Advertisement

Ontogeny of the Immune Response in Cold-Blooded Vertebrates

  • Louis Du Pasquier
Conference paper
Part of the Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunitätsforschung book series (CT MICROBIOLOGY, volume 61)

Abstract

Most of our present knowledge in immunology has been acquired by studying the immune responses of adult mammals. To understand the ontogenetic differentiation of the immune system of vertebrates, mammals do not appear to be the best model available. Their development is usually fast and interactions between mother and fetus may modify the basic differentiation of the fetal immune system. Moreover it is difficult to work on mammalian embryos in utero. Birds are a good model but their fast development does not leave time to study in detail the immunological responses at embryonary stages.

Keywords

Xenopus Laevis Graft Rejection Histocompatibility Antigen Larval Life Frog Tadpole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aimar, C., Gallien, L.: Etude par la méthode des homogreffes cutanées des reactions immunitaires chez des animaux isogéniques allocytoplasmiques, obtenus par greffes nucléaires intra- et interspécifiques dans le genre Pleurodeles (Amphibiens, Urodèles). C. R. Acad. Sci. Paris D. 274, 3019–3022 (1972).Google Scholar
  2. Ambrosius, H.: Untersuchungen über die Immunoglobuline niederer Wirbeltiere. Allergie u. Asthma 13, 111–119 (1967).Google Scholar
  3. Ambrosius, H., Hemmerling, J., Richter, R., Schimke, R.: Immunoglobulins and the dynamics of antibody formation in poikilothermic vertebrates (Pisces, Urodela, Reptilia). Proc. Symp. “Developmental aspects of antibody formation and structure”. Academia Prague 1970, p. 727–744.Google Scholar
  4. Amirante, G. A., Parisi, V.: Anticorpopoiesi e caratteri serologici negli Anfibi. Atti Acad. naz. Lincei 42, 88–94 (1967).Google Scholar
  5. Auerbach, R.: Cellular differentiation and antibody variability. Amer. Zool. 10, 319 (1970).Google Scholar
  6. Auerbach, R., Globerson, A.: In vitro induction of the graft versus host reaction. Exp. Cell Res. 42, 31–41 (1966).PubMedCrossRefGoogle Scholar
  7. Auerbach, R., Ruben, L. N.: Studies of antibody formation in Xenopus laevis. J. Immunol. 104, 1242–1246 (1970).PubMedGoogle Scholar
  8. Baculi, B. S., Cooper, E. L.: Lymphomyeloid organs in Amphibia. IV. Normal histology in larval and adult Rana catesbiana. J. Morph. 126, 463–476 (1968).CrossRefGoogle Scholar
  9. Baculi, B. S., Cooper, E. L.: Histopathology of skin allograft rejection in larval Rana catesbiana. J. exp. Zool. 173, 329–338 (1970).PubMedCrossRefGoogle Scholar
  10. Baculi, B. S., Cooper, E. L., Brown, B. A.: Lymphomyeloid organs of Amphibia. V. Comparative histology in diverse anuran species. J. Morph. 131, 315–328 (1970).CrossRefGoogle Scholar
  11. Baglioni, C., Sparks, C.: A study of hemoglobin differentiation in Rana catesbiana. Develop. Biol. 8, 272–285 (1963).CrossRefGoogle Scholar
  12. Bankhurst, A. D., Warner, N. L., Sprent, J.: Surface immunoglobulin on thymus and thymus derived lymphoid cells. J. exp. Med. 134, 1005–1015 (1971).PubMedCrossRefGoogle Scholar
  13. Bernardini, N., Chardonnens, X., Simon, D.: Développment après la metamorphose de compétences immunologiques envers les homogreffes cutanées chez Xenopus laevis. C. R. Acad. Sci. (Paris) D 269, 1011–1014 (1969a).Google Scholar
