The Thalassemia Syndromes: Genetically Determined Disorders of the Regulation of Protein Synthesis in Eukaryotic Cells

  • Albert S. Braverman
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 3)


That many familial and congenital human diseases are caused by the deficiency of a specific enzyme or other protein was suspected early in the century (Garrod, 1908), and has been well known for decades. A large group of such diseases has now been identified (Stanbury et al., 1966).


Alpha Chain Beta Chain Beta Thalassemia Fetal Hemoglobin Erythroid Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, W. F, Nienhuis, A. W.: Pers. communication 1971.Google Scholar
  2. Baglioni, C.: Correlations between genetics and chemistry of human hemoglobins. Molecular genetics, Part I, p. 405 (Taylor, J. H., Ed.). New York and London: Academic Press 1963.Google Scholar
  3. Bank, A., Marks, P. A.: (1) Alpha chain synthesis relative to beta chain synthesis in thalassemia major and minor. Nature (Lond.) 212, 1198 (1966).CrossRefGoogle Scholar
  4. Bank, A., Marks, P. A.: (2) Protein synthesis in a cell free human reticulocyte system: Ribosome function in thalassemia. J. clin. Invest. 45, 330 (1966).PubMedCrossRefGoogle Scholar
  5. Bank, A.: Hemoglobin synthesis in beta thalassemia: The properties of the free alpha chain. J. clin. Invest. 47, 860 (1968).PubMedCrossRefGoogle Scholar
  6. Bank, A., Braverman, A. S., O’Donnell, J. V., Marks, P. A.: Absolute rates of globin chain synthesis in thalassemia. Blood 31, 226 (1968).PubMedGoogle Scholar
  7. Bank, A., O’Donnell, J. V.: Intracellular loss of free alpha chains in beta thalassemia. Nature (Lond.) 222, 295 (1969).CrossRefGoogle Scholar
  8. Bank, A. , O’Donnell, J. V., Braverman, A. S.: Globin chain synthesis in heterozygotes for beta chain mutations. J. Lab. clin. Med. 76, 616 (1970).PubMedGoogle Scholar
  9. Bargellesi, A., Pontremoli, S., Conconi, F.: Absence of beta globin chain synthesis and excess alpha globin chain synthesis in homozygous beta thalassemia. Europ. J. Biochem. 1, 73 (1967).PubMedCrossRefGoogle Scholar
  10. Beutler, E.: Drug induced hemolytic anemia. Pharmac. Rev. 21, 73 (1969).Google Scholar
  11. Bishop, J. O.: Initiation of hemoglobin polypeptide chains. Biochim. biophys. Acta (Amst.) 119, 130 (1966).Google Scholar
  12. Blobel, G.: Release, identification and isolation of messenger RNA from mammalian ribosomes. Proc. nat. Acad. Sci. (Wash.) 68, 832 (1971).CrossRefGoogle Scholar
  13. Boyer, S. H., Hathaway, P., Garrick, M. D.: Modulation of protein synthesis in man: an in vitro study of hemoglobin synthesis by heterozygotes. Cold Spr. Harb. Symp. quant. Biol. 29, 333 (1964).Google Scholar
  14. Braverman, A. S., Bank, A.: Changing rates of globin chain synthesis during erythroid cell maturation in thalassemia. J. molec. Biol. 42, 57 (1969).PubMedCrossRefGoogle Scholar
  15. Braverman, A. S., McCurdy, P. R., Manos, O.: Unpub. data 1971.Google Scholar
  16. Braverman, R. H.: Pers. Communication 1971.Google Scholar
  17. Burka, E. R., Marks, P. A.: Ribosomes active in protein synthesis in human reticulocytes: a defect in thalassemia major. Nature (Lond.) 199, 706 (1963).CrossRefGoogle Scholar
  18. Clark, B. F. G., Marcker, D.: The role of N-formyl methionine RNA in protein synthesis. J. molec. Biol. 17, 394 (1966).PubMedCrossRefGoogle Scholar
  19. Clegg, J. B., Weatherall, D. J.: Hemoglobin synthesis in alpha thalassemia (hemoglobin H disease). Nature (Lond.) 215, 1241 (1967).CrossRefGoogle Scholar
  20. Clegg, J. B., Weatherall, D. J., Na-Nakorn, S., Wasi, P.: Hemoglobin synthesis in beta thalassemia. Nature (Lond.) 220, 664 (1968).CrossRefGoogle Scholar
  21. Crick, F. H. C.: Codon-Anticodon pairing: the wobble hypothesis. J. molec. Biol. 19, 548 (1966).PubMedCrossRefGoogle Scholar
