Advertisement

Mechanism of Protein Synthesis and Use of Inhibitors in the Study of Protein Synthesis

  • Akira Kaji
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 3)

Abstract

The biosynthesis of proteins appears to be one of the most complicated synthetic processes catalyzed by biological systems. It is unique in that as many as three to four energy-rich bonds are consumed in the synthesis of a relatively low-energy chemical bond, the peptide linkage. At least nine non-ribosomal soluble protein factors participate in an orderly sequential series of polymerization reactions of aminoacyl tRNA catalyzed by a most complicated biological synthetic machinery — the ribosomes. Protein synthesis can be divided into four major steps, namely, aminoacylation of tRNA, initiation of the polypeptide chain, polypeptide chain elongation, and termination of chain elongation including release of completed chains from the ribosomes. The first step, aminoacylation of tRNA, will not be discussed in this article.

Keywords

Donor Site Ribosomal Subunit Acceptor Site Fusidic Acid Peptide Bond Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Algranati, I. D., Gonzalez, N. S., Bade, E. G.: Physiological role of 70 S ribosomes in bacteria. Proc. nat. Acad. Sci. (Wash.) 62, 574 (1969).CrossRefGoogle Scholar
  2. Anand, N., Davis, B. D.: Effect of streptomycin on Escherichia coli. Nature (Lond.) 185, 22 (1960).CrossRefGoogle Scholar
  3. Anderson, B., Hodgkin, D. C., Viswamitra, M. A.: The structure of thiostrepton. Nature (Lond.) 225, 233 (1970).CrossRefGoogle Scholar
  4. Anderson, J. S., Bretscher, M. S., Clark, B. F. S., Marcker, K. A.: A GTP requirement for binding initiator tRNA to ribosomes. Nature (Lond.) 215, 490 (1967).CrossRefGoogle Scholar
  5. Allen, D. W., Zamecnik, P. C.: The effect of puromycin on rabbit reticulocyte ribosomes. Biochim. biophys. Acta (Amst.) 55, 865 (1962).CrossRefGoogle Scholar
  6. Apirion, D.: Three genes that affect Escherichia coli ribosomes. J. molec. Biol. 30, 255 (1967).PubMedGoogle Scholar
  7. Apirion, D., Schlessinger, D., Phillips, S., Sypherd, P.: Escherichia coli: reversion from streptomycin dependence, a mutation in a specific 30 S ribosomal protein. J. molec. Biol. 43, 327 (1969).PubMedCrossRefGoogle Scholar
  8. Arlinghaus, R. J., Shaeffer, J., Schweet, R.: Mechanism of peptide bond formation in polypeptide synthesis. Proc. nat. Acad. Sci. (Wash.) 51, 1291 (1964).CrossRefGoogle Scholar
  9. Baliga, B. S., Cohen, S. A., Munro, H. N.: Effect of cycloheximide on the reaction of puromacin with polysome-bound peptidyl tRNA. FEBS Letters 8, 249 (1970).PubMedCrossRefGoogle Scholar
  10. Berissi, H., Groner, Y., Revel, M.: Effect of a purified initiation factor F3 (B) on the selection of ribosomal binding sites on phage MS2 RNA. Nature (Lond.) New Biol. 234, 44 (1971).Google Scholar
  11. Berman, M. L., Monier, R.: Influence of the 30 S ribosomal subunit on the peptidyl transferase activity of the 50 S ribosomal subunit from E. coli. Biochimie 53, 233 (1971).PubMedCrossRefGoogle Scholar
  12. Bhuyan, B. K.: Pactamycin, an antibiotic that inhibits protein synthesis. Biochem. Pharmacol. 16, 1411 (1967).PubMedCrossRefGoogle Scholar
  13. Birge, E. A., Kurland, C. G.: Altered ribosomal protein in streptomycin dependent Escherichia coli. Science 166, 1282 (1969).PubMedCrossRefGoogle Scholar
  14. Bissel, D. M.: Formation of an altered enzyme by Escherichia coli in the presence of neomycin. J. molec. Biol. 14, 619 (1965).CrossRefGoogle Scholar
  15. Bodley, J. W., Davie, E. W.: A study of the mechanism of ambiguous amino acid coding by poly U: the nature of the products. J. molec. Biol. 18, 344 (1966).PubMedCrossRefGoogle Scholar
  16. Bodley, J. W., Lin, L.: Interaction of E. coli and G-factor with the 50 S ribosomal subunit. Nature (Lond.) 227, 60 (1970).CrossRefGoogle Scholar
  17. Bodley, J. W., Zieve, F. J., Lin, L., Zieve, S. T.: Formation of the ribosome-G-factor-GDP complex in the presence of fusidic acid. Biochem. biophys. Res. Commun. 37, 437 (1969).PubMedCrossRefGoogle Scholar
  18. (1).
    Bodley, J. W., Zieve, F. J., Lin, L., Zieve, S. T.: Studies on translocation III. Conditions necessary for the formation and detection of a stable ribosome-G-factor-GDP complex in the presence of fusidic acid. J. biol. Chem. 245, 5656 (1970).PubMedGoogle Scholar
  19. (2).
    Bodley, J. W., Zieve, F. J., Lin, L.: Studies on translocation IV. The hydrolysis of a single round of GTP in the presence of fusidic acid. J. biol. Chem. 245, 5662 (1970).PubMedGoogle Scholar
  20. (3).
    Bodley, J. W., Lin, L., Highland, J. H.: Studies on translocation VI. Thiostrepton prevents the formation of a ribosome-G-factor-guanosine triphosphate complex. Biochem. biophys. Res. Commun. 41, 1406 (1970).PubMedCrossRefGoogle Scholar
  21. Boedtker, H.: The reaction of ribonucleic acid with formaldehyde. I. Optical absorbance studies Biochemistry 6, 2718 (1967).PubMedCrossRefGoogle Scholar
  22. Breckenridge, L., Gorini, L.: The dominance of streptomycin sensitivity re-examined. Proc. nat. Acad. Sci. (Wash.) 62, 979 (1969).CrossRefGoogle Scholar
  23. Brenner, S., Beckwith, J. R.: Ochre mutants, a new class of suppressible nonsense mutants. J. molec. Biol. 13, 629 (1965).CrossRefGoogle Scholar
  24. Brenner, S., Barnett, L., Katz, E. R., Crick, F. H. C.: UGA: a third nonsense triplet in the genetic code. Nature (Lond.) 213, 449 (1967).CrossRefGoogle Scholar
  25. Bretscher, M. S.: Translocation in protein synthesis: a hybrid structure model. Nature (Lond.) 218, 675 (1968).CrossRefGoogle Scholar
  26. Bretscher, M. S., Marcker, K. A.: Polypeptidyl-s RNA and aminoacyl-s RNA binding sites on ribosomes. Nature (Lond.) 211, 380 (1966).CrossRefGoogle Scholar
  27. Brot, N., Redfield, B., Weissbach, H.: Studies on the reaction of the aminoacyl-tRNA-Tu-GTP complex with ribosomal subunits. Biochem. biophys. Res. Commun. 41, 1388 (1970).PubMedCrossRefGoogle Scholar
  28. Brot, N., Spears, C. L., Weissbach, H.: The formation of a complex containing ribosomes, transfer factor G and a guanosine nucleotide. Biochem. biophys. Res. Commun. 34, 843 (1969).PubMedCrossRefGoogle Scholar
  29. Brot, N., Spears, C. L., Weissbach, H.: The interaction of transfer factor G, ribosomes and guanosine nucleotides in the presence of fusidic acid. Arch. Biochem. Biophys. 143, 286 (1971).PubMedCrossRefGoogle Scholar
  30. Brown, J. C., Smith, A. E.: Initiator codons in eukaryotes. Nature (Lond.) 226, 610 (1970).CrossRefGoogle Scholar
  31. Brownstein, B. L., Lewandowski, L. J.: A mutation supressing streptomycin dependence. I. An effect on ribosome formation. J. molec. Biol. 25, 99 (1967).PubMedCrossRefGoogle Scholar
  32. Busiello, E., Digirolamo, M., Felicetti, L.: Role of mammalian ribosomal subunits and elongation factors in poly U-directed protein synthesis. Biochim. biophys. Acta (Amst.) 228, 289 (1971).Google Scholar
  33. Cameron, H. J., Julian, G. R.: The effect of chloramphenicol on the polysome formation of starved stringent Escherichia coli. Biochim. biophys. Acta. (Amst.) 169, 373 (1968).Google Scholar
  34. Capecchi, M. R.: Polypeptidyl chain termination in vitro. Isolation of a release factor. Proc. nat. Acad. Sci. (Wash.) 58, 1144 (1967).CrossRefGoogle Scholar
  35. Capecchi, M. R., Klein, H. A.: Characterization of three proteins involved in polypeptide chain termination. Cold Spr. Harb. Symp. quant. Biol. 34, 469 (1969).Google Scholar
  36. Cardani, C. D., Ghiringhelli, R., Mondelli, R., Pavan, M., Quilico, A.: Properties biologiques et composition chimique de la pederine. Ann. Soc. Entomol. Franc. 1, 813 (1965).Google Scholar
  37. Casjens, S. R., Morris, A. J.: The selective inhibition of protein assembly by gougerotin. Biochim. biophys. Acta (Amst.) 108, 677 (1965).Google Scholar
  38. (2).
    Cerna, J., Jonak, J., Rychlik, I.: Effects of macrolide antibiotics on the ribosomal peptidyl transferase in cell-free systems derived from E. coli B and erythromycin-resistant mutant of E. coli B. Biochim. biophys. Acta (Amst.) 240, 109 (1971).Google Scholar
  39. (1).