  14. Bernardini, N., Chardonnens, X., Simon, D.: Etude du comportement immunologique chez Xenopus laevis en présence de deux greffes cutanées différentes. C. R. Acad. Sci. (Paris) D 269, 1107–1110 (1969b).Google Scholar
  15. Bernardini, N., Chardonnens, X., Simon, D.: Tolérance des allogreffes cutanées chez Xenopus laevis. Influence de la taille et de l’âge du greffon. C. R. Acad. Sci. (Paris) D 270, 2351–2354 (1970).Google Scholar
  16. Billingham, R. E., Brent, L., Medawar, P. B.: “Actively acquired tolerance” of foreign cells. Nature (Lond.) 172, 603–606 (1953).PubMedCrossRefGoogle Scholar
  17. Biozzi, G., Stiffel, C., Mouton, D., Liacopoulos-Briot, M., Decreusepond, C., Bouthillier, Y.: Etude du phénomène de l’immuno cyto-adhérence au cours de l’immunisation. Ann. Inst. Pasteur 110, Suppl. 3, 7–32 (1966).Google Scholar
  18. Bisset, K. A.: The effect of temperature on immunity in amphibia. J. Path. Bact. 59, 301–306 (1947a).PubMedCrossRefGoogle Scholar
  19. Bisset, K. A.: Natural and acquired immunity in frogs and fishes. J. Path. Bact. 59, 679–682 (1947b).PubMedCrossRefGoogle Scholar
  20. Bisset, K. A.: The effect of temperature on antibody production in Cold blooded vertebrates. J. Path. Bact. 60, 87–92 (1948).PubMedCrossRefGoogle Scholar
  21. Born, G.: Über Verwachsungsversuche mit Amphibienlarven. Arch. Entwickl.-Mech. Org. 4, 349–365 (1897).CrossRefGoogle Scholar
  22. Borysenko, M.: The maturation of the capacity to reject skin allografts and xenografts in the snapping turtle, Chelydra serpentina. J. exp. Zool. 170, 341–358 (1969).PubMedCrossRefGoogle Scholar
  23. Both, N. J. de: Transplantation immunity in the Axolotl (Ambystoma mexicanum) studied by blastemal grafts. J. exp. Zool. 173, 147–158 (1970).PubMedCrossRefGoogle Scholar
  24. Bovbjerg, A. M.: Reactions of skin grafts in tadpoles. Amer. Zool. 2, 508 (1961).Google Scholar
  25. Bovbjerg, A. M.: Rejection of skin homografts in larvae of Rana pipiens. J. exp. Zool. 161, 69–80 (1966).CrossRefGoogle Scholar
  26. Charlemagne, J.: Etude des protéines sériques de l’Amphibien Urodèle Triturus alpestris (Laur) chez l’adulte et au cours de la métamorphose. Bull. Soc. Zool. France 92, 155–160 (1967a).Google Scholar
  27. Charlemagne, J.: Etude par électrophorèse et immunoélectrophorèse des proteins sériques de l’Axolotl Ambystoma mexicanum (Shaw). Bull. Soc. Zool. France 92, 739–748 (1967b).Google Scholar
  28. Charlemagne, J., Houillon, C.: Effet de la thymectomie larvaire chez l’Amphibien Urodèle Pleurodeles waltlii (Michah). Production à l’état adulte d’une tolérance aux homogreffes cutanées. C. R. Acad. Sci. (Paris) D 267, 253–256 (1968).Google Scholar
  29. Charlemagne, J., Houillon, C.: Protéines sériques et chimérisme du foie des chimères entre les Amphibiens Urodèles: Pleurodeles waltlii (Michah) et Triturus alpestris Laur. C. R. Acad. Sci. (Paris) D 272, 1155–1158 (1971).Google Scholar
  30. Ching, Y. C., Wedgwood, R. J.: Immunologic response in the Axolotl. J. Immunol. 99, 191–200 (1967).PubMedGoogle Scholar
  31. Clayton, R. M.: Antigens in the developing newt embryo. Nature (Lond.) 168, 120 (1957).CrossRefGoogle Scholar
  32. Cohen, N.: The maturation of transplantation immunity in the Salamander, Ambystoma tigrinum. Amer. Zool. 7, 763 (1967).Google Scholar
  33. Cohen, N.: Chronic skin allograft in the Urodela. I. A comparative study of first and second set allograft reaction. J. exp. Zool. 167, 37–48 (1968).PubMedCrossRefGoogle Scholar
