E., Ingraham, L.: Cohesion of DNA molecules isolated from phage lambda. Proc. nat. Acad. Sci. (Wash.) 49, 748 (1963).Google Scholar
  83. Hollenberg, C. P., Borst, P., Van Bruggen, E. F. J.: Mitochondrial DNA — A 25 μ closed circular duplex DNA molecules in wild type yeast mitochondria structure and genetic complexity. Biochim. biophys. Acta (Amst.) 209, 1 (1970).Google Scholar
  84. Hout, A., Oosterbaan, R. A., Pouwels, P. H., De Jonge, A. J. R.: Purification of an ATP-dependent nuclease from Micrococcus lysodeikticus. Biochim. biophys. Acta (Amst.) 204, 632 (1970).Google Scholar
  85. Howland, J. L., Hughes, W. T.: Suggested role of respiration in bacterial DNA replication. Biochem. biophys. Res. Commun. 37, 106 (1969).PubMedGoogle Scholar
  86. Hruban, Z., Swift, H., Reghcigl, M.: Fine structure of transplantable hepatomas of the rat. J. nat. Cancer Inst. 35, 459 (1965).PubMedGoogle Scholar
  87. Hudson, B., Vinograd, J.: Catenated circular DNA molecules in HeLa cell mitochondria. Nature (Lond.) 216, 647 (1967).Google Scholar
  88. Hudson, B., Clayton, D. A., Vinograd, J.: Complex mitochondria DNA. Cold Spr. Harb. Symp. quant. Biol. 33, 435 (1968).Google Scholar
  89. Hudson, B., Upholt, W. B., Devtnny, J., Vinograd, J.: The use of an ethidium bromide analogue in the dye buoyant density procedure for the isolation of closed circular DNA: the variation of the superhelix density of mitochondrial DNA. Proc. nat. Acad. Sci. (Wash.) 62, 813 (1969).Google Scholar
  90. Inaba, K.: Nucleic acids and protein synthesis in cancer cell mitochondria. I. Nucleic acids in rat hepatoma mitochondria. Acta med. Okayama 21, 297 (1967).PubMedGoogle Scholar
  91. Inselburg, J., Fuke, M.: Replicating DNA: structure of colicin factor E. Science 169, 590 (1970).Google Scholar
  92. Inselburg, J., Fuke, M.: Isolation of catenated and replicating DNA molecules of colicin factor E 1 from minicells. Proc. nat. Acad. Sci. (Wash.) 68, 2839 (1971).Google Scholar
  93. Jaenisch, R., Hofschneider, P., Preuss, A.: Isolation of circular DNA by zonal centrifugation — Separation of normal length, double length and catenated M 13 replicative form DNA and of host-specific “episomal” DNA. Biochim. biophys. Acta (Amst.) 190, 88 (1969).Google Scholar
  94. Jaenisch, R., Levine, A. J.: (1) DNA replication in SV 40 infected cells. V. Circular and catenated oligomers of SV 40 DNA. Virology 44, 480 (1971).PubMedGoogle Scholar
  95. Jaenisch, R., Levine, A. J.: (2) Infection of primary African green monkey cells with SV 40 monomeric and dimeric DNA. J. molec. Biol. 61, 735 (1971).PubMedGoogle Scholar
  96. Kalf, G., Grece, A.: The isolation of deoxyribonucleic acid from lamb heart mitochondria. J. biol. Chem. 241, 1019 (1966).PubMedGoogle Scholar
  97. Kalf, G. F., Faust, A. S.: The inner membrane of the rat liver mitochondria as the site of incorporation of radioactively labeled precursor into nucleic acids and proteins in vitro. Arch. Biochem. Biophys. 134, 103 (1969).PubMedGoogle Scholar
  98. Kara, J., Mach, O., Cerva, H.: Replication of Rous sarcoma and the biosynthesis of the oncogenic subviral ribonucleoprotein particles (“virosomes”) in the mitochondria isolated from Rous sarcoma tissue. Biochem. biophys. Res. Commun. 44, 162 (1971).PubMedGoogle Scholar
  99. Kasamatsu, H., Robberson, D. L., Vinograd, J.: A novel closed-circular mitochondrial DNA with properties of a replicate intermediate. Proc. nat. Acad. Sci. (Wash.) 68, 2252 (1971).Google Scholar