    Cerna, J., Lichtenhaler, F. W., Rychlik, I.: The effect of gougerotin analogues on ribosomal peptidyl transferase. FEBS Letters 14, 45 (1971).PubMedCrossRefGoogle Scholar
  40. Cerna, J., Rychlik, I., Pulkrabek, P.: The effect of antibiotics on the coded binding of peptidyl tRNA to the ribosome and on the transfer o5 the peptidyl residue to puromycin. Europ. J. Biochem. 9, 27 (1969).PubMedCrossRefGoogle Scholar
  41. Cerna, J., Rychlik, I., Zemlicka, J., Chladek, S.: Substrate specificity of ribosomal peptidyl transferase II 2’(3’)-O-aminoacyl nucleosides as acceptors of the peptide chain in the fragment reaction. Biochim. biophys. Acta (Amst.) 204, 203 (1970).Google Scholar
  42. Chae, Y-B., Mazumder, R., Ochoa, S.: Polypeptide chain initiation in E. coli. Studies on the function of initiation factor F1. Proc. nat. Acad. Sci. (Wash.) 63, 828 (1969).CrossRefGoogle Scholar
  43. Chang, F. N., Flaks, J. G.: Topography of the E. coli 30 S ribosomal subunk and streptomycin binding. Proc. nat. Acad. Sci. (Wash.) 67, 1321 (1970).CrossRefGoogle Scholar
  44. Chang, F. N., Weisblum, B.: The specific of lincomycin binding to ribosomes. Biochemistry 6, 836 (1967).PubMedCrossRefGoogle Scholar
  45. Chen, Chong-Maw, Ofengand, J.: Inactivation of the Tu-GTP recognition site in aminoacyl-tRNA by chemical modification of the tRNA. Biochem. biophys. Res. Commun. 41, 190 (1970).PubMedCrossRefGoogle Scholar
  46. Chuang, D. M., Simpson, M. V.: A translocation-associated ribosomal conformational change detected by hydrogen exchange and sedimentation velocity. Proc. nat. Acad. Sci. (Wash.) 68, 1474 (1971).CrossRefGoogle Scholar
  47. Clark, B. F. C., Marcker, K. A.: The role of N-formylmethionyl sRNA in protein biosynthesis. J. molec. Biol. 17, 394 (1966).PubMedCrossRefGoogle Scholar
  48. Clark, J. M., Chang, A. Y.: Inhibitors of the transfer of amino acids from aminoacyl soluble ribonucleic acid to proteins. J. biol. Chem. 240, 4734 (1965).PubMedGoogle Scholar
  49. Cocito, C.: Metabolism of macromolecules in bacteria treated with virginiamycin. J. gen. Microbiol. 57, 179 (1969).PubMedGoogle Scholar
  50. Cocito, C., Kaji, A.: Virginiamycin M: a specific inhibitor of the acceptor site of ribosomes. Biochimie 53, 763 (1971).PubMedCrossRefGoogle Scholar
  51. Cohen, B. B.: Two fractions required for cell-free protein synthesis with components from rabbit reticulocytes. Biochem. J. 115, 523 (1969).PubMedGoogle Scholar
  52. Cohen, L. B., Goldberg, I. H.: Inhibition of peptidyl-sRNA binding to ribosomes by pactamycin. Biochem. biophys. Res. Commun. 29, 617 (1967).PubMedCrossRefGoogle Scholar
  53. Cohen, L. B., Goldberg, I., Herner, A.: Inhibition by pactamycin of the initiation of protein synthesis. Effect on the 30 S ribosomal subunit. Biochemistry 8, 1327 (1969).PubMedCrossRefGoogle Scholar
  54. Colombo, B., Felicetti, L., Baglioni, C.: Inhibition of protein synthesis in reticulocytes by antibiotics — Effects on polysomes. Biochim. biophys. Acta (Amst.) 119, 109 (1966).Google Scholar
  55. Connamacher, R. H., Mandel, H. G.: Studies on the intracellular localization of tetracycline in bacteria. Biochim. biophys. Acta (Amst.) 166, 475 (1968).Google Scholar
  56. Cooper, D., Banthorpe, D., Wilkie, D.: Modified ribosomes conferring resistance to cycloheximide in mutants of saccharomyces cerevisiae. J. molec. Biol. 26, 347 (1967).PubMedCrossRefGoogle Scholar
  57. Cooper, D., Gordon, J.: Effect of aminoacyl transfer RNA on competition between guanosine 5’-triphospbate and guanosine 5′-diphosphate for binding to a polypeptide chain elongation factor from Escherichia coli. Biochemistry 8, 4289 (1969).PubMedCrossRefGoogle Scholar
  58. Culp, W. J., McKeehan, W. L., Hardesty, B.: Deacylated tRNAphe binding to a reticulocyte ribosomal site for the initiation of polyphenylalanine synthesis. Proc. nat. Acad. Sci. (Wash.) 63, 1431 (1969).CrossRefGoogle Scholar
  59. Culp, W. J., Morrisey, J., Hardesty, B.: Initiator tRNA for the synthesis of globin peptides. Biochem. biophys. Res. Commun. 40, 777 (1970).PubMedCrossRefGoogle Scholar
  60. Cundliffe, E.: Antibiotics and polyribosomes. II. Some effects of lincomycin, spiramycin and streptomycin A in vivo. Biochemistry 8, 2063 (1969).PubMedCrossRefGoogle Scholar
  61. Cundliffe, E.: The mode of action of thiostrepton in vivo, Biochem. biophys. Res. Commun. 44, 912 (1971).PubMedCrossRefGoogle Scholar
  62. Cundliffe, E.: Polyribosomes and ribosomal subunits of bacterial protoplasts. Biochem. biophys. Res. Commun. 33, 247 (1968).PubMedCrossRefGoogle Scholar
  63. Cundliffe, E., McQuillen, K.: Bacterial protein synthesis: the effects of antibiotics. J. molec. Biol. 30, 137 (1967).PubMedCrossRefGoogle Scholar
  64. Das, H. K., Goldstein, A., Kanner, L. C.: Inhibition by chloramphenicol of the growth of nascent protein chains in Escherichia coli. Molec. Pharmacol. 2, 158 (1966).Google Scholar
  65. Davies, J., Gilbert, W., Gorini, L.: Streptomycin, suppression and the code. Proc. nat. Acad. Sci. (Wash.) 51, 883 (1964).CrossRefGoogle Scholar
  66. Davies, J., Jones, D. S., Khorana, H. G.: A further study of misreading of codons induced by streptomycin and neomycin using ribonucleotides in alternating sequence as templates. J. molec. Biol. 18, 48 (1966).PubMedCrossRefGoogle Scholar
  67. Davies, B. D.: Action of aminoglycoside antibiotics. Asian med. J. 11, 78 (1968).Google Scholar
  68. Day, L. E.: Tetracycline inhibition of cell-free protein synthesis I. Binding of tetracycline to components of the system. J. Bact. 91, 1917 (1966).PubMedGoogle Scholar
  69. Dintzis, H. M. L.: Assembly of the peptide chains of hemoglobin. Proc. nat. Acad. Sci. (Wash.) 47, 247 (1961).CrossRefGoogle Scholar
  70. Dresden, M. H., Hoagland, M. B.: Polyribosomes of Escherichia coli. Breakdown during glucose starvation. J. biol. Chem. 242, 1065 (1967).PubMedGoogle Scholar
  71. Dube, S. K., Rudland, P. S.: Control of translation by T4 phage: Altered binding of disfavoured messenger. Nature (Lond.) 226, 820 (1970).CrossRefGoogle Scholar
  72. Dubnoff, J. S., Maitra, U.: Protein factors involved in polypeptide chain initiation in E. coli. Cold Spr. Harb. Symp. quant. Biol. 34, 301 (1969).Google Scholar
  73. Ellis, R. J., Hartley, M. R.: Sites of synthesis of chloroplast proteins. Nature (Lond.) New Biol. 233, 193 (1971).CrossRefGoogle Scholar
  74. Ennis, H. L.: Synergistin: a synergistic antibiotic complex which selectively inhibits protein synthesis. Proc. Int. Cong. Chemotherapy, 6th, Tokyo 2, 489 (1970).Google Scholar
  75. Ennis, H. L.: Interaction of vernamycin A with Escherichia coli ribosomes. Biochemistry 10, 1265 (1971).PubMedCrossRefGoogle Scholar
  76. Erbe, R. W., Nau, M. M., Leder, P.: Translation and translocation of defined RNA messengers. J. molec. Biol. 39, 441 (1969).PubMedCrossRefGoogle Scholar
  77. Fahnstock, S., Neumann, H., Shashoua, V., Rich, A.: Ribosome-catalyzed ester formation. Biochemistry 9, 2477 (1970).CrossRefGoogle Scholar
  78. Fernandez-Munoz, R., Monro, R. E., Torres Pinedo, R., Vazquez, D.: Substrates and antibiotic binding sites at the peptidyl transferase centre of Escherichia coli ribosomes. Studies on the chloramphenicol, lincomycin and erythromycin sites. Europ. J. Biochem. 23, 185 (1971).PubMedCrossRefGoogle Scholar
  79. Flessel, C. P.: Chloramphenicol protects polyribosomes. Biochem. biophys. Res. Commun. 32, 438 (1968).PubMedCrossRefGoogle Scholar
  80. Galasinski, W., Moldave, K.: Purification of aminoacyl transferase II (translocation factor) from rat liver. J. biol. Chem. 244, 6527 (1969).PubMedGoogle Scholar
  81. Ghosh, H. P., Khorana, H. G.: Studies on polynucleotides LXXXIV. On the role of ribosomal subunits in protein synthesis. Proc. nat. Acad. Sci. (Wash.) 58, 2455 (1967).CrossRefGoogle Scholar
  82. Gilbert, W.: Polypeptide synthesis in Escherichia coli. II. The polypeptide chain and sRNA. J. molec. Biol. 6, 389 (1963).PubMedCrossRefGoogle Scholar
  83. (2).
    Gill, D. M., Pappenheimer, A. M., Jr., Baseman, J. B.: Studies on transferase LI using diphtheria toxin. Cold Spr. Harb. Symp. quant. Biol. 34, 595 (1969).Google Scholar
  84. (1).
    Gill, D. M., Pappenheimer, A. M., Jr., Brown, R., Kurnick, J. T.: Studies on the mode of action of diphtheria toxin. VII. Toxin-stimulated hydrolysis of nicotinomide adenine dinucleotide in mammalian cell extracts. J. exp. Med. 129, 1 (1969).PubMedCrossRefGoogle Scholar
  85. Godchaux, W. III., Adamson, S. D., Herbert, E.: Effect of cycloheximide on polyribosome function in reticulocytes. J. molec. Biol. 27, 57 (1967).PubMedCrossRefGoogle Scholar
  86. (1).
    Goldberg, I. H., Mitsugi, K.: Inhibition by sparsomycin and other antibiotics of the puromycin induced release of polypeptide from ribosomes. Biochemistry 6, 383 (1967).PubMedCrossRefGoogle Scholar
  87. (2).
    Goldberg, I. H., Mitsugi, K.: Sparsomycin inhibition of polypeptide synthesis promoted by synthetic and natural polynucleotides. Biochemistry 6, 372 (1967).PubMedCrossRefGoogle Scholar
  88. Goldstein, J. L., Beaudet, A. L., Caskey, C. T.: Peptide chain termination with mammalian release factor. Proc. nat. Acad. Sci. (Wash.) 67, 99 (1970).CrossRefGoogle Scholar
  89. Goldstein, J. L., Caskey, C. T.: Peptide chain termination: effect of proteins on ribosomal binding of release factors. Proc. nat. Acad. Sci. (Wash.) 67, 537 (1970).CrossRefGoogle Scholar
  90. Goldstein, J. L., Milman, G., Scolnick, E., Caskey, T.: Peptide chain termination, VI. Purification and site of action of s. Proc. nat. Acad. Sci. (Wash.) 65, 430 (1970).CrossRefGoogle Scholar
  91. Goor, R. S., Maxwell, E. S.: The diphtheria toxin-dependent adenosine diphosphate ribosylation of rat liver aminoacyl transferase II. J. biol. Chem. 245, 616 (1970).PubMedGoogle Scholar
  92. Gordon, J.: Hydrolysis of guanosine 5’-triphosphate associated with binding of aminoacyl transfer ribonucleic acid to ribosomes. J. biol. Chem. 244, 5680 (1969).PubMedGoogle Scholar
  93. Gordon, J.: Regulation of the in vivo synthesis of the polypeptide chain. Biochemistry 9, 912 (1970).PubMedCrossRefGoogle Scholar
  94. Gorini, L.: In formational suppression. Ann. Rev. Genet. 4, 107 (1970).PubMedCrossRefGoogle Scholar
  95. Gorini, L., Kataja, E.: Phenotypic repair by streptomycin of defective genotypes in E. coli. Proc. nat. Acad. Sci. (Wash.) 51, 487 (1964).CrossRefGoogle Scholar
  96. Gottesman, M. E.: Reactions of ribosome-bound peptidyl transfer ribonucleic acid with aminoacyl transfer ribonucleic acid or puromycin. J. biol. Chem. 242, 5564 (1967).PubMedGoogle Scholar
  97. Greenshpan, H., Revel, M.: Initiator protein dependent binding of messenger RNA to ribosomes. Nature (Lond.) 224, 331 (1969).CrossRefGoogle Scholar
  98. Grollman, A. P., Stewart, M. L.: Inhibition of the attachment of messenger ribonucleic acid to ribosomes. Proc. nat. Acad. Sci. (Wash.) 61, 719 (1968).CrossRefGoogle Scholar
  99. Groner, Y., Herzberg, M., Revel, M.: Translation initiation factor C(f2): selective inactivation of its f-Met-tRNA binding activity which does not affect messenger RNA binding to the 30 S ribosome. FEBS Letters 6, 315 (1970).PubMedCrossRefGoogle Scholar
  100. Grunberg-Manago, M., Robinowitz, J. C., Dondon, J., Lelong, J. C., Gros, F.: Different classes of initiation factor F3 and their dissociation activity. FEBS Letters 19, 193 (1971).PubMedCrossRefGoogle Scholar
  101. Gualerzi, C., Pon, C. L., Kaji, A.: Initiation factor dependent release of aminoacyl-tRNA’s from complexes of 30 S ribosomal subunits, synthetic polynucleotide, and aminoacyl tRNA. Biochem. biophys. Res. Commun. 45, 1312 (1971).PubMedCrossRefGoogle Scholar
  102. Gurgo, C., Apirion, D., Schlessinger, D.: Effects of chloramphenicol and fusidic acid on polyribosome metabolism in Escherichia coli. FEBS Letters 3, 34 (1969).PubMedCrossRefGoogle Scholar
  103. (1).
