Reverse Transcription and the Central Dogma
Chapter
- 4 Citations
- 51 Downloads
Abstract
The Central Dogma of molecular biology which postulates the unidirectional transmission of genetic specifications for protein biosynthesis was enunciated by Crick (1958) who proposed explicitly that “once ‘information’ has passed into protein it cannot get out again. In more detail, the transfer of information from nucleic acid to nucleic acid, or from nucleic acid to protein may be possible, but transfer from protein to protein or from protein to nucleic acid is impossible. Information means here the precise determination of sequence either of bases in the nucleic acids or of amino acids in the protein.”
Keywords
Reverse Transcription Biochemical Evolution Central Dogma Molecular Biologist Rous Sarcoma Virus
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Baltimore, D.: RNA-dependent DNA polymerase in virions of RNA tumor viruses. Nature (Lond.) 226, 1209 (1970).CrossRefGoogle Scholar
- Bosmann, H. B.: RNA-directed DNA synthesis: Identification in L5178Y mouse leukemic cells and distribution of the polymerase in a synchronized L5178Y cell population. FEBS Letters 13, 121 (1971).PubMedCrossRefGoogle Scholar
- Britten, R. J., Kohne, D. E.: Repeated sequences in DNA. Science 161, 529 (1968).PubMedCrossRefGoogle Scholar
- Brockman, W. W., Carter, W. A.: Streptovaricins inhibit RNA-dependent DNA polymerase present in an oncogenic RNA virus. Nature (Lond.) 230, 249 (1971).CrossRefGoogle Scholar
- Cairns, J.: The bacterial chromosome and its manner of replication as seen by autoradiography. J. molec. Biol. 6, 208 (1963).PubMedCrossRefGoogle Scholar
- Cavalieri, L. F., Carroll, E.: RNA as a template with E. coli DNA polymerase. Biochem. biophys. Res. Commun. 41, 1055 (1970).PubMedCrossRefGoogle Scholar
- Chargaff, E.: Vorwort zu einer Grammatik der Biologie. Experientia (Basel) 26, 810 (1970).CrossRefGoogle Scholar
- Ciferri, O., Barlati, S., Lederberg, J.: Uptake of synthetic polynucleotides by competent cells of Bacillus subtilis. J. Bact. 104, 684 (1970).PubMedGoogle Scholar
- Crick, F. H. C.: Discussion. In: The structure of nucleic acids and their role in protein synthesis. Cambridge: University Press 1957.Google Scholar
- Crick, F. H. C.: On protein synthesis. In: The biological replication of macromolecules, 138. New York: Academic Press 1958.Google Scholar
- Crick, F.: Central dogma of molecular biology. Nature (Lond.) 227, 561 (1970).CrossRefGoogle Scholar
- Crick, F. H. C., Griffith, J. S., Orgel, L. E.: Codes without commas. Proc. nat. Acad. Sci. (Wash.) 43, 416 (1957).CrossRefGoogle Scholar
- Crick, F. H. C., Watson, J. D.: Virus structure: General principles. Ciba Foundation Symp. on the nature of viruses, 1956, p. 5.Google Scholar
- DeLucia, P., Cairns, J.: Isolation of an E. coli strain with a mutation affecting DNA polymerase. Nature (Lond.) 224, 1164 (1969).CrossRefGoogle Scholar
- Duesberg, P. H., Canaani, E.: Complementarity between Rous sarcoma virus (RSV) RNA and the in vitro-synthesized DNA of the virus-associated DNA polymerase. Virology 42, 783 (1970).PubMedCrossRefGoogle Scholar
- Duesberg, P., Helm, K. V. D., Canaani, E.: Properties of a soluble DNA polymerase isolated from Rous sarcoma virus. Proc. nat. Acad. Sci. (Wash.) 68, 747 (1971).CrossRefGoogle Scholar
- Editorial: Two ways to protein. Lancet 1970, II, 31.Google Scholar