  100. Kiger, J. A., Sinsheimer, R. L.: DNA of vegetative bacteriophage lambda. VI. Electron microscope studies of replicating lambda DNA. Proc. nat. Acad. Sci. (Wash.) 68, 112 (1971).Google Scholar
  101. Kirschner, R. M., Wolstenholme, D. R., Gross, N. J.: Replicating molecules of circular mitochondrial DNA. Proc. nat. Acad. Sci. (Wash.) 60, 1466 (1968).Google Scholar
  102. Kit, S., Kurimura, T., De Torres, R. A., Dubbs, D. R.: Simian virus 40 deoxyribonucleic acid replication. I. Effect of cycloheximide on the replication of SV 40 deoxyribonucleic acid in monkey kidney cells and in heterokaryons of SV 40 transformed and susceptible cells. J. Virol. 3, 25 (1969).PubMedGoogle Scholar
  103. Kit, S., Nakajima, K.: Analysis of the molecular forms of simian virus 40 deoxyribonucleic acid synthesized in cycloheximide-treated cell cultures. J. Virol. 7, 87 (1971).PubMedGoogle Scholar
  104. Kleinschmidt, A. K.: Structure aspects of the genetic apparatus of viruses and cells. In: Molecular Genetics, Part II, 47 (Taylor, J. H., Ed.). New York: Academic Press 1967.Google Scholar
  105. Koch, J., Stokstad, E. L. R.: Incorporation of (3H) thymidine into nuclear and mitochondrial DNA in synchronized mammalian cells. Europ. J. Biochem. 3, 1 (1967).PubMedGoogle Scholar
  106. Kroon, A. M.: DNA and RNA from mitochondria and chloroplasts (biochemistry). In: Handbook of Molecular Cytology, p. 943 (Lima de Faria, A., Ed.). Amsterdam, London: Publishing Company 1969.Google Scholar
  107. Kroon, A. M., Borst, P., Van Bruggen, E. F. J., Ruttenberg, J. C. M.: Mitochondrial DNA from sheep heart. Proc. nat. Acad. Sci. (Wash.) 56, 1836 (1966).Google Scholar
  108. Lang, D., Bujard, H., Wolff, B., Russel, D.: Electron microscopy of size and shape of viral DNA in solutions of different ionic strengths. J. molec. Biol. 23, 163 (1967).PubMedGoogle Scholar
  109. Leduc, E. H., Bernhard, W., Tournier, P.: Cyclic appearance of atypical mitochondria containing DNA fibers in cultures of an adenovirus 12-induced hamster tumor. Exp. Cell Res. 42, 597 (1966).PubMedGoogle Scholar
  110. Lee, C. S., Davidson, N.: Physicochemical studies on the minickcular DNA in E. coli 15. Biochim. biophys. Acta (Amst.) 204, 285 (1970).Google Scholar
  111. Leffler, A. T., Creskoff, E., Luborsky, S. W., McFarland, V., Mora, P. T.: Isolation and characterization of rat-liver mitochondria DNA. J. molec. Biol. 48, 455 (1970).PubMedGoogle Scholar
  112. Le Pecq, J. B.: Use of ethidium bromide for separation and determination of nucleic acids of various conformational forms and measurements of their associated enzymes. Methods of biochemical analysis, p. 20 (Glick, D., Ed.). New York: John Wiley Sons Publ. 1971.Google Scholar
  113. Le Pecq, J. B., Yot, P., Paoletti, C.: Interaction du bromhydrate d’ethidium (BET) avec les acides nucleiques (AN). Etude spectrofluorimetrique. C. R. Acad. Sci. (Paris) 259, 1786 (1964).Google Scholar
  114. Le Pecq, J. B., Paoletti, C.: A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J. molec. Biol. 27, 87 (1967).Google Scholar
  115. Lerman, L. S.: Structural considerations in the interaction of DNA and acridines. J. molec. Biol. 3, 18 (1961).PubMedGoogle Scholar
  116. Lerner, R. A., Meinke, W., Goodstein, D. A.: Membrane associated DNA in the cytoplasm of diploid human lymphocytes. Proc. nat. Acad. Sci. (Wash.) 68, 1212 (1971).Google Scholar