    Gurgo, C., Apirion, D., Schlessinger, D.: Polyribosome metabolism in Escherichia coli treated with chloramphenicol, neomycin, spectinomycin or tetracycline. J. molec. Biol. 45, 205 (1969).PubMedCrossRefGoogle Scholar
  104. Guthrie, C., Nomura, M.: Initiation of protein synthesis: a critical test of the 30 S subunit model. Nature (Lond.) 219, 232 (1968).CrossRefGoogle Scholar
  105. Hachmann, J., Miller, D. L., Weissbach, H.: Purification of factor Ts: studies on the formation and stability of nucleotide complexes containing transfer factor Tu. Arch. Biochem. Biophys. 147, 457 (1971).PubMedCrossRefGoogle Scholar
  106. Hawthorne, D. C.: Identification of nonsense codons in yeast. J. molec. Biol. 43, 71 (1969).PubMedCrossRefGoogle Scholar
  107. Heintz, R., McAllister, H., Arlinghaus, R., Schweet, R.: Formation and function of the active ribosome complex. Cold Spr. Harb. Symp. quant. Biol. 31, 633 (1966).Google Scholar
  108. Helser, T. L., Davtes, J. E., Dahlberg, J. E.: Mechanism of kasugamycin resistance in E. coli. Nature (Lond.) New Biol. 235, 6 (1972).Google Scholar
  109. Hershey, J. W. B., Dewey, K. F., Thach, R. E.: Purification and properties of initiation factor f-1. Nature (Lond.) 222, 944 (1969).CrossRefGoogle Scholar
  110. Herzberg, M., Lelong, J. C., Revel, M.: Purification of initiator C from Escherichia coli: 2l protein which binds messenger RNA and initiator tRNA to the 30 S ribosome. J. molec. Biol. 44, 297 (1969).PubMedCrossRefGoogle Scholar
  111. Hettinger, T. P., Craig, L. C.: Edeine. IV. Structures of the antibiotic peptides edeines A1 and B1. Biochemistry 9, 1224 (1970).PubMedCrossRefGoogle Scholar
  112. Hierowski, M., Kurylo-Borowska, Z.: On the mode of action of edeine. I. Effect of edeine on the synthesis of polyphenylalanine in a cell-free system. Biochim. biophys. Acta (Amst.) 95, 578 (1965).Google Scholar
  113. Hirashima, A., Kaji, A.: Release of ribosomes from messenger RNA—a process dependent on G-factor and an additional factor. J. molec. Biol. (1972) (in press).Google Scholar
  114. Hoeksema, H.: Chemical studies on lincomycin I. The structure of lincomycin. J. Amer. chem. Soc. 86, 4223 (1964).CrossRefGoogle Scholar
  115. Hoerz, W., McCarty, K. S.: Evidence for a proposed initiation complex for protein synthesis in reticulocyte polyribosome profiles. Proc. nat. Acad. Sci. (Wash.) 63 1206 (1969).CrossRefGoogle Scholar
  116. Honjo, T., Nishizuka, Y., Hayaishi, O., Kato, I.: Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J. biol. Chem. 243, 3553 (1968).PubMedGoogle Scholar
  117. Hosokawa, K., Fujimura, R. K., Nomura, M.: Reconstitution of functionally active ribosomes from inactive subparticles and proteins. Proc. nat. Acad. Sci. (Wash.) 55, 198 (1966).CrossRefGoogle Scholar
  118. Hsu, W-T., Weiss, S. B.: Selective translation of T4 template RNA by ribosomes from T4-infected Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 64, 345 (1969).CrossRefGoogle Scholar
  119. Hurwitz, C., Braun, C. B.: Measurement of binding of chloramphenicol by intact cells. J. Bact. 93, 1671 (1967).PubMedGoogle Scholar
  120. Ibuki, F., Moldave, K.: The effect of guanosine triphosphate, other nucleotides and aminoacyl transfer RNA on the activity of transferase I and on its binding to ribosomes. J. biol. Chem. 243, 44 (1968).PubMedGoogle Scholar
  121. Igarashi, K., Ishitsuka, H., Kaji, A.: Comparative studies on the mechanism of action of lincomycin, streptomycin and erythromycin. Biochem. biophys. Res. Commun. 37, 499 (1969).PubMedCrossRefGoogle Scholar
  122. Igarashi, K., Kaji, A.: On the nature of two ribosomal sites for specific sRNA binding. Proc. nat. Acad. Sci. (Wash.) 58, 1971 (1967).CrossRefGoogle Scholar
  123. Igarashi, K., Kaji, A.: Evidence for one functional phenylalanyl tRNA binding site on the 30 s ribosomal subunit. Proc. nat. Acad. Sci. (Wash.) 62, 498 (1969).CrossRefGoogle Scholar
  124. Igarashi, K., Kaji, A.: Relationship between sites 1,2 and acceptor, donor sites for the binding of aminoacyl tRNA to ribosomes. Europ. J. Biochem. 14, 41 (1970).PubMedCrossRefGoogle Scholar
  125. Igarashi, K., Tanaka, S., Kaji, A.: On the aminoacyl-tRNA binding site of the 30 s ribosomal subunit and its relation to the chain initiation site of the ribosome. Biochim. biophys. Acta (Amst.) 228, 728 (1971).Google Scholar
  126. Infante, A., Baierlein, R.: Pressure-induced dissociation of sedimenting ribosomes: effect on sedimentation patterns. Proc. nat. Acad. Sci. (Wash.) 68, 1780 (1971).CrossRefGoogle Scholar
  127. Irvin, J. D., Julian, G. R.: The distribution of 14C-proline peptides synthesized in vitro directed by polycytidylic acid; the effect of chloramphenicol. FEBS Letters 8, 129 (1970).PubMedCrossRefGoogle Scholar
  128. Ishitsuka, H., Kaji, A.: Prevention of ribosomal donor site from being occupied by aminoacyl tRNA during polypeptide synthesis. FEBS Letters (1972) (in press).Google Scholar
  129. Ishitsuka, H., Kaji, A.: Release of tRNA by breakdown of messenger RNA. Biochim. biophys. Acta (Amst.) (1972) (in press).Google Scholar
  130. Ishitsuka, H., Kuriki, Y., Kaji, A.: Release of transfer ribonucleic acid from ribosomes. A G-factor and guanosine triphosphate-dependent reaction. J. biol. Cjhem. 245, 3346 (1970).Google Scholar
  131. Iwasaki, K., Mizumoto, K., Tanaka, M., Kaziro, Y.: Studies on the in vitro system for protein synthesis from mammalian organs. Seikagaku 43, 722 (1971).Google Scholar
  132. Iwasaki, K., Sabol, S. L., Wahba, A. J., Ochoa, S.: Translation of the genetic message VII. Role of initiation factors in formation of the chain initiation complex with Escherichia coli ribosomes. Arch. Biochem. Biophys. 125, 542 (1968).PubMedCrossRefGoogle Scholar
  133. Jacobs-Lorena, M., Brega, A., Baglioni, C.: Inhibition of protein synthesis in reticulocytes by antibiotics. V. Mechanism of action of pederine, an inhibitor of initiation and elongation. Biochem. biophys. Acta (Amst.) 240, 263 (1971).Google Scholar
  134. Jayaraman, J., Goldberg, I. H.: Localization of sparsomycin action to the peptide-bond forming step. Biochemistry 7, 418 (1968).PubMedCrossRefGoogle Scholar
  135. Jerez, C., Sandoval, A., Allende, J. E., Henes, C., Ofengand, J.: Specificity of the interaction of aminoacyl RNA with a protein-guanosine triphosphate complex from wheat embryo. Biochemistry 8, 3006 (1969).PubMedCrossRefGoogle Scholar
  136. Julian, G. R.: 14C lysine peptides synthesized in an in vitro Escherichia coli system in the presence of chloramphenicol. J. molec. Biol. 12, 9 (1965).PubMedCrossRefGoogle Scholar
  137. Kaempfer, R.: Control of single ribosome formation by an initiation factor for protein synthesis. Proc. nat. Acad. Sci. (Wash.) 68, 2458 (1971).CrossRefGoogle Scholar
  138. Kaempfer, R., Messelson, M., Raskas, H. J.: Cyclic dissociation into stable subunits and reformation of ribosomes during bacterial growth. J. molec. Biol. 31, 277 (1968).PubMedCrossRefGoogle Scholar
  139. Kaji, A.: Partial proteolytic digestion of yeast hexokinase and its relation to multiple forms of the enzyme. Arch. Biochem. Biophys. 112, 54 (1965).PubMedCrossRefGoogle Scholar
  140. Kaji, A., Kaji, H.: Specific interaction of soluble RNA with polyribonucleic acid induced polysomes. Biochem. biophys. Res. Commun. 13, 186 (1963).CrossRefGoogle Scholar
  141. Kaji, H.: Intraribosomal environment of the nascent peptide chain. Int. Rev. Cytol. 29, 169 (1970).PubMedCrossRefGoogle Scholar
  142. Kaji, H.: Genetic code and streptomycin: their relation to ribosomal subunits. Biochim. biophys. Acta (Amst.) 134, 134 (1967).Google Scholar
  143. Kaji, H., Kaji, A.: Specific binding of sRNA with the template-ribosome complex. Proc. nat. Acad. Sci. (Wash.) 52, 1541 (1964).CrossRefGoogle Scholar
  144. Kaji, H., Kaji, A.: Specific binding of sRNA to ribosomes: effect of streptomycin. Proc. nat. Acad. Sci. (Wash.) 54, 213 (1965).CrossRefGoogle Scholar