  22. Dintzis, H. M.: Assembly of the polypeptide chains of hemoglobin. Proc. nat. Acad. Sci. (Wash.) 47, 247 (1961).CrossRefGoogle Scholar
  23. Doyle, D., Schimke, R. T.: The genetic and developmental regulation of hepatic delta aminolevulinate dehydratase in mice. J. biol. Chem. 244, 5449 (1969).PubMedGoogle Scholar
  24. Efremov, G. D., Wrightstone, R. N., Huisman, T. H. J., Schroeder, W. A., Hyman, C., Ortega, J., Williams, K.: An unusual hemoglobin anomaly and its relation to alpha thalassemia and hemoglobin H disease. J. clin. Invest. 50, 1628 (1971).PubMedCrossRefGoogle Scholar
  25. Fessas, P., Loukopoulos, D., Kaltsoya, A.: Peptide analysis of the inclusions of erythroid cells in beta thalassemia. Biochim. biophys. Acta (Amst.) 124, 430 (1966).Google Scholar
  26. Fuhr, J., Natta, C., Marks, P. A., Bank, A.: Protein synthesis in cell-free systems from reticulocytes of thalassemia patients. Nature (Lond.) 224, 1305 (1969).CrossRefGoogle Scholar
  27. Gabuzda, T. G., Nathan, D. G. , Gardner, F. H.: The turnover of hemoglobins A, F and A2 in the peripheral blood of three patients with thalassemia. J. clin. Invest. 42, 1678 (1963).PubMedCrossRefGoogle Scholar
  28. Garrod, A. E.: Inborn errors of metabolism. London: Henry Frowde 1908.Google Scholar
  29. Gerald, P. S.: A human mutation (the Lepore hemoglobinopathy) possibly involving two cistrons. Amer. J. Dis. Chi d. 102, 514 (1961).Google Scholar
  30. Gaskill, P., Kabat, D.: Unexpectedly arge size of globin messenger ribonuc eic acid. Proc. nat. Acad. Sci. (Wash.) 68, 72 (1971).CrossRefGoogle Scholar
  31. Gilbert, J. M., Thornton, A. G., Nienhuis, A. W., Anderson, W. F.: Cell-free hemoglobin synthesis in beta thalassemia. Proc. nat. Acad. Sci. (Wash.) 67, 1854 (1970).CrossRefGoogle Scholar
  32. Grinstein, M., Robin, M., Bannerman, B. M., Vavra, J. D., Moore, C. V.: Hemoglobin metabolism in thalassemia: in vivo studies. Amer. J. Med. 39, 18 (1960).CrossRefGoogle Scholar
  33. Guidotti, G.: Thalassemia. In: Conf. on Hemoglobin, Arden House. New York: Columbia Univ. 1962.Google Scholar
  34. Heywood, J. D., Karon, M., Weissman, S.: Studies of in vitro synthesis of heterogenic hemoglobins. J. clin. Invest. 43, 2368 (1964).PubMedCrossRefGoogle Scholar
  35. Heywood, J. D., Karon, M., Weissman, S.: Asymetrica incorporation of amino acids into the alpha and beta chains of hemoglobin synthesized in tha assemia reticulocytes. J. Lab. clin. Med. 66, 476 (1965).PubMedGoogle Scholar
  36. Hershko, Ch., Karsai, A., Eylon, L., Izak, G.: The effect of chronic iron deficiency on some biochemical functions of the human hemopoietic tissue. Blood 36, 321 (1970).PubMedGoogle Scholar
  37. Hillman, R. S., Finch, C. A.: Erythropoiesis. New Engl. J. Med. 285, 99 (1971).PubMedCrossRefGoogle Scholar
  38. Hollan, S. R., Brimhall, B., Jones, R. T., Koler, R. D., Stocklen, Z., Szelenyi, J. G.: Multiple alpha chain loci for human hemoglobin. XIIIth Intern. Congress of Hemat. Munich. Abstract, p. 8 (1970).Google Scholar
  39. Housman, D., Jacobs-Lorena, M., Rajbhandary, U. L., Lodish, H. F.: Initiation of hemoglobin synthesis by methionyl-tRNA. Nature (Lond.) 227, 913 (1970).CrossRefGoogle Scholar
  40. Huisman, T. H. J., Schroeder, W. A., Charache, S., Bethlenfalvay, N. C., Bouver, N., Shelton, J. R., Shelton, J. B., Apell, G.: Hereditary persistance of feta hemoglobin. New Engl. J. Med. 285, 711 (1971).PubMedCrossRefGoogle Scholar
  41. Ingram, V. M.: Gene mutation in human hemoglobin: the chemical difference between normal and sickle hemoglobin. Nature (Lond.) 180, 326 (1957).CrossRefGoogle Scholar
  42. Ingram, V. M., Stretton, A. O. W.: The genetic basis of the thalassemia diseases. Nature (Lond.) 184, 1903 (1959).CrossRefGoogle Scholar
  43. Jackson, R., Hunter, T.: Role of methionine in the initiation of hemoglobin synthesis. Nature (Lond.) 227, 672 (1970).CrossRefGoogle Scholar