  34. Cohen, N.: Immunogenetic and developmental aspects of tissue transplantation immunity in Urodele amphibians. In: Biology of amphibian tumors (M. Mizell, ed.), p. 153–168. New York: Springer 1969.Google Scholar
  35. Cohen, N.: Amphibian transplantation reaction: a review. Amer. Zool. 11, 193–205 (1971).Google Scholar
  36. Cohen, P. P.: Biochemical differentiation during amphibian metamorphosis. Science 168, 533–543 (1970).PubMedCrossRefGoogle Scholar
  37. Cohen, S. G., Sapp, T. M., Shaskas, J. R.: Anaphylactic responsiveness of the frog Rana pipiens. J. Allergy 47, 121–130 (1971).PubMedGoogle Scholar
  38. Cole, W. H.: Transplantation of skin in frog tadpoles. J. exp. Zool. 35, 353 (1922).CrossRefGoogle Scholar
  39. Collins, H. H., Adolph, E. F.: Skin pattern in Urodele amphibia. J. Morph. 42, 473–522 (1926).CrossRefGoogle Scholar
  40. Cooper, A. J.: Ammocete lymphoid cell population in vitro. In: Proc. 4th Ann. Leukocyte culture conf. (O.R. McIntyre, ed.), p. 137–147. New York: Appleton Century Crofts 1971.Google Scholar
  41. Cooper, E. L.: Some aspects of histogenesis of the amphibian lymphomyeloid system and its role in immunity. In: Ontogeny of immunity (R. T. Smith, R. A. Good, and P. A. Miescher eds.), p. 87–101. Gainesville: Univ. Florida Press 1967a.Google Scholar
  42. Cooper, E. L.: Lymphomyeloid organ of Amphibia. Appearance during larval and adult stages of Rana catesbiana. J. Morph. 122, 381–390 (1967b).PubMedCrossRefGoogle Scholar
  43. Cooper, E. L.: Lymphomyeloid organs of Amphibia. III. Antibody synthesis and lymph glands in larval bullfrog. Anat. Rec. 162, 453–458 (1968).PubMedCrossRefGoogle Scholar
  44. Cooper, E. L., Brown, B. A., Baculi, B. S.: New observations on lymph gland (L.M.1) and thymus activity in larval bullfrogs, Rana catesbiana. In: Morphological and fundamental aspects of immunity (Lindhal-Kiessling, Alm and Hanna, eds.), p. 1–10. London, New York: Plenum Press 1971.Google Scholar
  45. Cooper, E. L., Hildemann, W. H.: The immune response of larval bullfrog Rana catesbiana to diverse antigens. Ann. N.Y. Acad. Sci. 126, 647–651 (1965).PubMedCrossRefGoogle Scholar
  46. Cooper, E. L., Hildemann, W. H.: Allograft reactions in bullfrog larvae in relation to thymectomy. Transplantation 3, 446–448 (1965).PubMedCrossRefGoogle Scholar
  47. Cooper, E. L., Hildemann, W. H., Pinkerton, W.: Serum antibody synthesis and skin homograft survival in larvae of the bullfrog Rana catesbiana: Role of the thymus gland. Immunogenet. Lett. 3, 62–67 (1963).Google Scholar
  48. Cooper, E. L., Pinkerton, W., Hildemann, W. H.: Serum antibody synthesis in larvae of the bullfrog Rana catesbiana. Biol. Bull. 127, 232–238 (1964).CrossRefGoogle Scholar
  49. Cotronei, G.: Risultati sperimentali e problemi sui trapianti espianti parabiosi xenoplastiche negli amphibi. Atti Acad. naz. Lincei Rind. cl. Sci. fis. mat. nat. 13, 223–229 (1952).Google Scholar
  50. Croizille, Y.: Etude par les méthodes immunochimiques de l’apparition de quelques constituants caractéristiques du foie et du rein adultes pendant le développement embryonnaire du poulet. In: Méthodes nouvelles en embryologie (E. Wolff, ed.), p. 203–231. Paris: Hermann 1965.Google Scholar
  51. Cunningham, A. J.: A method of increased sensitivity for detecting single antibody forming cells. Nature (Lond.) 207, 1106–1107 (1965).PubMedCrossRefGoogle Scholar