  145. Kaji, H., Suzuka, I., Kaji, A.: Binding of specific ribonucleic acid to ribosomes. Binding of soluble ribonucleic acid to template — 30 s subunits complex. J. biol. Chem. 241, 1251 (1966).PubMedGoogle Scholar
  146. Kaji, H., Tanaka, Y.: Binding of dihydrostreptomycin to ribosomal subunits. J. molec. Biol. 32, 221 (1968).PubMedCrossRefGoogle Scholar
  147. Kan, Y. W., Golini, F., Thach, R. E.: A new protein synthesis factor from Escherichia coli, Proc. nat. Acad. Sci. (Wash.) 67, 1137 (1970).CrossRefGoogle Scholar
  148. Kaziro, Y., Inoue, N., Kuriki, Y., Mizumoto, K., Tanaka, M., Kawakita, M.: Purification and properties of factor G. Cold Spr. Harb. Symp. quant. Biol. 34, 385 (1969).Google Scholar
  149. Kelley, W. S., Schaechter, M.: Magnesium ion-dependent dissociation of polysomes and free 70 s ribosomes in Bacillus megaterium. J. molec. Biol. 42, 599 (1969).PubMedCrossRefGoogle Scholar
  150. Khairallah, E., Pitot, H. C.: 3′, 5′, cyclic AMP and the release of polysome-bound proteins in vitro, Biochem. biophys. Res. Commun. 29, 269 (1967).PubMedCrossRefGoogle Scholar
  151. Kinoshita, T., Kawano, G., Tanaka, N.: Association of fusidic acid sensitivity with G-factor in a protein-synthesizing system. Biochem. biophys. Res. Commun. 33, 769 (1968).PubMedCrossRefGoogle Scholar
  152. Kinoshita, T., Tanaka, N.: On the site of action of bottromycin A2. J. Antibiot. 23, 311 (1970).PubMedGoogle Scholar
  153. Kinoshita, T., Liou, Y-F., Tanaka, N.: Inhibition by thiopeptin of ribosomal functions associated with T and G factors. Biochem. biophys. Res. Commun. 44, 859 (1971).PubMedCrossRefGoogle Scholar
  154. Kirschmann, C., Davis, B. D.: Phenotypic suppression in E. coli by chloramphenicol and other reversible inhibitors of the ribosome. J. Bact. 98, 152 (1969).PubMedGoogle Scholar
  155. Knippenberg, P. H., van, Ravenswaay Claasen, J. C., Grijm-Vos, M., Veldstra, H., Boson, L.: Stimulation and inhibition of polypeptide synthesis by streptomycin in ribosomal systems of Escherichia coli, programmed with various messengers. Biochim. biophys. Acta (Amst.) 95, 461 (1965).Google Scholar
  156. Kohler, R. E., Ron, F. Z., Davis, B. D.: Significance of the free 70 s ribosomes in Escherichia coli extracts. J. molec. Biol. 36, 71 (1968).PubMedCrossRefGoogle Scholar
  157. Kolakofsky, D., Dewey, K. F., Hershey, J. W. B., Thach, R. E.: Guanosine 5′-triphosphatase activity of initiation factor f2. Proc. nat. Acad. Sci. (Wash.) 61, 1066 (1968).CrossRefGoogle Scholar
  158. Kreider, G., Brownstein, B.: A mutation suppressing streptomycin dependence. II. An altered protein on the 30 s ribosomal subunit. J. molec. Biol. 61, 135 (1971).PubMedCrossRefGoogle Scholar
  159. Krembel, J., Apirion, D.: Changes in ribosomal proteins associated with mutants in a locus tbat affects Escherichia coli ribosomes. J. molec. Biol. 33, 363 (1968).PubMedCrossRefGoogle Scholar
  160. Krisko, I., Gordon, J., Lipmann, F.: Studies on the interchangeability of one of the mammalian and bacterial supernatant factors in protein biosynthesis. J. biol. Chem. 244, 6117 (1969).PubMedGoogle Scholar
  161. Kucan, Z., Lipmann, F.: Differences in chloramphenicol sensitivity of cell-free amino acid polymerization systems. J. biol. Chem. 239, 516 (1964).PubMedGoogle Scholar
  162. Kuechler, E.: Role of GTP in the positioning of formylmethionyl tRNAf on the E. coli ribosome. Nature (Lond.) New Biology 234, 216 (1971).CrossRefGoogle Scholar
  163. Kuntzel, H.: Specificity of mitochondrial and cytoplasmic ribosomes from neurospora crassa. FEBS Letters 4, 140 (1969).PubMedCrossRefGoogle Scholar
  164. Kurylo-Borowska, Z., Hierowski, M.: On the mode of action of edeine. II. Studies on the binding of edeine to Escherichia coli ribosomes. Biochim. biophys. Acta (Amst.) 95, 590 (1965).Google Scholar
  165. Lai, C. J., Weisblum, B.: Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. Proc. nat. Acad. Sci. (Wash.) 68, 856 (1971).CrossRefGoogle Scholar
  166. Lee-Huang, S., Ochoa, S.: Messenger discriminating species of initiation factor F3. Nature (Lond.) New Biology 234, 236 (1971).Google Scholar
  167. Leis, J. P., Keller, E. B.: Protein chain initiation by methionyl-tRNA. Biochem. biophys. Res. Commun. 40, 416 (1970).PubMedCrossRefGoogle Scholar
  168. Lelong, J. C., Cousin, M. A., Gros, D., Grunberg-Manago, M., Gros, F.: Streptomycin induced release of fmet-tRNA from the ribosomal initiation complex. Biochem. biophys. Res. Commun. 42, 530 (1971).PubMedCrossRefGoogle Scholar
  169. Lelong, J. C., Grunberg-Manago, M., Dondon, J., Gros, D., Gros, F.: Interaction between guanosine derivatives and factors involved in the initiation of protein synthesis. Nature (Lond.) 226, 505 (1970).CrossRefGoogle Scholar
  170. Lengyel, P., Soll, D.: Mechanism of protein biosynthesis. Bact. Rev. 33, 264 (1969).PubMedGoogle Scholar
  171. Lennette, E., Apirion, D.: The level of fmet-tRNA on ribosomes from streptomycin treated cells. Biochem. biophys. Res. Commun. 41, 804 (1970).PubMedCrossRefGoogle Scholar
  172. Levinthal, C., Fan, D. P., Higa, A., Ztmmermann, R. A.: The decay and protection of messenger RNA in bacteria. Cold Spr. Harb. Symp. quant. Biol. 28, 183 (1963).Google Scholar
  173. Lewandowski, L. J., Brownstein, B. L.: An altered pattern of libosome synthesis in a mutant of E. coli. Biochem. biophys. Res. Commun. 25, 554 (1966).CrossRefGoogle Scholar
  174. Lin, Y. C., Kinoshita, T., Tanaka, N.: Mechanism of protein synthesis inhibition by bottromycin A2: Studies with puromycin. J. Antibiot. Ser. A (Tokyo) 21, 471 (1968).Google Scholar
  175. Lockwood, A. H., Chakraborty, P. R., Maitra, U.: A complex between initiation factor IF2, guanosine triphosphate, and fmet-tRNAf: an intermediate in initiation complex formation. Proc. nat. Acad. Sci. (Wash.) 68, 3122 (1971).CrossRefGoogle Scholar
  176. Lockwood, A. H., Maitra, U.: Function of GTP in polypeptide chain initiation in E. coli. Fed. Proc. (1972) (in press).Google Scholar
  177. Lodish, H. F.: Bacteriophage f2 RNA: control of translation and gene order. Nature (Lond.) 220, 345 (1968).CrossRefGoogle Scholar
  178. Lodish, H. F.: Specificity in bacterial protein synthesis: role of initiation factors and ribosomal subunits. Nature (Lond.) 226, 705 (1970).CrossRefGoogle Scholar
  179. Lodish, H. F., Robertson, H. D.: Regulation of in vitro translation of bacteriophage f2 RNA. Cold Spr. Harb. Symp. quant. Biol. 34, 655 (1969).Google Scholar
  180. Lucas-Lenard, J., Haenni, A-L.: Release of transfer RNA during peptide chain elongation. Proc. nat. Acad. Sci. (Wash.) 63, 93 (1969).CrossRefGoogle Scholar
  181. Lucas-Lenard, J., Lipmann, F.: Protein biosynthesis. Ann. Rev. Biochem. 40, 409 (1971).PubMedCrossRefGoogle Scholar
  182. Lucas-Lenard, J., Lipmann, F.: Initiation of polyphenylalanine synthesis by N-acetyl-phenylalanyl sRNA. Proc. nat. Acad. Sci. (Wash.) 57, 1050 (1967).CrossRefGoogle Scholar
  183. Lucas-Lenard, J., Lipmann, F.: Separation of three microbial amino acid polymerization factors. Proc. nat. Acad. Sci. (Wash.) 55, 1562 (1966).CrossRefGoogle Scholar
  184. Lucas-Lenard, J., Tao, P., Haenni, A.-L.: Further studies on bacterial polypeptide elongation. Cold Spr. Harb. Symp. quant. Biol. 34, 455 (1969).Google Scholar
  185. Luzzatto, L., Apirion, D., Schlessinger, D.: Mechanism of action of streptomycin in E. coli: interruption of the ribosome cycle at the initiation of protein synthesis. Proc. nat. Acad. Sci. (Wash.) 60, 873 (1968).CrossRefGoogle Scholar
  186. Luzzatto, L., Apirion, D., Schlessinger, D.: Polyribosome depletion and blockage of the ribosome cycle by streptomycin in Escherichia coli. J. molec. Biol. 42, 315 (1969).PubMedCrossRefGoogle Scholar
  187. MacDonald, J. S., Goldberg, I. H.: An effect of pactamycin on the initiation of protein synthesis in reticulocytes. Biochem. biophys. Res. Commun. 41, 1 (1970).PubMedCrossRefGoogle Scholar
  188. (1).
    McKeehan, W., Hardesty, B.: The mechanism of cycloheximide inhibition of protein synthesis in rabbit reticulocytes. Biochem. biophys. Res. Commun. 36, 625 (1969).PubMedCrossRefGoogle Scholar
  189. (2).