- Editorial: Roundabouts and swings. Nature (Lond.) 228, 1255 (1970).Google Scholar
- Editorial: The DNA replication mystery. Nature (Lond.) 230, 11 (1971).Google Scholar
- Feller, W. F., Chopra, H., Bepko, F.: Studies on the possible viral etiology of human breast cancer. Surgery 62, 750 (1967).PubMedGoogle Scholar
- Fujinaga, K., Parsons, J. T., Beard, J. W., Beard, D., Green, M.: Mechanism of carcinogenesis by RNA tumor viruses. III. Formation of RNA-DNA complex and duplex DNA molecules by the DNA polymerase (s) of avian mycoblastosis virus. Proc. nat. Acad. Sci. (Wash.) 67, 1432 (1970).CrossRefGoogle Scholar
- Gallo, R. C., Yang, S. S., Ting, R. S.: RNA-dependent DNA polymerase of human acute leukemic cells. Nature (Lond.) 228, 927 (1970).CrossRefGoogle Scholar
- Gamow, G.: Possible relation between deoxyribonucleic acid and protein synthesis. Nature (Lond.) 173, 318 (1954).Google Scholar
- Gamow, G., Rich, A., Ycas, M.: The problem of information transfer from the nucleic acids to proteins. Advanc. biol. med. Phys. 4, 23 (1956).Google Scholar
- Gerwin, B. I., Todaro, G. J., Zeve, V., Scolnick, E. M., Aaronson, S. A.: Separation of RNA-dependent DNA polymerase activity from the murine leukemia virion. Nature (Lond.) 228, 435 (1970).CrossRefGoogle Scholar
- Goulian, M., Kornberg, A., Sinsheimer, R. L.: Enzymatic synthesis of DNA. XXIV. Synthesis of infectious phage ∅ X174DNA. Proc. nat. Acad. Sci. (Wash.) 58, 2321 (1967).CrossRefGoogle Scholar
- Green, M., Rokutanda, M., Fujinaga, K., Ray, R. K., Rokutanda, H., Gurgo, C.: Mechanism of carcinogenesis by RNA tumor viruses. I. An RNA-dependent DNA polymerase in murine sarcoma viruses. Proc. nat. Acad. Sci. (Wash.) 67, 385 (1970).Google Scholar
- Gurgo, C., Ray, R. K., Thiry, L., Green, M.: Inhibitors of the RNA and DNA dependent polymerase activities of RNA tumor viruses. Nature (Lond.) 229, 111 (1971).CrossRefGoogle Scholar
- Hatanaka, M., Huebner, R. J., Gilden, R. V.: DNA polymerase activity associated with RNA tumor viruses. Proc. nat. Acad. Sci. (Wash.) 67, 143 (1970).CrossRefGoogle Scholar
- Hatanaka, M., Huebner, R. J., Gilden, R. V.: Specificity of the DNA product of the C-type virus RNA-dependent DNA polymerase. Proc. nat. Acad. Sci. (Wash.) 68, 10 (1971).CrossRefGoogle Scholar
- Kahn, D.: The Codebreakers, the story of secret writing. London: Weidenfeld and Nicolson 1967, p. 942.Google Scholar
- (1).Kirtikar, M. W., Duerksen, J. D.: A penicillinase-specific ribonucleic acid component from Bacillus cereus. I. Ribonucleic acid extraction and definition of the in vivo test system. Biochemistry 7, 1172 (1968).PubMedCrossRefGoogle Scholar
- (2).Kirtikar, M. W., Duerksen, J. D.: A penicillinase-specific ribonucleic acid component from Bacillus cereus. II. Partial characterization of the active component. Biochemistry 7, 1183 (1968).PubMedCrossRefGoogle Scholar
- Kornberg, T., Gefter, M. L.: Purification and DNA synthesis in cell-free extracts: Properties of DNA polymerase II. Proc. nat. Acad. Sci. (Wash.) 68, 761 (1971).CrossRefGoogle Scholar
- Lee-Huang, S., Cavalieri, L. F.: Isolation and properties of a nucleic acid hybrid polymerase. Proc. nat. Acad. Sci. (Wash.) 51, 1022 (1964).CrossRefGoogle Scholar
- Lin, F. H., Thormar, H.: Ribonucleic acid-dependent deoxyribonucleic acid polymerase in visna virus. J. Virol. 6, 702 (1970).PubMedGoogle Scholar