  52. Curtis, S. K., Volpe, E. P.: Modification of responsiveness to allografts in larvae of the leopard frog by thymectomy. Develop. Biol. 25, 177–197 (1971).PubMedCrossRefGoogle Scholar
  53. Curtis, S. K., Volpe, E. P.: Ultrastructure of the developing thymus of the leopard frog (Rana pipiens). Z. Zellforsch. 127, 323–346 (1972).PubMedCrossRefGoogle Scholar
  54. De Lanney, L. E., Blackler, M. K., Prahlad, K. V.: The relationship of age to allograft and tumor rejection. Amer. Zool. 7, 763 (1967).Google Scholar
  55. De Lanney, L. E., Blackler, K.: Acceptance and regression of a strain specific lymphosarcoma in Mexican Axolotl. In: Biology of amphibian tumors (M. Mizell, ed.), p. 399–408. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  56. Delsol, M.: Hyperdéveloppement de cartilage et transformations cartilagineuses après greffes de régions cordales chez le têtard d’Alytes obstetricans. Bull. Ass. Anat. (Marseille) 51, 290–296 (1966).Google Scholar
  57. Delsol, M., Flatin, J.: Premières observations d’ensemble sur des homogreffes réalisées chez le têtard d’Alytes obstetricans Laur. Bull. Soc. anat. Paris 52, 398–402 (1967).Google Scholar
  58. Delsol, M., Flatin, J.: Greffes croisées entre la queue et le corps chez Alytes obstetricans Laur. Métamorphose expérimentale de régions caudales. Bordeaux méd. 9, 1684 (1968).Google Scholar
  59. Delsol, M., Flatin, J.: Métamorphose expérimentale de la peau de queue du têtard d’Alytes obstetricans Laur. normalement destinée à degénérer. Experientia (Basel) 25, 392–393 (1969).PubMedCrossRefGoogle Scholar
  60. Dent, T. N., Benson, D. G.: Responses of tissues from larval newts to implantation into adult hosts. Anat. Rec. 155, 315–324 (1966).PubMedCrossRefGoogle Scholar
  61. Deparis, P.: Hématopoièse embryonnaire et larvaire chez l’Amphibien Urodèle Pleurodeles waltlii Michah. Ann. Embryol. Morph. 1, 107–118 (1968).Google Scholar
  62. Diener, E., Nossal, G. J. V.: Localization of antigens and immune response in the toad Bufo marinus. Immunology 10, 535–542.Google Scholar
  63. Du Pasquier, L.: Recherches sur les aspects cellulaires et humoraux de l’intolérance aux homogreffes chez le têtard d’Alytes obstetricans. These 3-ème Cycle Enseignement supérieur, No 336, Bordeaux 1965a.Google Scholar
  64. Du Pasquier, L.: Aspects cellulaires et humoraux de l’intolérance aux homogreffes de tissu musculaire chez le têtard d’Alytes obstetricans. Rôle du thymus. C. R. Acad. Sci. (Paris) D 261, 1144–1147 (1965b).Google Scholar
  65. Du Pasquier, L.: Les réactions immunitaires chez le têtard d’Alytes obstetricans I. Techniques d’immunisation et répartition de l’antigène. C. R. Soc. Biol. (Paris) 161, 1696–1699 (1967a).Google Scholar
  66. Du Pasquier, L.: Les réactions immunitaires chez le têtard d’Alytes obstetricans II Caractérisation des immunocytes. C. R. Soc. Biol. (Paris) 161, 1974–1977 (1967b).Google Scholar
  67. Du Pasquier, L.: Les protéines sériques et le complexe lymphomyéloïde chez le tetrad d’Alytes obstetricans normal et thymectomisé. Ann. Inst. Pasteur 114, 490–502 (1968).Google Scholar
  68. Du Pasquier, L.: Aspects cellulaires et humoraux de la synthèse d’anticorps hémolytiques chez la larve et l’adulte d’Amphibiens anoures. C. R. Soc. Biol. (Paris) 163, 1379–1382 (1969).Google Scholar
  69. Du Pasquier, L.: L’acquisition de la compétence immunologique chez les Vertébrés. Etude chez la larve du crapaud accoucheur Alytes obstetricans. These Doctorat ès Sciences, Université de Bordeaux, No 290 (1970a).Google Scholar