    McKeehan, W., Hardesty, B.: Purification and partial characterization of the aminoacyl transfer ribonucleic acid binding enzyme from rabbit reticulocytes. J. biol. Chem. 244, 4330 (1969).PubMedGoogle Scholar
  190. Maden, B. E. H., Traut, R. R., Monro, R. E.: Ribosome-catalyzed peptidyl transfer: the polyphenylalanine system. J. molec. Biol. 35, 333 (1968).PubMedCrossRefGoogle Scholar
  191. Malkin, M., Lipmann, F.: Fusidic acid: inhibition of factor T2 in reticulocyte protein synthesis. Science 164, 71 (1969).PubMedCrossRefGoogle Scholar
  192. Mangiarotti, G., Schlessinger, D.: Polyribosome metabolism in E. coli. I. Extraction of polyribosomes and ribosomal subunits from fragile, growing E. coli. J. molec. Biol. 20, 123 (1966).PubMedCrossRefGoogle Scholar
  193. Mao, J. C.-H., Robishaw, E. E.: Effects of macrolides on peptide-bond formation and translocation. Biochemistry 10, 2054 (1971).PubMedCrossRefGoogle Scholar
  194. Marcus, A., Bewley, J. D., Weeks, D. P.: Aurintricarboxylic acid and initiation factors of wheat embryo. Science 167, 1735 (1970).PubMedCrossRefGoogle Scholar
  195. Matsua, S., Shiratori, O., Katagiri, K.: Antitumor activity of showdomycin. J. Antibiot. Ser. A (Tokyo) 17, 234 (1964).Google Scholar
  196. Matthaei, H., Amelunxen, F., Eckert, K., Heller, G.: The mechanism of protein biosynthesis I. The binding of messenger-RNA and aminoacyl sRNA to ribosomes. Ber. Bunsengesellschaft 68, 735 (1964).Google Scholar
  197. Maxwell, I. H.: Studies of the binding of tetracycline to ribosomes in vitro. Molec. Pharmacol. 4, 25 (1968).Google Scholar
  198. Maxwell, R. E., Nickel, V. S. The antibacterial activity of the isomers of chloramphenicol. Antibiot. and Chemother. 4, 289 (1954).Google Scholar
  199. Mazumder, R., Chae, Y.-B., Ochoa, S.: Polypeptide chain initiation in E. coli: suifhydryl groups and the function of initiation factor F2. Proc. nat. Acad. Sci. (Wash.) 63, 98 (1969).CrossRefGoogle Scholar
  200. Miller, D. L., Hachmann, J., Weissbach, H.: The reaction of the sulfhydryl groups on the elongation factors Tu and Ts. Arch. Biochem. Biophys. 144, 115 (1971).PubMedCrossRefGoogle Scholar
  201. Miller, D. L., Weissbach, H.: An interaction between the transfer factors required for protein synthesis. Arch. Biochem. Biophys. 132, 146 (1969).PubMedCrossRefGoogle Scholar
  202. Miller, D. L., Weissbach, H.: Studies on the purification and properties of factor Tu from E. coli. Arch. Biochem. Biophys. 141, 26 (1970).CrossRefGoogle Scholar
  203. Miller, M. J., Zasloff, M., Ochoa, S.: Association of polypeptide initiation factors with 30 S ribosomal subunits. FEBS Letters 3, 50 (1969).PubMedCrossRefGoogle Scholar
  204. Milman, G., Goldstein, J., Scolnick, E., Caskey, T.: Peptide chain termination III. Stimulation of in vitro termination. Proc. nat. Acad. Sci. (Wash.) 63, 183 (1969).CrossRefGoogle Scholar
  205. Miskin, R., Zamir, A., Elson, D.: Inactivation and reactivation of ribosomal subunits s: the peptidyl transferase activity of the 50 S subunit of E. coli. J. molec. Biol. 54, 355(1970).PubMedCrossRefGoogle Scholar
  206. Mizushima, S., Nomura, M.: Assembly mapping of 30 S ribosomal proteins from E. coli. Nature (Loud.) 226, 1214 (1970).CrossRefGoogle Scholar
  207. Modolell, J.: Int. Cong. Biochem. 8th (Switz.) (1970).Google Scholar
  208. (1).
    Modolell, J., Cabrer, B., Parmeggiani, A., Vazquez, D.: Inhibition by siomycin and thiostrepton of both aminoacyl-tRNA and factor G binding to ribosomes. Proc. nat. Acad. Sci. (Wash.) 68, 1796 (1971).CrossRefGoogle Scholar
  209. Modolell, J., Davis, B.: Rapid inhibition of polypeptide chain extension by streptomycin. Proc. nat. Acad. Sci. (Wash.) 61, 1279 (1968).CrossRefGoogle Scholar
  210. Modolell, J., Davis, B. D.: A unitary mechanism for the several effects of streptomycin on the ribosome. Cold Spr. Harb. Symp. quant. Biol. 34, 113 (1969).Google Scholar
  211. Modolell, J., Davis, B. D.: Breakdown by streptomycin of initiation complexes formed on ribosomes of E. coli. Proc. nat. Acad. Sci. (Wash.) 67, 1148 (1970).CrossRefGoogle Scholar
  212. (2).
    Modolell, J., Vazquez, D., Monro, R. E.: Ribosomes, G-factor and siomycin. Nature (Lond.) New Biol. 230, 109 (1971).CrossRefGoogle Scholar
  213. Monro, R. E.: Catalysis of peptide bond formation by 50 S ribosomal subunits from Escherichia coli. J. molec. Biol. 26, 147 (1967).PubMedCrossRefGoogle Scholar
  214. Monro, R. E., Celma, M. L., Vazquez, D.: Action of sparsomycin on ribosome-catalyzed peptidyl transfer. Nature (Lond.) 222, 356 (1969).CrossRefGoogle Scholar
  215. Monro, R. E., Marcker, K. A.: Ribosome-catalyzed reaction of puromycin with a formylmethionine-containing oligonucleotide. J. molec. Biol. 25, 347 (1967).PubMedCrossRefGoogle Scholar
  216. Monro, R. E., Cerna, J., Marcker, K. A.: Ribosome-catalyzed peptidyl transfer: substrate specificity at the P-site. Proc. nat. Acad. Sci. (Wash.) 61, 1042 (1968).CrossRefGoogle Scholar
  217. Monro, R. E., Vazquez, D.: Ribosome-catalyzed peptidyl transfer: effects of some inhibitors of protein synthesis. J. molec. Biol. 28, 161 (1967).PubMedCrossRefGoogle Scholar
  218. Moore, C. H., Farron, F., Bohnert, D., Weissmann, C.: Possible origin of a minor virus specific protein (a1 in Qβ particles. Nature (Lond.) New Biol. 234, 204 (1971).Google Scholar
  219. Morse, D.: Polarity induced by chloramphenicol and relief by suA. J. molec. Biol. 55, 113 (1971).PubMedCrossRefGoogle Scholar
  220. Nakamoto, T.: The initial phase in the polyuridylic acid-directed polymerization of phenylalanine. J. biol. Chem. 242, 4534 (1967).PubMedGoogle Scholar
  221. Nathans, D.: Puromycin inhibition of protein synthesis: incorporation of puromycin into peptide chains. Proc. nat. Acad. Sci. (Wash.) 51, 585 (1964).CrossRefGoogle Scholar
  222. Nathans, D., Neidle, P.: Structural requirements for puromycin inhibition of protein synthesis. Nature (Lond.) 197, 1076 (1963).CrossRefGoogle Scholar
  223. Nathans, D., von Ehrenstein, G., Monro, R., Lipmann, F.: Protein synthesis from aminoacyl soluble ribonucleic acid. Fed. Proc. 21, 127 (1962).PubMedGoogle Scholar
  224. Neth, R., Monro, R. E., Heller, G., Battaner, E., Vazquez, D.: Catalysis of peptidyl transfer by human tonsil ribosomes and effects of some antibiotics. FEBS Letters 6, 198 (1970).PubMedCrossRefGoogle Scholar
  225. Nichols, J. L.: Nucleotide sequence from the polypeptide chain termination region of the coat protein cistron in bacteriophage R17 RNA. Nature (Lond.) 225, 147 (1970).CrossRefGoogle Scholar
  226. Nirenberg, W. M., Leder, P.: RNA codewords and protein synthesis. Science 145, 1399 (1964).Google Scholar
  227. Nirenberg, W. M., Leder, P., Bernfield, M., Brimacombe, R., Trupin, J., Rottman, F., O’Neal, C.: RNA codewords and protein synthesis. VII. On the general nature of the RNA code. Proc. nat. Acad. Sci. (Wash.) 53, 1161 (1965).CrossRefGoogle Scholar
  228. Nirenberg, M. W., Matthaei, J. H.: The dependence of cell-free protein synthesis upon naturally occurring or synthetic polyribonucleotides. Proc. nat. Acad. Sci. (Wash.) 47, 1588 (1961).CrossRefGoogle Scholar
  229. Nishimura, H., Mayama, M., Komatsu, Y., Kato, H., Shimaoka, N., Tanaka, Y.: Showdomycin: a new antibiotic from a Streptomyces SP. J. Antibiot. Ser. A (Tokyo) 17, 148 (1964).Google Scholar
  230. (1).
    Nishizuka, Y., Lipmann, F.: Comparison of guanosine triphosphate split and polypeptide synthesis with a purified E. coli system. Proc. nat. Acad. Sci. (Wash.) 55, 212 (1966).CrossRefGoogle Scholar
  231. (2).
    Nishizuka, Y., Lipmann, F.: The interrelationship between GTP and amino acid polymerization. Arch. Biochem. Biophys. 116, 344 (1966).PubMedCrossRefGoogle Scholar
  232. Nomura, M., Lowry, C.: Phage F2 RNA-directed binding of formylmethionyl-tRNA to ribosomes and the role of 30 S ribosomal subunits in initiation of protein synthesis. Proc. nat. Acad. Sci. (Wash.) 58, 946 (1967).CrossRefGoogle Scholar
  233. Nomura, M., Lowry, C. V., Guthrie, C.: The initiation of protein synthesis: joining of the 50 S ribosomal subunit to the initiation complex. Proc. nat. Acad. Sci. (Wash.) 58, 1487 (1967).CrossRefGoogle Scholar
  234. Nomura, M., Mizushima, S., Ozaki, M., Traub, P., Lowry, C. V.: Structure and function of ribosomes and their molecular components. Cold Spr. Harb. Symp. quant. Biol. 34, 49 (1969).Google Scholar
  235. (1).
    Obrig, T. G., Culp, W. J., McKeehan, W. L., Hardesty, B.: The mechanism by which cyclobeximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J. biol. Chem. 246, 174 (1971).PubMedGoogle Scholar
  236. (2).
    Obrig, T. G., Irvin, J., Culp, W., Hardesty, B.: Inhibition of peptide initiation on reticulocyte ribosomes by edeine. Europ. J. Biochem. 21, 31 (1971).PubMedCrossRefGoogle Scholar
  237. Ohta, T., Sarkar, S., Thach, R. E.: The role of guanosine 5’-triphosphate in the initiation of peptide synthesis. III. Binding of formylmethionyl-tRNA to ribosomes. Proc. nat. Acad. Sci. (Wash.) 58, 1638 (1967).CrossRefGoogle Scholar
  238. Okura, A., Kinoshita, T., Tanaka, N.: Complex formation of fusidic acid with G-factor, ribosome and guanosine nucleotide. Biochem. biophys. Res. Commun. 41, 1545 (1970).PubMedCrossRefGoogle Scholar
  239. Okuyama, A., Machiyama, M., Kinoshita, T., Tanaka, N.: Inhibition by kasugamycin of initiation complex formation on 30 S ribosomes. Biochem. biophys. Res. Commun. 43, 196 (1971).PubMedCrossRefGoogle Scholar
  240. Old, D., Gorini, L.: Amino acid changes provoked by streptomycin in a polypeptide synthesized in vitro. Science 150, 1290 (1965).PubMedCrossRefGoogle Scholar
  241. Oleinick, N. L., Corcoran, J. W.: Two types of binding of erythromycin to sibosomes from antibiotic sensitive and resistant Bacillus subtilis 168. J. biol. Chem. 244, 727 (1969).PubMedGoogle Scholar
  242. Oleinick, N. L., Wilhelm, J. M., Corcoran, J. W.: Nonidentity of the site of action of erythromycin A and chloramphenicol on Bacillus subtilis ribosomes. Biochim. biophys. Acta (Amst.) 155, 290 (1968).Google Scholar
  243. Ono, Y., Skoultchi, A., Klein, A., Lengyel, P.: Peptide chain elongation: discrimination against the initiator transfer RNA by microbial amino acid polymerization factors. Nature (Lond.) 220, 1304 (1968).CrossRefGoogle Scholar
  244. (1).
    Ono, Y., Skoultchi, A., Waterson, J., Lengyel, P.: Stoichiometry of aminoacyl-transfer RNA binding and GTP during chain elongation and translocation. Nature (Lond.) 223, 697 (1969).CrossRefGoogle Scholar
  245. (2).