- McCarthy, B. J., Holland, J. J.: Denatured DNA as a direct template for in vitro protein synthesis. Proc. nat. Acad. Sci. (Wash.) 54, 880 (1965).CrossRefGoogle Scholar
- McDonnell, J. P., Garapin, A.-C., Levtnson, W. E., Quintrell, N., Faushier, L., Bishop,M. O.: DNA polymerase of Rous sarcoma virus: Delineation of two reactions with actinomycin. Nature (Lond.) 228, 433 (1970).CrossRefGoogle Scholar
- McDonnell, J. P., Taylor, J., Levinson, W., Bishop, J. M.: Soluble DNA polymerase from Rous sarcoma virus. Fed. Proc. 30, 1163 Abs. (1971).Google Scholar
- Masakuwa, H., Tanaka, N.: Stimulation by aminoglycoside antibiotics of DNA-directed protein synthesis. J. Biochem. (Tokyo) 62, 202 (1967).Google Scholar
- Meselson, M., Stahl, F. W.: The replication of DNA in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 44, 671 (1958).CrossRefGoogle Scholar
- Mizuno, S., Yamazaki, H., Nitta, K., Umezawa, H.: Inhibition of DNA-dependent RNA polymerase reaction of Escherichia coli by an antimicrobial antibiotic, streptovaricin. Biochim. biophys. Acta (Amst.) 157, 322 (1968).Google Scholar
- Mizutani, S., Boettiger, D., Temin, H. M.: A DNA-dependent DNA polymerase and a DNA endonuclease in virions of Rous sarcoma virus. Nature (Lond.) 228, 424 (1970).CrossRefGoogle Scholar
- Mizutani, S., Temin, H. M., Kodama, M., Wells, R. T.: DNA ligase and exonuclease activities in virions of Rous sarcoma virus. Nature (Lond.) 230, 232 (1971).Google Scholar
- Ochoa, S.: Biosynthesis or ribonucleic acid. In: Recent progress in microbiology, 122. Stockholm: Almquist & Wiksell 1958.Google Scholar
- Parks, W. P., Todaro, G. J., Scolnick, E. M., Aaronson, S. A.: RNA-dependent DNA polymerase in primate syncytium-forming (foamy) viruses. Nature (Lond.) 229, 258 (1971).CrossRefGoogle Scholar
- Říman, J., Beaudreau, G. S.: Viral DNA-dependent DNA polymerase and the properties of thymidine labelled material in virions of an oncogenic RNA virus. Nature (Lond.) 228, 427 (1970).CrossRefGoogle Scholar
- Rokutanda, M., Rokutanda, H., Green, M., Fujinaga, K., Ray, R. K., Gurgo, C.: Formation of viral RNA-DNA hybrid molecules by the DNA polymerase of sarcoma-leukemia viruses. Nature (Lond.) 227, 1026 (1970).CrossRefGoogle Scholar
- San-Chiun, S., Mang-Ming, H., Rui-Zhu, C., Hui-Zhu, C., Wen-Lin, Z.: Ribonucleic acid as a transforming principle in bacteria. Abstracts Vth Intern. Congr. Biochem., 409 (1961).Google Scholar
- San-Chuin, S., Mang-Ming, H., Ruichu, C., Wai-Chu, C., Wen-Lin, C.: Ribonucleic acid as a transforming principle in bacteria. Scientia Sinica 11, 233 (1962).Google Scholar
- Schlom, J., Harter, D. H., Burny, A., Spiegelman, S.: DNA polymerase activities in virions of visna virus, a causative agent of a “slow” neurological disease. Proc. nat. Acad. Sci. (Wash.) 68, 182 (1971).CrossRefGoogle Scholar
- Schlom, J., Spiegelman, S., Moore, D.: RNA-dependent DNA polymerase activity in virus-like particles isolated from human milk. Nature (Lond.) 231, 97 (1971).CrossRefGoogle Scholar
- Scolnick, E., Rands, E., Aaronson, S. A., Todaro, G. J.: RNA-dependent DNA polymerase activity in five RNA viruses: Divalent cation requirements. Proc. nat. Acad. Sci. (Wash.) 67, 1789 (1970).CrossRefGoogle Scholar
- Scolnick, E. M., Aaronson, S. A., Todaro, G. J., Parks, W. P.: RNA-dependent DNA polymerase activity in mammalian cells. Nature (Lond.) 229, 318 (1971).CrossRefGoogle Scholar