  44. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J. molec. Biol. 3, 318 (1961).PubMedCrossRefGoogle Scholar
  45. Kan, Y. W., Nathan, D. G.: Mild thalassemia: the result of interactions of alpha and beta thalassemia genes. J. clin. Invest. 49, 635 (1970).PubMedCrossRefGoogle Scholar
  46. Kushner, J. P., Lee, G. R., Wintrobe, M. M., Cartwright, G. E.: Idiopathic refractory sideroblastic anemia: clinical and laboratory investigation of 17 patients and review of the literature. Medicine (Baltimore) 50, 139 (1971).Google Scholar
  47. Lockard, R. E., Lingrel, J. B.: The synthesis of mouse hemoglobin beta chains in rabbit reticulocyte cell free system programmed with mouse 9S RNA. Biochem. biophys. Res. Commun. 37, 204 (1969).Google Scholar
  48. London, L. M., Shemin, D., West, R., Rittenberg, D.: Heme synthesis and red blood cell dynamics in normal humans and in subjects with polycytjemia vera, sickle cell anemia and pernicious anemia. J. biol. Chem. 179, 463 (1949).PubMedGoogle Scholar
  49. Loria, A., Sanchez-Medal, L., Lisker, R., de Rodriguez, E., Labardini, J.: Red cell life span in iron deficiency anemia. Brit. J. Haemat. 13, 294 (1967).PubMedCrossRefGoogle Scholar
  50. Marcker, K., Sanger, F.: N-Formyl sRNA. J. molec. Biol. 8, 835 (1964).PubMedCrossRefGoogle Scholar
  51. Modell, C. B., Latter, A., Steadman, J. H., Huehns, E. R.: Hemoglobin synthesis in beta thalassemia. Brit. J. Haemat. 17, 485 (1969).PubMedCrossRefGoogle Scholar
  52. Nathan, D. G., Lodish, H. F., Kan, Y. W., Housman, D.: Beta thalassemia and translation of globin messenger RNA. Proc. nat. Acad. Sci. (Wash.) 68, 2514 (1971).CrossRefGoogle Scholar
  53. Nienhuis, A. W., Anderson, W. F.: Isolation and translation of hemoglobin messenger RNA from thalassemia, sickle cell anemia and normal human reticulocytes. J. clin. Invest. 50, 2458 (1971).PubMedCrossRefGoogle Scholar
  54. Nienhuis, A. W., Laycook, D. G., Anderson, W. F.: Translation of rabbit hemoglobin messenger RNA by thalassemic and non-thalassemic ribosomes. Nature (Lond.) New Biol. 231, 205 (1971).CrossRefGoogle Scholar
  55. Parker, W. C., Bearn, A. G.: Application of genetic regulatory mechanisms to human genetics. Amer. J. Med. 34, 680 (1963).PubMedCrossRefGoogle Scholar
  56. Pauling, L., Itano, H. A., Singer, S. J., Wells, I. C.: Sickle cell anemia, a molecular disease. Science 110, 543 (1949).PubMedCrossRefGoogle Scholar
  57. Prichard, P. M., Gilbert, J. M., Shafritz, D. A., Anderson, W. F.: Factors for the initiation of hemoglobin synthesis by rabbit reticulocyte ribosomes. Nature (Lond.) 226, 511 (1970).CrossRefGoogle Scholar
  58. Rachmilewitz, E. A., Peisach, J., Bradly, T. B., Blumberg, W. E.: Role of hemichromes in the formation of inclusion bodies in hemoglobin H disease. Nature (Lond.) 222, 248 (1969).CrossRefGoogle Scholar
  59. Ranney, H. M.: Clinically important variants of human hemoglobin. New Engl. J. Med. 282, 144 (1970).PubMedCrossRefGoogle Scholar
  60. Rieder, R. F., Weatherall, D. J.: Studies on hemoglobin biosynthesis: asynchronous synthesis of hemoglobin A and hemoglobin A2 by erythroid precursors. J. clin. Invest. 44, 42 (1965).PubMedCrossRefGoogle Scholar
  61. Rieder, R. F.: Aspects of the structure, synthesis and clinical effects of unstable hemoglobins. Red cell structure and metabolism (Ramot, B., Ed.). New York: Academic Press 1971.Google Scholar
  62. Rieder, R. F.: Pers. communication 1971.Google Scholar
  63. Schapira, G., Dreyfus, J. C., Maleknia, N.: The ambiguities in the rabbit hemoglobin: evidence for a messenger RNA translated specifically into hemoglobin. Biochem. biophys. Res. Commun. 32, 558 (1968).PubMedCrossRefGoogle Scholar