    Ono, Y., Skoultchi, A., Waterson, J., Lengyel, P.: Peptide chain elongation: GTP cleavage catalyzed by factors binding aminoacyl-transfer RNA to the ribosome. Nature (Lond.) 222, 645 (1969).CrossRefGoogle Scholar
  246. Otaka, E., Teraoka, H., Tamaki, M., Tanaka, K., Osawa, S.: Ribosomes from erythromycin resistant mutants of E. coli Q13. J. molec. Biol. 48, 499 (1970).PubMedCrossRefGoogle Scholar
  247. Ozaki, M., Mizushima, S., Nomura, M.: Identification and functional characterization of the protein controlled by the streptomycin resistant locus in E. coli. Nature (Lond.) 222, 333 (1969).CrossRefGoogle Scholar
  248. Panet, A., Degroot, N., Lapidot, Y.: Substrate specificity of E. coli peptidyl transferase. Europ. J. Biochem. 15, 222 (1970).PubMedCrossRefGoogle Scholar
  249. Parenti-Rosina, R., Eisenstadt, A., Eisenstadt, J. M.: Isolation of protein initiation factors from 30 S ribosomal subunits. Nature (Lond.) 221, 363 (1969).CrossRefGoogle Scholar
  250. Parmeggiani, A.: Crystalline transfer factors from E. coli. Biochem. biophys. Res. Commun. 30, 613 (1968).PubMedCrossRefGoogle Scholar
  251. (1).
    Parmeggiani, A., Gottschalk, E. M.: Isolation and some properties of the amino acid polymerization factors from Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 34, 377 (1969).Google Scholar
  252. (2).
    Parmeggiani, A., Gottschalk, E. M.: Properties of the crystalline amino acid polymerization factors from Escherichia coli: binding of G to ribosomes. Biochem. biophys. Res. Commun. 35, 861 (1969).PubMedCrossRefGoogle Scholar
  253. Pavan, M., Bo, G.: Pederin, toxic principle obtained in the crystalline state from the beetle Paederus fuscipes curt. Physiol, comp. (’s-Grav.) 3, 307 (1953).Google Scholar
  254. Perani, A., Parisi, B., Decarli, L., Ciferri, O.: Incorporation of amino acids by a cell-free system prepared from human cells cultured in vitro, Biochim. biophys. Acta (Amst.) 161, 223 (1968).Google Scholar
  255. Pestka, S.: The action of streptomycin on protein synthesis in vitro. Bull. N. Y. Acad. Med. 43, 126 (1967).PubMedGoogle Scholar
  256. Pestka, S.: Inhibitors of ribosome functions. Ann. Rev. Microbiol. 25, 487 (1971).CrossRefGoogle Scholar
  257. Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. V. On the function of a soluble transfer factor in protein synthesis. Proc. nat. Acad. Sci. (Wash.) 61, 726 (1968).Google Scholar
  258. (1).
    Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. VIII. Survey of the effect of antibiotics on N-acetyl-phenylalanyl-puromycin formation: possible mechanism of chloramphenicol action. Arch. Biochem. Biophys. 136, 80 (1970).PubMedCrossRefGoogle Scholar
  259. (2).
    Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. IX. Effect of antibiotics on translocation and peptide bond formation. Arch. Biochem. Biophys. 136, 89 (1970).PubMedCrossRefGoogle Scholar
  260. (1).
    Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosone complexes. X. Phenylalanyl-oligonucleotide binding to ribosomes and the mechanism of chloramphenicol action. Biochem. biophys. Res. Commun. 36, 589 (1969).PubMedCrossRefGoogle Scholar
  261. (2).
    Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. XI. Antibiotic effects on phenylalanyl-oligonucleotide binding to ribosomes. Proc. nat. Acad. Sci. (Wash.) 64, 709 (1969).CrossRefGoogle Scholar
  262. Pestka, S.: Translocation, aminoacyl-oligonucleotides, and antibiotic action. Cold Spr. Harb. Symp. quant. Biol. 34, 395 (1969).Google Scholar
  263. Pestka, S., Hishizawa, T., Lessard, J. L.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. XIII. Aminoacyl oligonucleotide binding to ribosomes: characteristics and requirements. J. biol. Chem. 245, 6208 (1970).PubMedGoogle Scholar
  264. Pestka, S., Marshall, R., Nirenberg, M.: RNA codewords and protein synthesis. V. Effect of streptomycin on the formation of ribosome-sRNA complexes. Proc. nat. Acad. Sci. (Wash.) 53, 639 (1965).CrossRefGoogle Scholar
  265. Pestka, S., Nirenberg, M. W.: Regulatory mechanisms and protein synthesis. X. Codon recognition on 30 S ribosomes. J. molec. Biol. 21, 145 (1966).PubMedCrossRefGoogle Scholar
  266. Phillips, L. A., Hotham-Iglewski, B., Franklin, R. M.: Ribosomes of Escherichia coli. I. Effzcts of monovalent cations on the distribution of polysomes, ribosomes and ribosomal subunits. J. molec. Biol. 40, 279 (1969).PubMedCrossRefGoogle Scholar
  267. Plotz, P. H., Davis, B. D.: Absence of chloramphenicol-insensitive phase of streptomycin action. J. Bact. 83, 802 (1962).PubMedGoogle Scholar
  268. Prichard, P. M., Gilbert, J. M., Shafritz, D. A., Anderson, W. F.: Factors for the initiation of haemoglobin synthesis by rabbit reticulocyte ribosomes. Nature (Lond.) 226, 511 (1970).CrossRefGoogle Scholar
  269. Raeburn, S., Goor, R. S., Schneider, J. A., Maxwell, E. S.: Interaction of aminoacyl transferase II and guanosine triphospbate: inhibition by diphtheria toxin and nicotinamide adenine dinucleotide. Proc. nat. Acad. Sci. (Wash.) 61, 1428 (1968).CrossRefGoogle Scholar
  270. Rao, P., Moldave, K.: The binding of aminoacyl sRNA and GTP to transferase I. Biochem. biophys. Res. Commun. 28, 909 (1967).PubMedCrossRefGoogle Scholar
  271. Rao, P.,Moldave, K.: Interaction of polypeptide chain elongation factors with rat liver ribosomal subunits. J. molec. Biol. 46, 447 (1969).PubMedCrossRefGoogle Scholar
  272. Rao, S. S., Grollman, A. P.: Cycloheximide resistance in yeast: a property of the 60 S ribosomal subunit. Biochem. biophys. Res. Commun. 29, 696 (1967).PubMedCrossRefGoogle Scholar
  273. Ravel, J. M., Shorey, R. L., Garner, C. W., Dawkins, R. C., Shive, W.: The role of an aminoacyl tRNA-GTP-protein complex in polypeptide synthesis. Cold Spr. Harb. Symp. quant. Biol. 34, 321 (1969).Google Scholar
  274. Ravel, J. M., Shorey, R. L., Shive, W.: The composition of the active intermediate in the transfer of aminoacyl-RNA to ribosomes. Biochem. biophys. Res. Commun. 32, 9 (1968).PubMedCrossRefGoogle Scholar
  275. Ravel, J. M., Shorey, R. L., Shive, W.: Relationship between peptidyl transferase activity and interaction of ribosomes with phenylalanyl transfer ribonucleic acid-guanosine 5’-triphosphate TIu complex. Biochemistry 9, 5028 (1970).PubMedCrossRefGoogle Scholar
  276. Revel, M., Greenshpan, H., Herzberg, M.: Specificity in the binding of E. coli ribosomes to natural messenger RNA. Europ. J. Biochem. 16, 117 (1970).PubMedCrossRefGoogle Scholar
  277. (1).
    Revel, M., Herzberg, M., Becarevic, A., Gros, F.: Role of a protein factor in the functional binding of ribosomes to natural messenger RNA. J. molec. Biol. 33, 231 (1968).PubMedCrossRefGoogle Scholar
  278. Revel, M., Herzberg, M., Greenshpan, H.: Initiator protein dependent binding of messenger RNA to the ribosome. Cold Spr. Harb. Symp. quant. Biol. 34, 261 (1969).Google Scholar
  279. (2).
    Revel, M., Lelong, J. C., Brawerman, G., Gros, F.: Function of three protein factors and ribosomal subunits in the initiation of protein synthesis in E. coli. Nature (Lond.) 219, 1016 (1968).CrossRefGoogle Scholar
  280. Richter, D.: Formation of a ternary complex between yeast aminoacyl-tRNA binding factor, GTP, and aminoacyl-tRNA. Biochem. biophys. Res. Commun. 38, 864 (1970).PubMedCrossRefGoogle Scholar
  281. Richter, D., Lin, L., Bodley, J. W.: Studies on translocation IX: the pattern of action of antibiotic translocation inhibitors in eukaryotic and prokaryotic systems. Arch. Biochem. Biophys. 147, 186 (1971).PubMedCrossRefGoogle Scholar
  282. Roberts, W. K., Coleman, W. H.: Polyuridylic acid binding by protein from Ehrlich ascites cell ribosomes and its inhibition by Aurintricarboxylic acid. Biochemistry 10, 4304 (1971).PubMedCrossRefGoogle Scholar
  283. Ron, E. Z., Köhler, R. E., Davis, B. D.: Magnesium ion dependence of free and polysomal ribosomes from Escherichia coli. J. molec. Biol. 36, 83 (1968).PubMedCrossRefGoogle Scholar
  284. Rosset, R., Gorini, L.: A ribosomal ambiguity mutation. J. molec. Biol. 39, 95 (1969).PubMedCrossRefGoogle Scholar
  285. Roufa, D. J., Doctor, B. P., Leder, P.: The two site model of ribosomal function: a test using degenerate serine codons in bacteriophage f2 mRNA. Biochem. biophys. Res. Commun. 39, 231 (1970).PubMedCrossRefGoogle Scholar
  286. Rychlik, I., Cerna, C., Stanislav, C., Pulkrapek, P., Zemlicka, J.: Substrate specificity of ribosomal peptidyl transferase. The effect of the nature of the amino acid side chain on the acceptor activity of 2′(3′)-0-amino acyladenosines. Europ. J. Biochem. 16, 136 (1970).PubMedCrossRefGoogle Scholar
  287. Rychlik, I., Chladek, S., Zemlicka, J.: Release of peptide chains from the polylysyl-tRNA ribosome complex by cytidylyl-(3′-5′)-2′(3,)-0-glycyladenosine. Biochim. biophys. Acta (Amst.) 138, 640 (1967).Google Scholar
  288. Sabol, S., Ochoa, S.: Ribosomal binding of labeled initiation factor F3. Nature (Lond.) New Biol. 234, 233 (1971).Google Scholar
  289. (1).
    Salas, M., Hille, M. B., Last, J. A., Wahba, A. J., Ochoa, S.: Translation of the genetic message, II. Effect of initiation factors on the binding of formylmethionyl tRNA to ribosomes. Proc. nat. Acad. Sci. (Wash.) 57, 387 (1967).CrossRefGoogle Scholar
  290. (2).