- Spiegelman, S., Doi, R. H.: Replication and translation of RNA genomes. Cold Spr. Harb. Symp. quant. Biol. 28, 109 (1963).Google Scholar
- (1).Spiegelman, S., Burny, A., Das, M, R., Keydar, J., Schlom, J., Travnicek, M., Watson, K.: Characterization of the products of RNA-dkected DNA polymerases in oncogenic RNA viruses. Nature (Lond.) 227, 563 (1970).CrossRefGoogle Scholar
- (2).Spiegelman, S., Burny, A., Das, M. R., Keydar, J., Schlom, J., Travnicek, M., Watson, K.: DNA-directed DNA polymerase activity in oncogenic RNA viruses. Nature (Lond.) 227, 1029 (1970).CrossRefGoogle Scholar
- (3).Spiegelman, S., Burny, A., Das, M. R., Keydar, J., Schlom, J., Travnicek, M., Watson, K.: Synthetic DNA-RNA hybrids and RNA-RNA duplexes as templates for the polymerases of the oncogenic RNA viruses. Nature (Lond.) 228, 430 (1970).CrossRefGoogle Scholar
- Stone, L. B., Scolnick, E., Takemoto, K. K., Aaronson, S. A.: Visna virus: A slow virus with an RNA-dependent DNA polymerase. Nature (Lond.) 229, 257 (1971).CrossRefGoogle Scholar
- (1).Temin, H. M.: (1) Nature of the provirus of Rous sarcoma. Nat. Cancer Inst. Monogr. 17, 557 (1964).Google Scholar
- (2).Temin, H. M.: Homology between RNA from Rous sarcoma virus and DNA from Rous sarcoma virus-infected cells. Proc. nat. Acad. Sci. (Wash.) 52, 323 (1964).CrossRefGoogle Scholar
- Temin, H. M., Mizutani, S.: RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature (Lond.) 226, 1211 (1970).CrossRefGoogle Scholar
- Volkin, E., Astrachan, L.: Phosphorus incorporation in Escherichia coli ribonucleic acid after infection with bacteriophage T2. Virology 2, 149 (1956).PubMedCrossRefGoogle Scholar
- Watson, J. D., Crick, F. H. C.: The structure of DNA. Cold Spr. Harb. Symp. quant. Biol. 18, 123 (1953).Google Scholar
- Wehrli, W., Nüesch, J., Knüsel, F., Staehelin, M.: Action of rifamycins on RNA polymerase. Biochim. biophys. Acta (Amst.) 157, 215 (1968).Google Scholar
- Woese, C. R., Dugre, D. H., Saxinger, W. C., Dugre, S. A.: The molecular basis for the genetic code. Proc. nat. Acad. Sci. (Wash.) 55, 966 (1966).CrossRefGoogle Scholar
- Woese, C. R.: The fundamental nature of the genetic code: Prebiotic interactions between polynucleotides and polyamino acids or their derivatives. Proc. nat. Acad. Sci. (Wash.) 59, 110 (1968).CrossRefGoogle Scholar
References Cited in Addendum
- Fridlender, B., Weissbach, A.: DNA polymerases of tumor virus: specific effect of ethidium bromide on the use of different synthetic templates. Proc. nat. Acad. Sci. (Wash.) 68, 3116 (1971).CrossRefGoogle Scholar
- Goodman, N. C., Spiegelman, S.: Distinguishing reverse transcriptase of an RNA tumor virus from other known DNA polymerases. Proc. nat. Acad. Sci. (Wash.) 68, 2203 (1971).CrossRefGoogle Scholar
- Müller, W. E. G., Zahn, R. K., Seidel, H. J.: Inhibitors acting on nucleic acid synthesis in an oncogenic RNA virus. Nature (Lond.) New Biol. 232, 143 (1971).Google Scholar
- Ross, J., Scolnick, E. M., Todaro, G. J., Aaronson, S. A.: Separation of murine cellular and murine leukaemia virus DNA polymerases. Nature (Lond.) New Biol. 231, 163 (1971).Google Scholar
- Verma, I. M., Meuth, N. L., Bromfeld, E., Manly, K. F., Baltimore, D.: Covalently linked RNA-DNA molecule as initial product of RNA tumor virus DNA polymerase. Nature (Lond.) New Biol. 233, 131 (1971).Google Scholar
Copyright information
© Springer-Verlag Berlin · Heidelberg 1973