Structural Features of Immunoglobulin Light Chains

  • Allen B. Edmundson
  • Marianne Schiffer
  • Kathryn R. Ely
  • Mical K. Wood
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 3)


Immunoglobulins are proteins with known antibody activity or with structural features closely resembling those of antibodies. The basic multi-chain structure of immunoglobulins consists of two light and two heavy chains linked by interchain disulfide bonds (Porter, 1959, 1969; Cohen and Milsiein, 1967; Haber, 1968; Edelman and Gall, 1969; Milstein and Pink, 1970). In the most common class of immunoglobulins, IgG2, the protein is a monomer with a molecular weight of 145,000 to 160,000. Within a single molecule the two light chains (MW= 22,000 to 23,000) are identical, as are the heavy chains (MW= 50,000 to 55,000). In IgM proteins, the molecules are pentamers stabilized by disulfide bonds; and in IgA immunoglobulins, the molecules form dimers or higher aggregates. The heavy chains differ in molecular weight and chemical properties, but the light chains are similar in representatives of different classes of immunoglobulins. Free light chains excreted into the urine in patients with multiple myeloma are called Bence-Jones proteins (Edelman and Gally, 1962), the presence of which is pathognomonic of the disease. These light chains are monoclonal and can be isolated in large quantities for chemical and physical studies. In the present article we shall concentrate on the structural features of the light chains, with emphasis on aspects important to consider in the crystallographic study of a Bence-Jones protein.


Light Chain Asymmetric Unit Free Light Chain Fractional Charge Immunoglobulin Light Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, C. A., Spiegelberg, H. L., Grey, H. M.: The carbohydrate content of fragments and polypeptide chains of human γG-myeloma proteins of different heavy-chain subclasses. Biochemistry 7, 1271–1278 (1968).PubMedCrossRefGoogle Scholar
  2. Appella, E., Ein, D.: Two types of lambda polypeptide chains in human immunoglobulins based on an amino acid substitution at position 190. Proc. nat. Acad. Sci. (Wash.) 57, 1449–1454 (1967).CrossRefGoogle Scholar
  3. Baglioni, C., Alescio Zonta, L., Cioli, D., Carbonara, A.: Allelic antigenic factor Inv(a) of the light chains of human immunoglobulins: Chemical basis. Science 152, 1517–1519 (1966).PubMedCrossRefGoogle Scholar
  4. Bence-Jones, H.: On a new substance occurring in the urine of a patient with “mollities ossium”. Phil. Trans. 138, 55–62 (1848).CrossRefGoogle Scholar
  5. Berggård, I., Peterson, P. A.: Polymeric forms of free normal ϰ and λ chains of human immunoglobulin. J. biol. Chem. 244, 4299–4307 (1969).PubMedGoogle Scholar
  6. Bigelow, C. C.: On the average hydrophobicity of proteins and the relation between it and protein structure. J. theor. Biol. 16, 187–211 (1967).PubMedCrossRefGoogle Scholar
  7. Björk, I., Karlsson, F. A., Berggård, I.: Independent folding of the variable and constant halves of a lambda immunoglobulin light chain. Proc. nat. Acad. Sci. (Wash.) 68, 1707–1710 (1971).CrossRefGoogle Scholar
  8. Blow, D. M., Crick, F. H. C.: The treatment of errors in the isomorphous replacement method. Acta Cryst. 12, 794–802 (1959).CrossRefGoogle Scholar
  9. Braunitzer, G.: Phylogenetic variation in the primary structure of hemoglobins. J. Cell Biol. 67, Suppl. 1, 1–19 (1966).Google Scholar
  10. Cioli, D., Baglioni, C.: Origin of structural variation in Bence Jones proteins. J. molec. Biol. 15, 385–388 (1966).PubMedCrossRefGoogle Scholar
  11. Cohen, S., Milstein, C.: Structure and biological properties of immunoglobulins. Advanc. Immunol. 7, 1–89 (1967).CrossRefGoogle Scholar