  64. Schwartz, E., Kan, Y. W., Nathan, D. G.: Unbalanced globin chain synthesis in alpha thalassemia heterozygotes. Ann. N. Y. Acad. Sci. 165, Second conf. on the problems of Cooley’s anemia. Art. L, p. 288 (1969).PubMedCrossRefGoogle Scholar
  65. Schwartz, E.: Heterozygous beta thalassemia: balanced globin synthesis in bone marrow cells. Science 167, 1513 (1970).PubMedCrossRefGoogle Scholar
  66. Shafritz, D. A., Anderson, W. F.: (1) Factor dependent binding of methionyl-tRNAs to reticulocyte ribosomes. Nature (Lond.) 227, 918 (1970).CrossRefGoogle Scholar
  67. Shafritz, D. A., Anderson, W. F.: (2) Isolation and partial characterization of reticulocyte factors M1 and M2. J. biol. Chem. 245, 5553 (1970).PubMedGoogle Scholar
  68. Shahid, M. J., Sahli, I. T.: Erythrokinetic studies in thalassemia. Brit. J. Haemat. 20, 75 (1971).PubMedCrossRefGoogle Scholar
  69. Shepard, M. K., Weatherall, D. J., Conley, C. L.: Semiquantitative estimation of distribution of fetal hemoglobin in red cell populations. Bull. Johns Hopk. Hosp. 110, 293 (1962).Google Scholar
  70. Smith, E. W., Torbert, J. V.: Two abnormal hemoglobins with evidence for a new genetic locus for hemoglobin formation. Bull. Johns Hopk. Hosp. 102, 38 (1958).Google Scholar
  71. Smith, E.W., Krevans, J. R.: Clinical manifestations of hemoglobin C disorders. Bull. Johns Hopk. Hosp. 104, 17 (1959).Google Scholar
  72. Stanbury, J. B., Wyngaarden, J. B., Fredrtckson, D. S.: The metabolic basis of inherited disease. New York: McGraw-Hill 1966.Google Scholar
  73. Tomkins, G. M., Gelehrter, T. D., Granner, D., Martin, D., Jr., Samuels, H. H., Thompson, E. B.: Control of specific gene expression in higher organisms. Science 166, 1474 (1969).PubMedCrossRefGoogle Scholar
  74. Vigi, V., Volpato, S., Gaburro, D., Conconi, F., Bargellesi, A., Pontremoli, S.: The correlation between red cell survival and excess of alpha globin synthesis in beta thalassemia. Brit. J. Haemat. 16, 25 (1969).PubMedCrossRefGoogle Scholar
  75. Weatherall, D. J.: The thalassemia syndromes. Philadelphia: F. A. Davis Comp. 1965. (A good deal has been learned about the biochemical basis of the thalassemias since the publication of Dr. Weatherall’s monograph, he and his co-workers having been responsible for a great deal of the new information. Yet The Thalassemia Syndromes remains the standard account of the clinical and genetic aspects of these diseases, and much of this review could hardly have been written without it.)Google Scholar
  76. Weatherall, D. J., Clegg, J. B., Naughton, M. A.: Globin synthesis in thalassemia: an in vitro study. Nature (Lond.) 208, 1061 (1965).CrossRefGoogle Scholar
  77. White, J. M., Brain, M. C., Ali, M. A. M.: Globin synthesis in sideroblastic anemia. Brit. J. Haemat. 20, 263 (1971).PubMedCrossRefGoogle Scholar
  78. Wickramasinghe, S. N., McElwain, T. J., Cooper, E. H., Hardisty, R. M.: Proliferation of erythroblasts in beta thalassemia. Brit. J. Haemat. 19, 719 (1970).PubMedCrossRefGoogle Scholar


  1. Forget, B. G., Housman, D., Skoultchi, A., Benz, Jr., E. J.: Quantitative deficiency of chain specific globin messenger ribonucleic acid in the thalassemia syndromes. J. Clin. Invest. 52 (Abstracts) (1973) (in press).Google Scholar
  2. Gambino, R., Kacian, D., Ramirez, F., Dow, L. W., Grossbard, E., Natta, C., Spiegelman, S., Marks, P. A., Bank, A.: Decreased globin messenger RNA in thalassemia by hybridization and biologic activity assays. Ann. New York Acad. Sci. 3rd Conference on Cooley’s Anemia (1973) (in press).Google Scholar
  3. Kacian, D. L., Spiegelman, S., Bank, A., Terada, M., Metafora, S., Dow, L., Marks, P. A.: In vitro svnthesis of DNA components of human genes for globins. Nature New Biol. 235, 167 (1972).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • Albert S. Braverman

There are no affiliations available

Personalised recommendations