  117. Levine, A. J.: Induction of mitochondrial DNA synthesis in monkey cells infected by simian virus 40 and (or) treated with calf serum. Proc. nat. Acad. Sci. (Wash.) 68, 717 (1971).Google Scholar
  118. Lieb, M.: λ mutants which persist as plasmids. J. Virol. 6, 218 (1970).PubMedGoogle Scholar
  119. Lindahl, T., Edelman, G. M.: Polynucleotide ligase from myeloid and lymphoid tissues. Proc. nat. Acad. Sci. (Wash.) 61, 680 (1968).Google Scholar
  120. Lindahl, T., Gally, J. A., Edelman, G. M.: (1) Desoxyribonuclease IV: a new exonuclease from mammalian tissues. Proc. nat. Acad. Sci. (Wash.) 62, 597 (1969).Google Scholar
  121. Lindahl, T., Gally, J. A., Edelman, G. M.: (2) Properties of desoxyribonuclease III from mammalian tissues. J. biol. Chem. 244, 5014 (1969).PubMedGoogle Scholar
  122. Lorans, G., Tournier, P.: Un facteur de croissance nécessaire a la culture in vitro des cellules de tumeurs induites chez les hamsters par l’adenovirus 12. C. R. Acad. Sci. (Paris) 258, 386 (1964).Google Scholar
  123. Mach, O., Kara, J.: Presence of Rous sarcoma virus inside the mitochondria isolated by-zonal and differential centrifugation from Rous sarcoma cells. Folia biol. (Praha) 17, 65 (1971).Google Scholar
  124. Matsubara, K., Kaiser, A. D.: λ dV: an autonomously replicating DNA fragment. Cold Spr. Harb. Symp. quant. Biol. 33, 769 (1968).Google Scholar
  125. Meinke, W., Goldstein, D. A.: Studies on the structure and formation of polyoma DNA replicative intermediates. J. molec. Biol. 61, 543 (1971).PubMedGoogle Scholar
  126. Meselson, M., Yuan, R.: DNA restriction enzyme from E. coli. Nature (Lond.) 217, 1110 (1968).Google Scholar
  127. Meyer, R. R., Simpson, M. V.: Deoxyribonucleic acid biosynthesis in mitochondria. Purification and general properties of rat-liver mitochondrial deoxyribonucleic acid polymerase. J. biol. Chem. 245, 3426 (1970).PubMedGoogle Scholar
  128. Mills, D. R., Peterson, R. L., Spiegelman, S.: An extracellular darwinian experiment with a self-duplicating nucleic acid molecule. Proc. nat. Acad. Sci. (Wash.) 58, 217 (1967).Google Scholar
  129. Morais, R.: Studies on the localization of rat liver mitochondrial 5’ endonuclease. Biochim. biophys. Acta (Amst.) 189, 38 (1969).Google Scholar
  130. Morais, R., De Lamirande, G.: Studies on the intra-cellular and intramitochondrial distribution of 5’ endonuclease in regenerating rat liver. Biochim. biophys. Acta (Amst.) 209, 145(1970).Google Scholar
  131. Mordoh, J., Hirota, Y., Jacob, F.: On the process of cellular division in Escherichia coli. V. Incorporation of desoxynucleoside triphosphates by DNA thermosensitive mutants of Escherichia coli also lacking DNA polymerase activity. Proc. nat. Acad. Sci. (Wash.) 67, 773 (1970).Google Scholar
  132. Moses, R. E., Richardson, C. C.: Replication and repair of DNA in cells of Escherichia coli treated with toluene. Proc. nat. Acad. Sci. (Wash.) 67, 674 (1970).Google Scholar
  133. Mounoulou, J. C., Jakob, H., Slonimski, P. P.: Mitochondrial DNA from yeast “petite” mutants: specific change of buoyant density corresponding to different cytoplasmic mutations. Biochem. biophys. Res. Commun. 24, 218 (1966).Google Scholar
  134. Mounoulou, J. C., Perrodin, G., Slonimski, P. P.: Specific synthesis of a small part of mitochondrial DNA concomitant with the onset of the oxygen-induced development of mitochondria. In: Biochemical aspects of the biogenesis of mitochondria (Slater, E. C., Tager, J. M., Papa, S., Quaglariello, E., Eds.). Adriatica Bari 1968.Google Scholar