    Salas, M., Miller, M. J., Wahba, A. J., Ochoa, S.: Translation of the genetic message. V. Effect of Mg++ an formylation of methionine in protein synthesis. Proc. nat. Acad. Sci. (Wash.) 57, 1865 (1967).CrossRefGoogle Scholar
  291. Sarkar, S., Thach, R. E.: Inhibition of formylmethionyl transfer RNA binding to ribosomes by tetracycline. Proc. nat. Acad. Sci. (Wash.) 60, 1479 (1968).CrossRefGoogle Scholar
  292. Scaife, J., Beckwith, J. R.: Mutational alteration of the maximal level of lac Operon expression. Cold Spr. Harb. Symp. quant. Biol. 31, 403 (1966).Google Scholar
  293. Schedl, P., Singer, R. E., Conway, T. W.: A factor required for the translation of bacteriophage f2 RNA in extracts of T4-infected cells. Biochem. biophys. Res. Commun. 38, 631 (1970).PubMedCrossRefGoogle Scholar
  294. Schlessinger, D., Mangiarotti, G., Apirion, D.: The formation and stabilization of 30 S and 50 S ribosome couples in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 58, 1782 (1967).CrossRefGoogle Scholar
  295. Schlessinger, D., Gurgo, C., Luzzatto, L., Apirion, D.: Polyribosome metabolism in growing and non-growing E. coli. Cold Spr. Harb. Symp. quant. Biol. 34, 231 (1969).Google Scholar
  296. Schneir, M., Moldave, K.: The isolation and biological activity of multiple forms of aminoacyl transferase I of rat liver. Biochim. biophys. Acta (Amst.) 166, 58 (1968).Google Scholar
  297. Schreier, M. H., Noll, H.: Conformational changes in ribosomes during protein synthesis. Proc. nat. Acad. Sci. (Wash.) 68, 805 (1971).CrossRefGoogle Scholar
  298. Scolnick, E. M., Caskey, C. T.: Peptide chain termination. V. The role of release factors in mRNA terminator codon recognition. Proc. nat. Acad. Sci. (Wash.) 64, 1235 (1969).CrossRefGoogle Scholar
  299. Scolnick, E. M., Tompkins, R., Caskey, T., Nirenberg, M.: Release factors differing in specificity for terminator codons. Proc. nat. Acad. Sci. (Wash.) 61, 768 (1968).CrossRefGoogle Scholar
  300. Shafritz, D. A., Anderson, W. F.: Factor dependent binding of methionyl-tRNAs to reticulocyte ribosomes. Nature (Lond.) 227, 918 (1970).CrossRefGoogle Scholar
  301. Shafritz, D. A., Laycock, D. G., Crystal, R. G., Anderson, W. F.: Requirement for GTP in the initiation process on reticulocyte ribosomes and ribosomal subunits. Proc. nat. Acad. Sci. (Wash.) 68, 2246 (1971).CrossRefGoogle Scholar
  302. Shafritz, D. A., Prichard, P. M., Gilbert, J. M., Anderson, W. F.: Separation of two factors, M1 and M2, required for poly U dependent polypeptide synthesis by rabbit reticulocyte ribosomes at low magnesium ion concentration. Biochem. biophys. Res. Commun. 38, 721 (1970).PubMedCrossRefGoogle Scholar
  303. Sherman, M. I., Simpson, M. V.: The role of ribosomal conformation in protein biosynthesis: the streptomycin-ribosome interaction. Proc. nat. Acad. Sci. (Wash.) 64, 1388 (1969).CrossRefGoogle Scholar
  304. Shorey, R. L., Ravel, J. M., Garner, C. W., Shive, W.: Formation and properties of the aminoacyl transfer ribonucleic acid-guanosine triphosphate-protein complex. An intermediate in the binding of aminoacyl transfer ribonucleic acid. J. biol. Chem. 244, 4555 (1969).PubMedGoogle Scholar
  305. Siegelman, F. L., Apirion, D.: Inhibition of polyuridylic acid-directed protein synthesis by aurintricarboxylate in extracts of Escherichia coli. J. Bact. 105, 451 (1971).Google Scholar
  306. Sisler, J., Moldave, K.: Studies on the binding of phenylalanyl transfer RNA to rat-liver ribosomes. Biochim. biophys. Acta (Amst.) 195, 123 (1969).Google Scholar
  307. Skogerson, L., Roufa, D., Leder, P.: Characterization of the initial peptide of Qβ RNA polymerase and control of its synthesis. Proc. nat. Acad. Sci. (Wash.) 68, 276 (1971).CrossRefGoogle Scholar
  308. Skoultchi, A., Ono, Y., Waterson, J., Lengyel, P.: Peptide chain elongation. Cold Spr. Harb. Symp. quant. Biol. 34, 437 (1969).Google Scholar
  309. Skoultchi, A., Ono, Y., Moon, H. M., Lengyel, P.: On three complementary amino acid polymerization factors from Bacillus stearothermophilus separation of a complex containing two of the factors, guanosine-5’-triphosphate and aminoacyl transfer RNA. Proc. nat. Acad. Sci. (Wash.) 60, 675 (1968).CrossRefGoogle Scholar
  310. Skoultchi, A., Ono, Y., Waterson, J., Lengyel, P.: Peptide chain elongation: indications for the binding of an amino acid polymerization factor, guanosine 5’-triphosphate-aminoacyl transfer ribonucleic acid complex to the messenger ribosome complex. Biochemistry 9, 508 (1970).PubMedCrossRefGoogle Scholar
  311. Slechta, L.: Mode of action of sparsomycin in Escherichia coli. Antimicrobial Agent Chemotherapy 326 (1965).Google Scholar
  312. Smith, A. E., Marcker, K. A.: Cytoplasmic methionine transfer RNA’s from eukaryotes. Nature (Lond.) 226, 607 (1970).CrossRefGoogle Scholar
  313. Sparling, P. F., Modolell, J., Takeda, Y., Davis, B. D.: Ribosomes from Escherichia coli merodiploids heterozygous for resistance to streptomycin and to spectinomycin. J. molec. Biol. 37, 407 (1968).PubMedCrossRefGoogle Scholar
  314. Spirin, A. S.: How does the ribosome work? A hypothesis based on the two subunit construction of the ribosome. Curr. modern Biol. 2, 115 (1968).Google Scholar
  315. Spyrides, G. J., Lipmann, F.: The effect of univalent cations on the binding of sRNA to the template-ribosome complex. Proc. nat. Acad. Sci. (Wash.) 51, 1220 (1964).CrossRefGoogle Scholar
  316. Staehelin, T., Maglotti, D., Monro, R. E.: On the catalytic center of peptidyl transfer: a part of the 50 S ribosome structure. Cold Spr. Harb. Symp. quant. Biol. 34, 39 (1969).Google Scholar
  317. Steitz, J. A.: Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature (Lond.) 224, 957 (1969).CrossRefGoogle Scholar
  318. Steitz, J. A.,Dube, S. K., Rudland, P. S.: Control of translation by T4 phage: altered ribosome binding at R17 initiation sites. Nature (Lond.) 226, 824 (1970).CrossRefGoogle Scholar
  319. Stern, J. L., Cohen, S. S.: Lethality and the stimulation of RNA synthesis by streptomycin. Proc. nat. Acad. Sci. (Wash.) 51, 859 (1964).CrossRefGoogle Scholar
  320. (1).
    Stewart, M. L., Grollman, A. P., Huang, M.-T.: Aurintricarboxylic acid: inhibitor of initiation of protein synthesis. Proc. nat. Acad. Sci. (Wash.) 68, 97 (1971).CrossRefGoogle Scholar
  321. Stewart-Blair, M. L., Yanowitz, I. S., Goldberg, I. H.: Inhibition of synthesis of new globin chains in reticulocyte lysates by pactamycin. Biochemistry 10, 4198 (1971).PubMedCrossRefGoogle Scholar
  322. Stretton, A. O. W., Brenner, S.: Molecular consequences of the amber mutation and its supression. J. molec. Biol. 12, 456 (1965).PubMedCrossRefGoogle Scholar
  323. Suarez, G., Nathans, D.: Inhibition of aminoacyl-sRNA binding to ribosomes by tetracycline. Biochem. biophys. Res. Commun. 18, 743 (1965).CrossRefGoogle Scholar
  324. Subramanian, A. R., Davis, B. D.: Rapid exchange of subunits between free ribosomes in extracts of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 68, 2453 (1971).CrossRefGoogle Scholar
  325. Subramanian, A. R., Davis, B. D., Beller, R. J.: The ribosome dissociation factor and the ribosome-polysome cycle. Cold Spr. Harb. Symp. quant. Biol. 34, 223 (1969).Google Scholar
  326. Suzuka, I., Kaji, A.: Studies on diphenylalanine synthesis. Biochim. biophys. Acta (Amst.) 149, 540 (1967).Google Scholar
  327. Suzuka, I., Kaji, H., Kaji, A.: Binding of specific sRNA to 30 S ribosomal subunits: effect of 50 S ribosomal subunits. Proc. nat. Acad. Sci. (Wash.) 55, 1483 (1966).CrossRefGoogle Scholar
  328. Suzuka, I., Kaji, H., Kaji, A.: Binding of specific sRNA to 30 S-subunits. Comparison with the binding to 70 S ribosomes. Biochem. biophys. Res. Commun. 21, 187 (1965).PubMedCrossRefGoogle Scholar
  329. Swan, D., Matthaei, H.: Further evidence for the four-site model of ribosomal function: bacteriophage fr mRNA coded binding of aa-tRNA. FEBS Letters 17, 215 (1971).PubMedCrossRefGoogle Scholar
  330. Symons, R. H., Harris, R. J., Clarke, L. P., Wheldrake, J. F., Elliott, W. H.: Structural requirements for inhibition of polyphenylalanine synthesis by aminoacyl and nucleotidyl analogues of puromycin. Biochim. biophys. Acta (Amst.) 179, 248 (1969).Google Scholar
  331. Szer, W., Kurylo-Borowska, Z.: Effect of edeine on aminoacyl-tRNA binding to ribosomes and its relationship to ribosomal binding sites. Biochim. biophys. Acta (Amst.). 224, 477 (1970).Google Scholar
  332. Takanami, M., Okamoto, T.: Interaction of ribosomes and synthetic polyribonucleotides. J. molec. Biol. 7, 323 (1963).PubMedCrossRefGoogle Scholar
  333. (1).
    Tanaka, K., Teraoka, H., Tamaki, M.: Peptidyl puromycin synthesis: effect of several antibiotics which act on 50 S ribosomal subunits. FEBS Letters 13, 65 (1971).PubMedCrossRefGoogle Scholar
  334. (1).
    Tanaka, K., Watanabe, S., Teraoka, H., Tamaki, M.: Effect of siomycin on protein synthesizing activity of Escherichia coli ribosomes. Biochem. biophys. Res. Commun. 39, 1189 (1970).PubMedCrossRefGoogle Scholar
  335. (2).
    Tanaka, K., Watanabe, S., Tamaki, M.: Mode of action of siomycin. J. Antibiot. Ser. A (Tokyo) 23, 13 (1970).Google Scholar
  336. (1).
    Tanaka, N., Kawano, G., Kinoshita, T.: Chromosomal location of a fusidic acid resistant marker in Escherichia coli. Biochem. biophys. Res. Commun. 42, 564 (1971).PubMedCrossRefGoogle Scholar
  337. (2).