  12. Cunningham, B. A., Gottlieb, P. D., Konigsberg, W. H., Edelman, G. M.: The covalent structure of a human γG-immunoglobulin. V. Partial amino acid sequence of the light chain. Biochemistry 7, 1983–1995 (1968).CrossRefGoogle Scholar
  13. Deutsch, H. F.: Crystalline low molecular weight γ-globulin from a human urine. Science 141, 435–436 (1963).PubMedCrossRefGoogle Scholar
  14. Dickerson, R. E., Kendrew, J. C., Strandberg, B. E.: The crystal structure of myoglobin: Phase determination to a resolution of 2 Å by the method of isomorphous replacement. Acta Cryst. 14, 1188–1195 (1961).CrossRefGoogle Scholar
  15. Dickerson, R. E., Weinzierl, J. E., Palmer, R. A.: A least-squares refinement method for isomorphous replacement. Acta Cryst. B 24, 997–1003 (1968).CrossRefGoogle Scholar
  16. Dreyer, W. J., Gray, W. R., Hood, L.: The genetic, molecular, and cellular basis of antibody formation: Some facts and a unifying hypothesis. Cold Spr. Harb. Symp. quant. Biol. 32, 353–367 (1967).Google Scholar
  17. Edelman, G. M., Gall, W. E.: The antibody problem. Ann. Rev. Biochem. 38, 415–466 (1969).PubMedCrossRefGoogle Scholar
  18. Edelman, G. M., Gally, J. A.: The nature of Bence-Jones proteins. J. exp. Med. 116, 207–227 (1962).PubMedCrossRefGoogle Scholar
  19. Edmundson, A. B., Ely, K. R., Simonds, N. B., Hutson, N. K., Sheber, F. A., Rossiter, J. L.: Human L type Bence-Jones proteins containing carbohydrate. J. polymer Sci. Part C, 30, 689–695 (1970).Google Scholar
  20. Edmundson, A. B., Schiffer, M., Wood, M. K., Hardman, K. D., Ely, K. R., Ainsworth, C. F.: Crystallographic studies of an IgG immunoglobulin and the Bence-Jones protein from one patient. Cold Spr. Harb. Symp. quant. Biol. (in press).Google Scholar
  21. Edmundson, A. B., Sheber, F. A., Ely, K. R., Simonds, N. B., Hutson, N. K., Rossiter, J. L.: Characterization of human L type Bence-Jones proteins containing carbohydrate. Arch. Biochem. Biophys. 127, 725–740 (1968).PubMedCrossRefGoogle Scholar
  22. Edmundson, A. B., Simonds, N. B., Sheber, F. A., Johnson, T., Bangs, B.: Use of carboxy-peptidase A for simultaneous assessment of purity and assignment of human Bence-Jones proteins and light chains to K and L classes. Arch. Biochem. Biophys. 132, 502–508 (1969).PubMedCrossRefGoogle Scholar
  23. Ein, D., Fahey, J. L.: Two types of lambda polypeptide chains in human immunoglobulins. Science 156, 947–948 (1967).PubMedCrossRefGoogle Scholar
  24. Fisher, H. F.: A limiting law relating the size and shape of protein molecules to their composition. Proc. nat. Acad. Sci. (Wash.) 51, 1285–1291 (1964).CrossRefGoogle Scholar
  25. Fisher, H. F.: An upper limit to the amount of hydration of a protein molecule. A corollary to the “limiting law of protein structure”. Biochim. biophys. Acta (Amst.) 109, 544–550 (1965).CrossRefGoogle Scholar
  26. Fisher, H. F.: On the predictability of protein conformation: A limiting law. Abstracts, Symp. I–3, 3, Int. Cong. Biochem. 7th, Tokyo, 29 (1967).Google Scholar
  27. Gally, J. A., Edelman, G. M.: Protein-protein interactions among L polypeptide chains of Bence-Jones proteins and human γ-globulins. J. exp. Med. 119, 817–836 (1964).PubMedCrossRefGoogle Scholar
  28. Gray, W. R., Dreyer, W. J., Hood, L.: Mechanism of antibody synthesis: Size differences between mouse kappa chains. Science 155, 465–467 (1967).PubMedCrossRefGoogle Scholar
  29. Haber, E.: Recovery of antigenic specificity after denaturation and complete reduction of disulfides in a papain fragment of antibody. Proc. nat. Acad. Sci. (Wash.) 52, 1099–1106 (1964).CrossRefGoogle Scholar
  30. Haber, E.: Immunochemistry. Ann. Rev. Biochem. 37, 497–520 (1968).CrossRefGoogle Scholar
  31. Hamaguchi, K., Migita, S.: Optical rotatory and ultraviolet spectral properties of Bence-Jones proteins. J. Biochem. (Tokyo) 56, 512–521 (1964).Google Scholar