  135. Nandi, U. S., Wang, J. C., Davidson, N.: Separation of deoxyribonucleic acids by Hg (II) binding and Cs2SO4 density gradient centrifugation. Biochemistry 4, 1687 (1965).Google Scholar
  136. Nass, M. M. K.: (1) Mitochondrial DNA. I. Intra-mitochondrial distribution and structural relations of single and double length circular DNA. J. molec. Biol. 42, 521 (1969).PubMedGoogle Scholar
  137. Nass, M. M. K.: (2) Structure and physicochemical properties of isolated DNA. J. molec. Biol. 42, 529 (1969).PubMedGoogle Scholar
  138. Nass, M. M. K.: (3) Reversible generation of circular dimers and higher multiple forms of mitochondrial DNA. Nature (Lond.) 223, 1124 (1969).Google Scholar
  139. Nass, M. M. K.: (4) Mitochondrial DNA: Advances, problems and goals. Science 165, 25 (1969).PubMedGoogle Scholar
  140. Nass, M. M. K.: Abnormal DNA patterns in animal mitochondria: ethidium bromide-induced breakdown of closed circular DNA and conditions leading to oligomers accumulation. Proc. nat. Acad. Sci. (Wash.) 67, 1926 (1970).Google Scholar
  141. Nass, S., Nass, M. M. K.: Intra-mitochondrial fibers with deoxyribonucleic acid characteristics: observations of Ehrlich ascites tumor cells. J. nat. Cancer Inst. 33, 777 (1964).PubMedGoogle Scholar
  142. Nass, M. M. K., Nass, S., Afzelius, B. A.: The general occurrence of mitochondrial DNA. Exp. Cell Res. 37, 516 (1965).PubMedGoogle Scholar
  143. Oberling, Ch., Riviere, M., Haguenau, F. R.: Ultrastructure des epitheliomas à cellules claires du rein (hypernéphromes ou tumeurs de Grawitz) et son implication pour l’histogénèse de ces tumeurs. Bull. Cancer 46, 356 (1959).Google Scholar
  144. Oda, T.: Circular DNA’s from tumor cell mitochondria and nuclei. J. Cell Biol. 39, 173a (1968).Google Scholar
  145. Oda, T., Omura, S., Yamamoto, S., Nishida, S., Hirata, S.: Circular DNA’s from HeLa cell nuclei and mitochondria. Acta med. Okayama 24, 405 (1970).Google Scholar
  146. Oshi, M.: An ATP-dependent deoxyribonuclease from E. coli with a possible role in genetic recombination. Proc. nat. Acad. Sci. (Wash.) 64, 1292 (1969).Google Scholar
  147. O’Rtordan, M. L., Robinson, J. A., Buckton, K. E., Evans, H. S.: Distinguishing between the chromosomes involved in Down’s syndrome (trisomy 21) and chronic myeloid leukaemia (Ph 1) by fluorescence. Nature (Lond.) 230, 167 (1971).Google Scholar
  148. Paoletti, C., Riou, G.: Le DNA mitochondrial des cellules malignes. Bull. Cancer 57, 301 (1970).PubMedGoogle Scholar
  149. Paoletti, C., Le Pecq, J. B., Lehman, I. R.: The use of ethidium bromide circular DNA complexes for the fluorimetric analysis of breakage and joining of DNA. J. molec. Biol. 75, 55 (1971).Google Scholar
  150. Paoletti, C., Riou, G., Pairault, J.: Circular oligomers in mitochondrial DNA from non malignant thyroid glands. Proc. nat. Acad. Sci. (Wash.) 69 847 (1972).Google Scholar
  151. Pedersen, P. L., Eska, T., Morris, H. P., Catterall, W. A.: Deficiency of uncoupler stimulated adenosine triphosphatase activity in tightly coupled hepatoma mitochondria. Proc. nat. Acad. Sci. (Wash.) 68, 1079 (1971).Google Scholar
  152. Perlman, P. S., Mahler, H.: Molecular consequences of ethidium bromide mutagenesis. Nature (Lond.) New Biol. 231, 12 (1971).Google Scholar