  70. Du Pasquier, L.: Immunologie competence of lymphoid cells in young amphibian larvae. Transplant. Proc. 2, 293–295 (1970b).PubMedGoogle Scholar
  71. Du Pasquier, L.: Ontogeny of the immune response in animals having less than one million lymphocytes: the larvae of the toad Alytes obstetricans. Immunology 19, 353–362 (1970c).PubMedGoogle Scholar
  72. Du Pasquier, L.: Etude comparée d’un facteur cytolytique humoral chez une larve d’Amphibien et chez un Oligochète. Arch. Zool. exp. gén. 112, 81–87 (1971).Google Scholar
  73. Du Pasquier, L., Weiss, N., Loor, F.: Direct evidence for immunoglobulins on the surface of thymus lymphocytes of amphibian larvae. Europ. J. Immunol. 2, 366–370 (1972).CrossRefGoogle Scholar
  74. Dupuy, G.: Les autogreffes, homogreffes et hétérogreffes de peau chez les têtards de Discoglossus pictus et d’Alytes obstetricans. These 3-ème Cycle Enseignement supérieur, No 287, Bordeaux 1964.Google Scholar
  75. Eakin, R. M., Harris, M.: Incompatibility between amphibian host and xenoplastic grafts as related to host age. J. exp. Zool. 98, 35–65 (1945).CrossRefGoogle Scholar
  76. Ebert, M. K.: Die Antikörper bei Kaltblütern. III. Die Spezifizität der Immunitätsphänomene bei Fröschen. Z. Immun.-Forsch. 72, 13–20 (1931).Google Scholar
  77. Evans, E. E., Kent, S. P., Attleberger, M. H.: Lymph nodes in the amphibia Bufo marinus. Proc. Soc. exp. Biol. (N.Y.) 116, 456–459 (1964).PubMedGoogle Scholar
  78. Fabrizzio, M., Charipper, H. A.: The morphogenesis of the thymus gland of Rana sylvatica as correlated with certain stages of morphogenesis. J. Morph. 68, 179–195 (1941).CrossRefGoogle Scholar
  79. Fidler, J., Clem, L. W., Small, P.A.: Immunoglobulin synthesis in neonatal nurse sharks. Comp. Biochem. Physiol. 31, 365–371 (1969).PubMedCrossRefGoogle Scholar
  80. Fougereau, M., Houdayer, M.: Immunoglobulins et réponse immunitaire chez l’Axolotl, Ambystoma mexicanum. Ann. Inst. Pasteur 115, 968 (1968).Google Scholar
  81. Frieden, E., Herner, A. E., Disch, L., Lewis, E. J. C.: Changes in serum proteins in amphibian metamorphosis. Science 126, 559–560 (1957).PubMedCrossRefGoogle Scholar
  82. Friedman, H.: Absence of antibody plaque forming cells in spleens of mice thymectomized, immunized with sheep erythrocytes. Proc. Soc. exp. Biol. (N.Y.) 118, 1176–1180 (1965).Google Scholar
  83. Gallien, L., Durocher, M.: Table chronologique du développement chez le Triton Pleurodeles waltlii Michah. Bull. Biol. Fr. Belg. 91, 97–114 (1957).Google Scholar
  84. Gasser, F.: Modification des protéines sériques consécutives à la métamorphose chez les Amphibiens Urodèles Pleurodeles waltlii Michah et Salamandra salamandra L. Etude par electrophorèse sur acétate de cellulose. C. R. Acad. Sci. (Paris) 259, 655–657 (1964).Google Scholar
  85. Gasser, F., Durand, J.: Etude du sérum chez les Urodèles Proteus anguinus Laur. et Ambystoma mexicanum. Fractionnement par electrophorèse et relargage. C. R. Acad. Sci. (Paris) 261, 2767–2770 (1965).Google Scholar
  86. Geczy, C. L., Green, P. C., Gaydos, K. C., Steiner, L. A.: The development of immunoglobulin classes in tadpoles and frogs. Fed. Proc. 31, 750 (1972).Google Scholar
  87. Gewurz, H., Finstad, J., Muschel, L. H., Good, R. A.: Phylogenic inquiry into the origin of the complement system. In: Phylogeny of immunity (R. T. Smith, P. A. Miescher, R. A. Good, eds.), p. 105–117. Gainesville: Univ. of Florida Press 1966.Google Scholar