  32. Hendrickson, W. A., Klock, P. A., Lattman, E. E., Love, W. E., Padlan, E. A.: Cold Spr. Harb. Symp. quant. Biol. (in press).Google Scholar
  33. Hill, R. L., Delaney, R., Fellows, R. E., Jr., Lebovitz, H. E.: The evolutionary origins of the immunoglobulins. Proc. nat. Acad. Sci. (Wash.) 56, 1762–1769 (1966).CrossRefGoogle Scholar
  34. Hilschmann, N.: (1) Die chemische Struktur von zwei Bence-Jones-Proteinen (Roy und Cum.) vom ϰ-Typ. Z. physiol. Chem. 348, 1077–1080 (1967).CrossRefGoogle Scholar
  35. Hilschmann, N.: (2) Die vollständige Aminosäuresequenz des Bence-Jones-Proteins Cum. (ϰ-Typ). Z. physiol. Chem. 348, 1718–1722 (1967).CrossRefGoogle Scholar
  36. Hilschmann, N., Barnikol, H.-U., Hess, M., Langer, B., Ponstingl, H., Steinmetz-Kayne, M., Suter, L., Watanabe, S.: Structural studies on immunoglobulins and their genetic implications for antibody formation. FEBS Symp. 15, 57–74 (1969).Google Scholar
  37. Hilschmann, N., Craig, L. C.: Amino acid sequence studies with Bence-Jones proteins. Proc. nat. Acad. Sci. (Wash.) 53, 1403–1409 (1965).CrossRefGoogle Scholar
  38. Holasek, A., Kratky, O., Mittelbach, P., Wawra, H.: Small-angle X-ray scattering of Bence-Jones protein. J. molec. Biol. 7, 321–322 (1963).PubMedCrossRefGoogle Scholar
  39. Hood, L., Gray, W. R., Sanders, B. G., Dreyer, W. J.: Light chain evolution. Cold Spr. Harb. Symp. quant. Biol. 32, 133–146 (1967).Google Scholar
  40. Hood, L., Potter, M., McKean, D. J.: Immunoglobulin structure: Amino terminal sequences of kappa chains from genetically similar mice (BALB/c). Science 170, 1207–1210 (1970).PubMedCrossRefGoogle Scholar
  41. Hood, L., Talmage, D. W.: Mechanism of antibody diversity: Germ line basis for variability. Science 168, 325–334 (1970).PubMedCrossRefGoogle Scholar
  42. Huber, R., Epp, O., Steigemann, W., Formanek, H.: The atomic structure of erythrocruorin in the light of the chemical sequence and its comparison with myoglobin. Europ. J. Biochem. 19, 42–50 (1971).PubMedCrossRefGoogle Scholar
  43. Jirgensons, B., Saine, S., Ross, D. L.: The ultraviolet rotatory dispersion and conformation of Bence-Jones proteins. J. biol. Chem. 241, 2314–2319 (1966).PubMedGoogle Scholar
  44. Karlsson, F. A., Peterson, P. A., Berggård, I.: Properties of halves of immunoglobulin light chains. Proc. nat. Acad. Sci. (Wash.) 64, 1257–1263 (1969).CrossRefGoogle Scholar
  45. Kendrew, J. C.: Side-chain interactions in myoglobin. Brookhaven Symp. Biol. 15, 216–226 (1962).PubMedGoogle Scholar
  46. Koshland, M. E., Englberger, F. M.: Differences in the amino acid composition of two purified antibodies from the same rabbit. Proc. nat. Acad. Sci. (Wash.) 50, 61–68 (1963).CrossRefGoogle Scholar
  47. Langer, B., Steinmetz-Kayne, M., Hilschmann, N.: Die vollständige Aminosäuresequenz des Bence-Jones-Proteins New (λ-Typ). Subgruppen im variablen Teil bei Immunglobulin-L-Ketten vom λ-Typ. Z. physiol. Chem. 349, 945–951 (1968).Google Scholar
  48. Matthews, B. W.: Solvent content of protein crystals. J. molec. Biol. 33, 491–497 (1968).PubMedCrossRefGoogle Scholar
  49. Melchers, F.: The attachment site of carbohydrate in a mouse immunoglobulin light chain. Biochemistry 8, 938–947 (1969).PubMedCrossRefGoogle Scholar
  50. Melchers, F., Knopf, P. M.: Biosynthesis of the carbohydrate portion of immunoglobulin chains: Possible relation to secretion. Cold Spr. Harb. Symp. quant. Biol. 32, 255–262 (1967).Google Scholar
  51. Milstein, C.: Interchain disulphide bridge in Bence-Jones proteins and in λ-globulin B chains. Nature (Lond.) 205, 1171–1173 (1965).CrossRefGoogle Scholar
  52. Milstein, C.: Variations in amino-acid sequence near the disulphide bridges of Bence-Jones proteins. Nature (Lond.) 209, 370–373 (1966).CrossRefGoogle Scholar