  153. Rabinowitz, M., Sinclair, J., De Salle, L., Haselkorn, R., Swift, H. H.: Isolation of desoxyribonucleic acid from mitochondria of chick embryo heart and liver. Proc. nat. Acad. Sci. (Wash.) 53, 1126 (1965).Google Scholar
  154. Rabinowitz, M., Getz, G. S., Casey, Y., Swift, H.: Synthesis of mitochondrial and nuclear DNA in anaerobically grown yeast during the development of mitochondrial function in response to oxygen. J. molec. Biol. 41, 381 (1969).PubMedGoogle Scholar
  155. Rabinowitz, M., Swift, H.: Mitochondrial nucleic acids and their relation to the biogenesis of mitochondria. Physiol. Rev. 50, 376 (1970).PubMedGoogle Scholar
  156. Radloff, R., Bauer, W, Vinograd, J.: A dye-buoyant density method for the detection and isolation of closed circular duplex DNA: the closed circular DNA in HeLa cells. Proc. nat. Acad. Sci. (Wash.) 57, 1514 (1967).Google Scholar
  157. Ralph, R. K., Clark, M. F.: Intracellular location of double-stranded plant viral ribonucleic acid. Biochem. biophys. Acta (Amst.) 119, 29 (1966).Google Scholar
  158. Rhoades, M., Thomas, C.: The P22 bacteriophage DNA molecule. II. Circular intracellular forms. J. molec. Biol. 37, 41 (1968).PubMedGoogle Scholar
  159. Richardson, C. C.: Phosphorylation of nucleic acid by an enzyme from T 4 bacteriophageinfected E. coli. Proc. nat. Acad. Sci. (Wash.) 54, 158 (1965).Google Scholar
  160. Richardson, C. C.: Enzymes in DNA metabolism. Ann. Rev. Biochem. 38, 795 (1969).PubMedGoogle Scholar
  161. Riou, G., Delain, E.: Abnormal circular DNA molecules induced by ethidium bromide in the kinetoplast of trypanosoma cruzi. Proc. nat. Acad. Sci. (Wash.) 64, 618 (1969).Google Scholar
  162. Riou, G., Delain, E.: Mitochondrial DNA from cells transformed by adenoviruses and SV 40. Biochimie 53, 831 (1971).Google Scholar
  163. Riou, G., Lacour, F.: Mitochondrial DNA from cells transformed by myeloblastosis virus. Biochimie 53, 47 (1971).PubMedGoogle Scholar
  164. Riou, G., Paoletti, C.: Preparation and properties of nuclear and satellite deoxyribonucleic acid of Trypanosoma cruzi. J. molec. Biol. 28, 377 (1967).PubMedGoogle Scholar
  165. Riou, G., Paoletti, C.: Mitochondrial DNA from benign tumors. In preparation.Google Scholar
  166. Roth, S. I., Olen, E. M. D., Hansen, L. S.: The eosinophilic cells of the parathyroid (oxyphil cells) salivary (oncocytes) and thyroid (Hurthle cells) glands. Lab. Invest. 11, 933 (1962).PubMedGoogle Scholar
  167. Rush, M. G., Kleinschmidt, A. K., Hellmann, W., Warner, R. C.: Multiple length rings in preparation of ∅X 174 replicative form. Proc. nat. Acad. Sci. (Wash.) 58, 1676 (1967).Google Scholar
  168. Rush, M. G., Warner, R. C.: (1) Multiple length rings of ∅X 174 and S 13 replicative forms. III. A possible intermediate in recombination. J. biol. Chem. 243, 4821 (1968).PubMedGoogle Scholar
  169. Rush, M. G., Warner, R. C.: (2) Molecular recombination in a circular genome ∅X 174 and S 13. Cold Spr. Harb. Symp. quant. Biol. 33, 459 (1968).Google Scholar
  170. Rush, M. G., Gordon, C. N., Novick, R. P., Warner, R. C.: Penicillinase plasmid DNA form Staphylococcus aureus. Proc. nat. Acad. Sci. (Wash.) 63, 1304 (1969).Google Scholar
  171. Rush, M. G., Eason, R., Vinograd, J.: Identification and properties of complex forms of SV 40 DNA isolated from SV 40 infected African green monkey (BSC-I) cells. Biochim. biophys. Acta (Amst.) 228, 585 (1971).Google Scholar
  172. Ryter, A., Hirota, Y., Jacob, F.: DNA membrane complex and nuclear segragation in Bacteria. Cold Spr. Harb. Symp. quant. Biol. 33, 669 (1968).Google Scholar