  88. Goldshein, S. J., Cohen, N.: Phylogeny of immunocompetent cells. I. In vitro blastogenesis and mitosis of toad (Bufo marinus) splenic lymphocytes in response to phytohemagglutinin and in mixed lymphocyte cultures. J. Immunol. 108, 1025–1033 (1972).PubMedGoogle Scholar
  89. Good, R. A., Papermaster, B.W.: Ontogeny and phylogeny of adaptive immunity. Advanc. Immunol. 4, 1–115 (1964).CrossRefGoogle Scholar
  90. Grassé, P. P. (ed.): Traité de Zoologie. Les Reptiles XIV, fasc. II, Paris: Masson 1970;Google Scholar
  91. Grassé, P. P. (ed.): Agnathes et Poissons XIII, fasc. III, Paris: Masson 1958.Google Scholar
  92. Gratzer, W. B., Allison, A. C.: Multiple hemoglobins. Biol. Rev. 35, 459–506 (1960).PubMedCrossRefGoogle Scholar
  93. Green, M.: Electron microscopy of the immunoglobulins. Advanc. Immunol. 11, 1–30 (1969).CrossRefGoogle Scholar
  94. Grey, H. M.: Phylogeny of the immune response. Studies on some physical, chemical and serological characteristics of antibody produced in turtles. J. Immunol. 91, 819–825 (1963).PubMedGoogle Scholar
  95. Hadji-Hazimi, I.: Studies on Xenopus laevis immunoglobulins. Immunology 21, 463–474 (1971).Google Scholar
  96. Hadji-Hazimi, I., Fischberg, M.: Hématopoièse périhépatique chez chez le batracien anoure Xenopus laevis. Comparaison entre les individus normaux et les porteurs de tumeurs lymphoides. Rev. suisse Zool. 74, 641–645 (1967).Google Scholar
  97. Hadji-Hazimi, I., Fischberg, M.: Normal and cancerous tissue transplantation in allogeneic and syngeneic Xenopus laevis. Cancer. Res. 31, 1594–1599 (1971).Google Scholar
  98. Hadorn, E.: Entwicklungsleistungen und Unverträglichkeitsreaktionen bei Art Chimären von Triturus. Rev. suisse Zool. 52, 389–395 (1945).Google Scholar
  99. Haimovich, J., Du Pasquier, L.: Specificity of antibodies in amphibian larvae possessing a small number of lymphocytes (1973, submitted).Google Scholar
  100. Hammar, J. A.: Zur Kenntnis der Elasmobranchien thymus. Zool. Jb., Abt. Anat. u. Ontog. 32, 135–188 (1912).Google Scholar
  101. Hammar, J.A.: Die normalmorphologische Thymusforschung im letzten Vierteljahrhundert. Leipzig: Barth 1936.Google Scholar
  102. Harms, J.W.: Der Thymus bei Xenopus laevis Daud. Verh. dtsch. Zool. 5, 232–242 (1948).Google Scholar
  103. Harris, M.: The establishment of tissue specificity in tadpoles of Hyla regilla. J. exp. Zool. 88, 373–397 (1914).CrossRefGoogle Scholar
  104. Haurowitz, F.: The evolution of selective and instructive theories of antibody formation. Cold Spr. Harb. Symp. quant. Biol. 32, 559–567 (1967).Google Scholar
  105. Herner, A. E., Frieden, E.: Biochemistry of anuran metamorphosis. VII. Change in serum protein during spontaneous and induced metamorphosis. J. biol. Chem. 10, 2845–2851 (1960).Google Scholar
  106. Hildemann, W. H., Haas, R.: Homotransplantation immunity and tolerance in the bullfrog. J. Immunol. 83, 478–485 (1959).PubMedGoogle Scholar
  107. Hildemann, W. H., Haas, R.: Histocompatibility genetics of bullfrog populations (Rana catesbiana). Evolution (Lawrence Kansas) 15 267–271 (1961).CrossRefGoogle Scholar
  108. Hildemann, W. H., Haas, R.: Developmental changes in leukocytes in relation to immunological immunity in Proc. Symp. “Mechanisms of immunological tolerance”, Academia Prague 1962 p. 35–49.Google Scholar