  53. Milstein, C.: (1) Linked groups of residues in immunoglobulin ϰ chains. Nature (Lond.) 216, 330–332 (1967).CrossRefGoogle Scholar
  54. Milstein, C.: (2) Variations in the C-terminal half of immunoglobulin λ-chains. Biochem. J 104, 28–30 C (1967).Google Scholar
  55. Milstein, C.: The variability of human immunoglobulin G. FEBS Symp. 15, 43–56 (1969).Google Scholar
  56. Milstein, C., Clegg, J. B., Jarvis, J. M.: Immunoglobulin λ-chains. Biochem. J. 110, 631–652 (1968).PubMedGoogle Scholar
  57. Milstein, C., Pink, J. R. L.: Structure and evolution of immunoglobulins. Prog. Biophys. molec. Biol. 21, 209–263 (1970).CrossRefGoogle Scholar
  58. Mueller, M. H., Heaton, L., Amiot, L.: A computer controlled experiment. Res. Develop. 19, 34–37 (1968).Google Scholar
  59. Neet, K. E., Putnam, F. W.: Characterization of the thermal denaturation of Bence-Jones proteins by ultracentrifugation at elevated temperatures. J. biol. Chem. 241, 2320–2325 (1966).PubMedGoogle Scholar
  60. Némethy, G., Scheraga, H. A.: Structure of water and hydrophobic bonding in proteins. I. A model for the thermodynamic properties of liquid water. J. chem. Phys. 36, 3382–3400 (1962).CrossRefGoogle Scholar
  61. Niall, H. D., Edman, P.: Two structurally distinct classes of kappa-chains in human immunoglobulins. Nature (Lond.) 216, 262–263 (1967).CrossRefGoogle Scholar
  62. Padlan, E. A., Love, W. E.: Structure of the haemoglobin of the marine annelid worm, Glycera dibranchiata, at 5.5 Å resolution. Nature (Lond.) 220, 376–378 (1968).CrossRefGoogle Scholar
  63. Perutz, M. F., Kendrew, J. C., Watson, H. C.: Structure and function of haemoglobin. II. Some relations between polypeptide chain configuration and amino acid sequence. J. molec. Biol. 13, 669–678 (1965).CrossRefGoogle Scholar
  64. Poljak, R. J., Amzel, L. M., Avey, H. P., Becka, L. N., Nisonoff, A.: Structure of Fab’ New at 6 Å resolution. Nature (Lond.) New Biol. 235, 137–140 (1972).CrossRefGoogle Scholar
  65. Ponstingl, H., Hess, M., Hilschmann, N.: Die vollständige Aminosäure-Sequenz des Bence-Jones-Proteins Kern. Eine neue Untergruppe der Immunglobulin-L-Ketten vom λ-Typ. Z. physiol. Chem. 349, 867–871 (1968).Google Scholar
  66. Ponstingl, H., Hess, M., Langer, B., Steinmetz-Kayne, M., Hilschmann, N.: Über einen Aminosäureaustausch im konstanten Teil eines Bence-Jones-Proteins vom λ-Typ. Z. physiol. Chem. 348, 1213–1214 (1967).Google Scholar
  67. Porter, R. R.: The hydrolysis of rabbit γ-globulin and antibodies with crystalline papain. Biochem. J. 73, 119–126 (1959).PubMedGoogle Scholar
  68. Porter, R. R.: Recent studies on the structure of the heavy chain of immunoglobulins. FEBS Symp. 15, 13–19 (1969).Google Scholar
  69. Putnam, F. W.: Structure and variability of immunoglobulin light chains. FEBS Symp. 15, 21–41 (1969).Google Scholar
  70. Putnam, F. W., Shinoda, T., Titani, K., Wikler, M.: Immunoglobulin structure: Variation in amino acid sequence and length of human lambda light chains. Science 157, 1050–1053 (1967).PubMedCrossRefGoogle Scholar
  71. Putnam, F. W., Titani, K., Wikler, M., Shinoda, T.: Structure and evolution of kappa and lambda light chains. Cold Spr. Harb. Symp. quant. Biol. 32, 9–30 (1967).Google Scholar
  72. Sarma, V. R., Davies, D. R., Labaw, L. W., Silverton, E. W., Terry, W. D.: Crystal structure of an immunoglobulin molecule by X-ray diffraction and electron microscopy. Cold Spr. Harb. Symp. quant. Biol. 37, 413–419 (1971).Google Scholar
  73. Schiffer, M., Edmundson, A. B.: Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys. J. 7, 121–135 (1967).PubMedCrossRefGoogle Scholar
  74. Schiffer, M., Hardman, K. D., Wood, M. K., Edmundson, A. B., Hook, M. E., Ely, K. R., Deutsch, H. F.: A preliminary crystallographic investigation of a human L-type Bence-Jones protein. J. biol. Chem. 245, 728–730 (1970).PubMedGoogle Scholar