  173. Sambrook, J., Westphal, H., Srintvasan, P. R., Dulbecco, R.: The integrated state of viral DNA in SV 40-transformed cells. Proc. nat. Acad. Sci. (Wash.) 60, 1288 (1968).Google Scholar
  174. Sanford, K. K.: Spontaneous neoplastic transformation of cells in vitro: some facts and theory. Nat. Cancer Inst. Monogr. 26, 387 (1967).PubMedGoogle Scholar
  175. Sarkar, S. H., Poddar, R. K.: Non-conservation of H3-thymidine label in the DNA of growing yeast cells. Nature (Lond.) 207, 550 (1965).Google Scholar
  176. Schatz, G.: Biogenesis of mitochondria. In: Membranes of mitochondria and chloroplasts, p. 251 (Racker, E., Ed.). Van Nostrand Reinhold 1970.Google Scholar
  177. Schiefer, M. G., Hubner, G., Kleinsasser, O.: Riesenmitochondrien aus Onkocyten menschlicher Adenolymphome. Isolierung, morphologische und biochemische Untersuchungen. Virchows Arch. path. Anat. 1, 230 (1968).Google Scholar
  178. Shows, T. B., Chapman, V. M., Ruddle, F. H.: Mitochondrial malate dehydrogenase and malic enzyme: Mendelian inherited electrophoretic variants in the mouse. Biochem. Genet. 4, 707 (1970).PubMedGoogle Scholar
  179. Slonimski, P.: Adaptation respiratoire: developpement du système hemoprotéique induit par l’oxygene, p. 242. Proc. Third Intern. Congr. Biochem. Brussels. New York: Academic Press 1956.Google Scholar
  180. Smith, Ch. A., Jordan, J. M., Vinograd, J.: In vivo effects of intercalating drugs on the superhelix density of mitochondrial DNA isolated from human and mouse cells in culture. J. molec. Biol. 59, 255 (1971).PubMedGoogle Scholar
  181. Stevens, B. J., Moustacchi, E.: ADN satellite et molecules circulaires torsadées de petite taille chez la levure Saccharomyces cerevisiae. Exp. Cell Res. 64, 259 (1971).PubMedGoogle Scholar
  182. Svoboda, D. J.: Fine structure of hepatomas induced in rats with p-dimethyl-aminoazo-benzene. J. nat. Cancer Inst. 33, 315 (1964).PubMedGoogle Scholar
  183. Swift, H., Wolstenholme, D. R.: Mitochondria and chloroplasts: nucleic acid and the problem of biogenesis (genetic and biology). In: Handbook of molecular cytology, p. 972 (Lima de Faria, A., Ed.). Amsterdam, London: Publishing Company 1969.Google Scholar
  184. Swift, H., Sinclair, H. H., Stevens, B. J., Rabinowitz, M., Gross, N.: Studies on size characteristics of mitochondrial DNA. In: Biochemical aspects of the biogenesis of mitochondria, p. 71 (Slater, E. C., Tagler, J. M., Papa, S., Quaqliariello, E., Eds.). Adriatica Ed. Bari 1968.Google Scholar
  185. Take, S.: DNA’s from human hepatoma and gastric cancer mitochondria. Acta med. Okayama 23, 465 (1969).PubMedGoogle Scholar
  186. Tandler, B., Shipkey, F. H.: (1) Ultrastructure of Warthin’s tumor. I. Mitochondria. J. Ultrastruct. Res. 11, 292 (1964).PubMedGoogle Scholar
  187. Tandler, B., Shipkey, F. H.: (2) Ultrastructure of Warthin’s tumor. II. Crystalloids. J. Ultrastruct. Res. 11, 306 (1964).PubMedGoogle Scholar
  188. Ter Schegget, J., Borst, P.: DNA synthesis by isolated mitochondria. I. Effect of inhibitors and characterization of the product. Biochem. biophys. Acta (Amst.) 246, 239 (1971).Google Scholar
  189. Ter Schegget, J., Borst, P.: DNA synthesis by isolated mitochondria. II. Detection of product DNA hydrogen bonded to closed duplex circles. Biochim. biophys. Acta (Amst.) 246, 249 (1971).Google Scholar