    Tanaka, N., Lin, Y.-C., Okuyama, A.: Studies on translocation of f-Met-tRNA and peptidyl tRNA with antibiotics. Biochem. biophys. Res. Commun. 44, 477 (1971).PubMedCrossRefGoogle Scholar
  338. Tanaka, N., Masukawa, H., Umezawa, H.: Structural basis of kanamycin for miscoding activity. Biochem. biophys. Res. Commun. 26, 544 (1967).PubMedCrossRefGoogle Scholar
  339. Tanaka, S., Igarashi, K., Kaji, A.: Further studies on the action of puromycin and tetracycline. J. biol. Chem. (1972) (in press).Google Scholar
  340. Tanaka, S., Kaji, A.: Does translocase (G-factor) require the presence of unesterified tRNA on the donor site for its action? The effect of fusidic acid. Biochem. biophys. Res. Commun. 46, 136 (1972).PubMedCrossRefGoogle Scholar
  341. Tanaka, Y., Kaji, H.: The role of ribosomal protein for the binding of dihydrostreptomycin to ribosomes. Biochem. biophys. Res. Commun. 32, 313 (1968).PubMedCrossRefGoogle Scholar
  342. Teraoka, H.: Reversal of the inhibitory action of chloramphenicol on the ribosomal peptidyl transfer reaction by erythromycin. Biochim. biophys. Acta (Amst.) 213, 535 (1970).Google Scholar
  343. Teraoka, H., Tanaka, K., Tamaki, M.: The comparative study on the effects of chloramphenicol, erythromycin and lincomycin on polylysine synthesis in an Escherichia coli cell-free system. Biochim. biophys. Acta (Aunt.) 174, 776 (1969).Google Scholar
  344. (2).
    Thach, S. S., Thach, R. E.: Translocation of messenger RNA and “accomodation” of fMet-tRNA. Proc. nat. Acad. Sci. (Wash.) 68, 1791 (1971).CrossRefGoogle Scholar
  345. (1).
    Thach, S. S., Thach, R. E.: One molecule of guanosine triphosphate is present in each 30 S initiation complex. Nature (Lond.) New Biol. 229, 219 (1971).CrossRefGoogle Scholar
  346. Tocchini-Valentinl, G. P., Felicetti, L., Rinaldi, G. M.: Mutants of Escherichia coli blocked in protein synthesis: mutants with an altered G-factor. Cold Spr. Harb. Symp. quant. Biol. 34, 463 (1969).Google Scholar
  347. Tompkins, R. K.,Scolnick, E. M., Caskey, C. T.: Peptide chain termination. VII. The ribosomal and release factor requirements for peptide release. Proc. nat. Acad. Sci. (Wash.) 65, 702 (1970).CrossRefGoogle Scholar
  348. Traub, P., Nomura, M.: Structure and function of E. coli ribosomes. V. Reconstruction of functionally active 30 S ribosomal particles from RNA and proteins. Proc. nat. Acad. Sci. (Wash.) 59, 777 (1968).CrossRefGoogle Scholar
  349. Vanderhaeghe, H., van Dyck, P., Parmentier, G., Desomer, P.: Isolation and properties of the components of staphylomycin. Antibiot. and Chemother. 7, 606 (1957).Google Scholar
  350. Vazquez, D.: Antibiotics which affect protein synthesis: the uptake of 14C-chloramphenicol by bacteria. Biochem. biophys. Res. Commun. 12, 409 (1963).PubMedCrossRefGoogle Scholar
  351. (2).
    Vazquez, D.: Binding of CM to ribosomes: the effect of a number of antibiotics. Biochim. biophys. Acta (Amst.) 114, 277 (1966).Google Scholar
  352. (3).
    Vazquez, D.: Antibiotics affecting chloramphenicol uptake by bacteria. Their effect on amino acid incorporation in a cell-free system. Biochim. biophys. Acta (Amst.) 114, 289 (1966).Google Scholar
  353. (1).
    Vazquez, D.: Studies on the mode of action of the streptomycin antibiotics. J. gen. Microbiol. 42, 93 (1966).PubMedGoogle Scholar
  354. Vazquez, D., Battane, E., Neth, R. R., Heller, G., Monro, R. E.: The function of 80 S ribosomal subunits and effects of some antibiotics. Cold Spr. Harb. Symp. quant. Biol. 34, 369 (1969).Google Scholar
  355. Vazquez, D., Monro, R. E.: Effects of some inhibitors of protein synthesis on the binding of aminoacyl tRNA to ribosomal subunits. Biochim. biophys. Acta (Amst.) 142, 155 (1967).Google Scholar
  356. Vermeer, C., Talens, J., Bloemsma-Jonkman, F., Bosch, L.: Studies on the ribosomal initiation factor F3. Multiplicity of F3 and DF activities. FEBS Letters 19, 201 (1971).PubMedCrossRefGoogle Scholar
  357. Vogel, Z., Vogel, T., Elson, D.: The effect of erythromycin on peptide bond formation and the termination reaction. FEBS Letters 15, 249 (1971).PubMedCrossRefGoogle Scholar
  358. Vogel, Z., Vogel, T., Zamir, A., Elson, D.: Ribosome activation and the binding of dihydrostreptomycin: effect of polynucleotides and temperature on activation. J. molec. Biol. 54, 379 (1970).PubMedCrossRefGoogle Scholar
  359. Vogel, Z., Zamir, A., Elson, D.: The possible involvement of peptidyl transferase in the termination step of protein synthesis. Biochemistry 8, 5161 (1969).PubMedCrossRefGoogle Scholar
  360. Wahba, J. A., Chae, Y.-B., Iwasaki, K., Mazumder, R., Miller, M. J., Sabol, S., Sillero, M. A. G.: Initiation of protein synthesis in Escherichia coli. I. Purification and properties of the initiation factors. Cold Spr. Harb. Symp. quant. Biol. 34, 285 (1969).Google Scholar
  361. Waller, J.-P., Erdos, T., Lemoine, F., Guttmann, S., Sandrin, E.: Inhibition of protein synthesis by aminoacyl 3′(2′)-adenosine. Biochim. biophys. Acta (Amst.) 119, 566 (1966).Google Scholar
  362. Warner, J. R., Rich, A.: The number of soluble RNA molecules on reticulocyte polyribosomes. Proc. nat. Acad. Sci. (Wash.) 51, 1134 (1964).CrossRefGoogle Scholar
  363. Watanabe, S., Tanaka, K.: Effect of siomycin on the acceptor site of Escherichia coli ribosomes. Biochem. biophys. Res. Commun. 45, 728 (1971).PubMedCrossRefGoogle Scholar
  364. Waterson, J., Beaud, G., Lengyel, P.: The S1 factor in peptide chain elongation. Nature (Lond.) 227, 34 (1970).CrossRefGoogle Scholar
  365. Weber, M. J., Demoss, J. A.: The inhibition by chloramphenicol of nascent protein formation in E. coli. Proc. nat. Acad. Sci. (Wash.) 55, 1224 (1966).CrossRefGoogle Scholar
  366. Weber, M. J., Demoss, J. A.: Inhibition of the peptide bond syntheizing cycle by chloramphenicol. J. Bact. 97, 1099 (1969).PubMedGoogle Scholar
  367. Webster, R. E., Zinder, N. D.: Fate of the message-ribosome complex upon translation of termination signals. J. molec. Biol. 42, 425 (1969).PubMedCrossRefGoogle Scholar
  368. Weisblum, B., Davies, J.: Antibiotic inhibitors of the bacterial ribosome. Bact. Rev. 32, 493 (1968).PubMedGoogle Scholar
  369. Weisblum, B., Demohn, V.: Inhibition by thiostrepton of the formation of a ribosome-bound guanine nucleotide complex. FEBS Letters 11, 149 (1970).PubMedCrossRefGoogle Scholar
  370. Weissbach, H., Brot, N.: Inhibition of transfer factor Ts by aurintricarboxylic acid. Biochem. biophys. Res. Commun. 39, 1194 (1970).PubMedCrossRefGoogle Scholar
  371. (1).
    Weissbach, H., Kurylo-Borowska, Z., Szer, W.: Effect of edeine on aminoacyl tRNA binding to ribosomes. Arch. Biochem. Biophys. 146, 356 (1971).PubMedCrossRefGoogle Scholar
  372. (2).
    Weissbach, H., Redfield, B., Brot, N.: Further studies on the role of factors Ts and Tu in protein synthesis. Arch. Biochem. Biophys. 144, 224 (1971).PubMedCrossRefGoogle Scholar
  373. (3).
    Weissbach, H., Redfield, B., Brot, N.: Aminoacyl tRNA-Tu-GTP interaction with ribosomes. Arch. Biochem. Biophys. 145, 676 (1971).PubMedCrossRefGoogle Scholar
  374. Weissbach, H., Redfield, B., Hachman, J.: Studies on the role of factor Ts in aminoacyl-tRNA binding to ribosomes. Arch. Biochem. Biophys. 141, 384 (1970).PubMedCrossRefGoogle Scholar
  375. Wettstein, F. O., Noll, H.: Binding of transfer ribonucleic acid to ribosomes engaged in protein synthesis: number and properties of ribosomal binding sites. J. molec. Biol. 11, 35 (1965).PubMedCrossRefGoogle Scholar
  376. Wettstein, F. O., Noll, H., Penman, S.: Effect of cycloheximide on ribosomal aggregates engaged in protein synthesis in vitro. Biochim. biophys. Acta (Amst.) 87, 525 (1964).Google Scholar
  377. White, J. P., Cantor, C. R.: Role of magnesium in the binding of tetracycline to Escherichia coli ribosomes. J. molec. Biol. 58, 397 (1971).PubMedCrossRefGoogle Scholar
  378. Wiley, P. F., Mackellar, F. A.:The structure of sparsomycin. J. Amer. chem. Soc. 92, 417 (1970).CrossRefGoogle Scholar
  379. Wilhelm, J. M., Corcoran, J. W.: Antibiotic glycosides. VI. Definition of the 50 S ribosomal subunit of Bacillus subtilis 168 as a major determinant of sensitivity to erythromycin A. Biochemistry 6, 2578 (1967).PubMedCrossRefGoogle Scholar
  380. Wittmann, H. G., Stoeffler, G., Hindennach, I., Kurland, C. G., Randall-Hazalbauer, L., Birge, E. A., Nomura, M., Kaltschmidt, E., Mizushima, S., Traut, R. R., Bickle, T. A.: Correlation of 30 S ribosomal proteins of E. coli isolated in different laboratories. Molec. gen. Genet. 111, 327 (1971).PubMedCrossRefGoogle Scholar
  381. Wolfe, A. D., Hahn, F. E.: Erythromycin mode of action. Science 143, 1445 (1964).PubMedCrossRefGoogle Scholar
  382. Wolfe, A. D., Hahn, F. E.: Mode of action of chloramphenicol. IX. Effects of chloramphenicol upon a ribosomal amino acid polymerization system and its binding to bacterial ribosome. Biochim. biophys. Acta (Amst.) 95, 146 (1965).Google Scholar
  383. Yamaguchi, H., Tanaka, N.: Site of action of mikamycins A and B in polypeptide synthesizing systems. J. Biochem. 61, 18 (1967).PubMedGoogle Scholar
  384. (1).
    Zimmermann, R. A., Garvin, R. T., Gorini, L.: Alteration of a 30 S ribosomal protein accompanying the ram mutation in E. coli. Proc. nat. Acad. Sci. (Wash.) 68, 2263 (1971).CrossRefGoogle Scholar
  385. Zimmermann, R. A., Rosset, R., Gorini, L.: The nature of phenotypic masking exhibited by drug dependent str A mutants of E. coli. Pers. communication (1972).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • Akira Kaji

There are no affiliations available

Personalised recommendations