  75. Schramm, H. J.: Die Isolierung und Kristallisation des variablen Fragments eines Bence-Jones-Proteins. Z. physiol. Chem. 352, 1134–1138 (1971).CrossRefGoogle Scholar
  76. Seon, B.-K., Roholt, O. A., Pressman, D.: The reactivity of tyrosyl residues in Bence-Jones protein: Differences in rates of iodination in covalent and noncovalent dimers. Biochim. biophys. Acta (Amst.) 194, 397–405 (1969).Google Scholar
  77. Seon, B.-K., Roholt, O. A., Pressman, D.: Topography of Bence-Jones protein. J. biol. Chem. 246, 887–898 (1971).PubMedGoogle Scholar
  78. Singer, S. J., Doolittle, R. F.: Antibody active sites and immunoglobulin molecules. Science 153, 13–25 (1966).PubMedCrossRefGoogle Scholar
  79. Smithies, O.: Antibody variability. Science 157, 267–273 (1967).PubMedCrossRefGoogle Scholar
  80. Solomon, A., McLaughlin, C. L.: Bence-Jones proteins and light chains of immunoglobulins. I. Formation and characterization of amino-terminal (variant) and carboxyl-terminal (constant) halves. J. biol. Chem. 244, 3393–3404 (1969).PubMedGoogle Scholar
  81. Solomon, A., McLaughlin, C. L., Wei, C. H., Einstein, J. R.: Bence-Jones proteins and light chains of immunoglobulins. V. X-ray crystallographic investigation of the amino-terminal half of a ϰ Bence-Jones protein. J. biol. Chem. 245, 5289–5291 (1970).PubMedGoogle Scholar
  82. Sox, H. C., Jr. Hood, L: Attachment of carbohydrate to the variable region of myeloma immunoglobulin light chains. Proc. nat. Acad. Sci. (Wash.) 66, 975–982 (1970).CrossRefGoogle Scholar
  83. Suter, L., Barnikol, H.-U., Watanabe, S., Hilschmann, N.: Die Primärstruktur einer monoklonalen Immunglobulin-L-Kette der Subgruppe III vom ϰ-Typ (Bence-Jones-Protein Ti). Z. physiol. Chem. 350, 275–278 (1969).CrossRefGoogle Scholar
  84. Tanford, C.: Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J. Amer. chem. Soc. 84, 4240–4247 (1962).CrossRefGoogle Scholar
  85. Titani, K., Whitley, E., Jr., Avogardo, L., Putnam, F. W.: Immunoglobulin structure: Partial amino acid sequence of a Bence-Jones protein. Science 149, 1090–1093 (1965).PubMedCrossRefGoogle Scholar
  86. Watson, H. C.: The stereochemistry of the protein myoglobin. Prog. Stereochem. 4, 299–333 (1969).Google Scholar
  87. Welscher, H. D.: (1) Correlations between amino acid sequence and conformation of immunoglobulin light chains. I. Hydrophobkity and fractional charge. Int. J. Protein Res. 1, 253–265 (1969).PubMedCrossRefGoogle Scholar
  88. Welscher, H. D.: (2) Correlations between amino acid sequence and conformation of immunoglobulin light chains. II. Sequence comparison and the pattern of nonpolar residues. Int. J. Protein Res. 1, 267–282 (1969).PubMedCrossRefGoogle Scholar
  89. Whitney, P. L., Tanford, C.: Recovery of specific activity after complete unfolding and reduction of an antibody fragment. Proc. nat. Acad. Sci. (Wash.) 53, 524–532 (1965).CrossRefGoogle Scholar
  90. Wikler, M., Titani, K., Shinoda, T., Putnam, F. W.: The complete amino acid sequence of a λ type Bence-Jones protein. J. biol. Chem. 242, 1668–1670 (1967).PubMedGoogle Scholar
  91. Wu, T. T., Kabat, E. A.: An attempt to locate the non-helical and permissively helical sequences of proteins: Application to the variable regions of immunoglobulin light and heavy chains. Proc. nat. Acad. Sci. (Wash.) 68, 1501–1506 (1971).CrossRefGoogle Scholar
  92. Zeppezauer, M., Eklund, H., Zeppezauer, E. S.: Micro diffusion cells for the growth of single protein crystals by means of equilibrium dialysis. Arch. Biochem. Biophys. 126, 564–573 (1968).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • Allen B. Edmundson
  • Marianne Schiffer
  • Kathryn R. Ely
  • Mical K. Wood

There are no affiliations available

Personalised recommendations