  190. Thomas, C. A., Jr., Hamkalo, B. A., Misra, D. N., Lee, C. S.: Cyclization of eucaryotic deoxyribonucleic acid fragments. J. molec. Biol. 51, 621 (1970).PubMedGoogle Scholar
  191. Tyler, D. D., Gonze, J.: The preparation of thyroid and thymus mitochondria. In: Methods in enzymology, Vol. X, p. 101 (Estabrook, R. W., Pulman, M. E., Eds.). New York: Academic Press 1967.Google Scholar
  192. Vesco, C., Basilico, C.: Induction of mitochondrial DNA synthesis by polyoma virus. Nature (Lond.) 229, 336 (1971).Google Scholar
  193. Wagner, R. P.: Genetics and phenogenetics of mitochondria. Science 163, 1026 (1969).PubMedGoogle Scholar
  194. Wallach, D. F. H.: Cellular membranes and tumor behavior: a new hypothesis. Proc. nat. Acad. Sci. (Wash.) 61, 868 (1968).Google Scholar
  195. Wang, J. C., Davidson, N.: Thermodynamic and kinetic studies on the interconversion between the linear and circular forms of phage lambda DNA. J. molec. Biol. 15, 111 (1966).PubMedGoogle Scholar
  196. Warburg, O.: On the origin of cancer cells. Science 123, 309 (1956).PubMedGoogle Scholar
  197. Weintraub, M., Ragetli, H. W. J., John, V. T.: Fine structural changes in isolated mitochondria of healthy and virus-infected Vicia faba L. Canad. J. Bot. 44, 1017 (1966).Google Scholar
  198. Weislogel, P. O., Butow, R. A.: Low temperature and chloramphenicol induction of respiratory deficiency in a cold-sensitive mutant of Saccharomyces cerevisiae. Proc. nat. Acad. Sci. (Wash.) 67, 52 (1970).Google Scholar
  199. Weislogel, P. O., Butow, R. A.: The fate of mitochondrial membrane proteins and mitochondrial deoxyribonucleic acid during “petite” induction. J. biol. Chem. 246, 5513 (1971).Google Scholar
  200. Weiss, B., Richardson, C. C.: Enzymatic breakage and joining of deoxyribonucleic acid. I. Repair of single strand breaks in DNA by an enzyme system from E. coli infected with T 4 bacteriophage. Proc. nat. Acad. Sci. (Wash.) 57, 1021 (1967).Google Scholar
  201. Weissbach, A., Bartl, P., Salzman, L. A.: The structure of replicative lambda DNA. Electron microscopic studies. Cold Spr. Harb. Symp. quant. Biol. 33, 525 (1968).Google Scholar
  202. Wenner, C. E.: Progress in tumor enzymology (Nord, F. F., Ed.). Advanc. Enzymol. 29, 321 (1967).Google Scholar
  203. Williamson, R.: Properties of rapidly labelled deoxyribonucleic acid fragment isolated from the cytoplasm of primary cultures of embryonic mouse liver cells. J. molec. Biol. 51, 157 (1970).PubMedGoogle Scholar
  204. Williamson, D. H., Maroudas, N. G., Wilkie, D.: Induction of the cytoplasmic petite mutation in Saccharomyces cerevisiae by the antibacterial antibiotics erythromycin and chloramphenicol. Mol. gen. Genet. 111, 209 (1971).PubMedGoogle Scholar
  205. Wolstenholme, D. R., Dawid, I. B.: A size difference between mitochondrial DNA molecules of urodele and anuran amphibia. J. Cell Biol. 39, 222 (1968).PubMedGoogle Scholar
  206. Wolstenholme, D. R., Koike, K., Renger, H. C.: A. Cellular and molecular mechanisms of carcinogenesis. B. Regulation of gene expression. Proceedings Xth Intern. Cancer Congress. Chicago: Yearbook Medical publishers Inc. Oncology 1 628 (1970).Google Scholar
  207. Woodcock, C. L. F., Moran, H.: Electron microscopy of DNA conformation in spinach chloroplasts. J. molec. Biol. 31, 627 (1969).Google Scholar
  208. Wunderlich, V., Schutt, M., Coraffi, A.: Über Differenzen im DNS-Gehalt von Mitochondrien aus Tumor- und Normalgeweben. Acta biol. med. germ. 17, K 27 (1966).Google Scholar
  209. Yamamoto, G., Oda, T.: Studies on nucleic acids in Rous sarcoma virus induced mouse ascites sarcoma cells. Distribution and electron microscopy of nucleic acids in subcellular fractions and circular DNA in mitochondrial fraction. Acta med. Okayama 24, 287 (1970).PubMedGoogle Scholar
  210. Yotsuyanagi, Y.: Un mode de differenciation de la membrane. mitochondriale évoquant le lysosome bactérien. C. R. Acad. Sci. (Paris) 262, 1348 (1966)Google Scholar

1. Replication of mt DNA

  1. Arnberg, A., Van Bruggen, E. F. J., Ter Schegget, J., Borst, P.: The presence of DNA molecules with a displacement loop in standard mitochondrial DNA preparations. Biochim. biophys. Acta (Amst.) 246, 353 (1971).Google Scholar
  2. Flavell, R. A., Borst, P., Ter Schegget, J.: DNA synthesis by isolated mitochondria. IV. Isolation of an intermediate containing newly synthesized DNA in full length light strands. Biochim. biophys. Acta (Amst.) 272, 341 (1972).Google Scholar
  3. Kasamatsu, H., Robberson, D. L., Vinograd, J.: A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc. nat. Acad. Sci. (Wash.) 68, 2252 (1971).Google Scholar
  4. Kasamatsu, H., Vinograd, J.: Unidkectionality of replication in mouse mitochondrial DNA. Nature (Lond.) 241, 103 (1973).Google Scholar
  5. Robberson, D. L., Clayton, D. A.: Replication of mitochondrial DNA in mouse L cells and their thymidine kinase derivatives; displacement replication on a covalently closed circular template. Proc. nat. Acad. Sci. (Wash.) 69, 3810 (1972).Google Scholar
  6. Robberson, D. L., Kasamatsu, H., Vinograd, J.: Replication of mitochondrial DNA. Circular replicative intermediates in mouse L cells. Proc. nat. Acad. Sci. (Wash.) 69, 737 (1972).Google Scholar
  7. Ter Shegget, J., Flavell, R. A., Borst, P.: DNA synthesis by isolated mitochondria. III. Characterization of D-loop DNA, a novel intermediate in mt DNA synthesis. Biochim. biophys. Acta (Amst.) 254, 1 (1971).Google Scholar

2. mt DNA in cancer cells

  1. Wolstenholme, D. R., Koike, K., Cochran-Fouts, P.: Single strand containing-replicating molecules of circular mitochondrial DNA. J. Cell Biol. 56, 230 (1973).PubMedGoogle Scholar
  2. Wolstenholme, D. R., McLaren, J. D., Koike, K., Elbine, L.: Catenated oligomeric circular DNA molecules from mitochondria of malignant and normal mouse and rat tissues. J. Cell Biol. 56 247 (1973).Google Scholar

3. Circular DNA

  1. Bendow, R. M., Eisenberg, M., Sinsheimer, R. L.: Multiple length DNA molecules of bacteriophages ∅ X 174. Nature (Lond.) New Biol. 237, 141 (1972).Google Scholar
  2. Cohen, S. N., Silver, P., McCoubrey, A. E.: Isolation of catenated forms of R factor DNA from minicells. Nature (Lond.) New Biol. 231, 249 (1971).Google Scholar
  3. Fuke, M., Inselburg, J.: Electron microscopic studies of replicating and catenated colicin factor El DNA isolated from minicells. Proc. nat. Acad. Sci. (Wash.) 69, 89 (1972).Google Scholar
  4. Inselburg, J., Fuke, M.: Isolation of catenated and replicating DNA molecules of colicin factor E1 from minicells. Proc. nat. Acad. Sci. (Wash.) 68, 2839 (1971).Google Scholar
  5. Jarnisch, R., Levine, A.: DNA replication in SV 40-infected cells V. circular and catenated oligomers of SV 40 DNA. Virology 44, 480 (1971).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • Claude A. Paoletti
  • Guy Riou

There are no affiliations available

Personalised recommendations