  109. Hildemann, W. H., Thoenes, G. H.: Immunological responses of Pacific hagfish. Transplantation 7, 506–521 (1969).PubMedCrossRefGoogle Scholar
  110. Hollyfield, J. G.: Erythrocyte replacement at metamorphosis in the frog Rana pipiens. J. Morph. 119, 1–5 (1966).PubMedCrossRefGoogle Scholar
  111. Horton, J. D.: Long-term persistence of bovine serum albumin when injected into the amphibian Xenopus laevis Daudin. Experientia (Basel) 24, 955–956 (1968).PubMedCrossRefGoogle Scholar
  112. Horton, J. D.: Studies on the ontogeny of the immune system in an amphibian, Xenopus laevis Daud. Ph. D. thesis Hull University 1969a.Google Scholar
  113. Horton, J.D.: Ontogeny of the immune response to skin allografts in relation to lymphoid organ development in the amphibian Xenopus laevis Daudin. J. exp. Zool. 170, 449–466 (1969b).PubMedCrossRefGoogle Scholar
  114. Horton, J. D.: Histogenesis of the lymphomyeloid complex in the larval leopard frog Rana pipiens. J. Morph. 134, 1–19 (1971a).PubMedCrossRefGoogle Scholar
  115. Horton, J.D.: Ontogenesis of the immune system in amphibians. Amer. Zool. 11, 219–228 (1971b).Google Scholar
  116. Horton, J. D., Manning, M. J.: Response to skin allografts in Xenopus laevis following thymectomy at early stages of lymphoid organ maturation. Transplantation 14, 141–154 (1972).PubMedCrossRefGoogle Scholar
  117. Houillon, C.: Chimères xénoplastiques entre les Urodèles Pleurodeles waltlii Michah et Triturus alpestris Laur. C. R. Acad. Sci. (Paris) 258, 3901–3903 (1964a).Google Scholar
  118. Houillon, C.: Nouvelles chimères xénoplastiques chez les Urodèles; combinaison viable et létales. C. R. Acad. Sci. (Paris) 258, 5725–5728 (1964b).Google Scholar
  119. Houillon, C.: Associations en chimères entre l’Axolotl et diverses espèces de Tritons. C. R. Acad. Sci. (Paris) 261, 246–248 (1965).Google Scholar
  120. Houillon, C.: Greffes embryonnaires de peau entre Ambystoma mexicanum Shaw, Pleurodeles waltlii Michah et Triturus alpestris Laur. Phénomènes de tolérance et de rejet. C. R. Acad. Sci. (Paris) 264, 834–837 (1967).Google Scholar
  121. Huchon, D.: Degré de tolérance dans la greffe en parabiose chez les Amphibiens. C. R. Acad. Sci. (Paris) 255, 3232–3234 (1962).Google Scholar
  122. Humm, D. G., Clark, E. E., Humm, J. H.: Transplantation of melanomas from platyfish swordtail hybrids into embryos of swordtail, platyfish and their hybrids. Brit. J. exp. Biol. 34, 518–528 (1957).Google Scholar
  123. Humphrey, J. H., Roelants, G., Willcox, N.: Specific lethal radioactive antigens. In: Cell interaction and receptor antibodies in immune responses (O. Mäkelä, A. Cross, T. U. Kosunen, eds.). London and New York: Academic Press 1971.Google Scholar
  124. Ingraham, J. S.: Identification individuelle des cellules productrices d’anticorps par une réaction hémolytique locale. C. R. Acad. Sci. (Paris) 256, 5005–5008 (1963).Google Scholar
  125. Ingraham, J. S., Bussard, A. E.: Application of a localized hemolysin reaction for specific detection of individual antibody forming cells. J. exp. Med. 119, 667–682 (1964).PubMedCrossRefGoogle Scholar
  126. Jerne, N. K.: The natural selection theory of antibody formation. Proc. nat. Acad. Sci. (Wash.) 41, 849–857 (1955).PubMedCrossRefGoogle Scholar
  127. Jerne, N. K., Nordin, A. A., Henry, C.: The agar plaque technique for recognizing antibody producing cells. In: Cell bound antibodies (B. Amos and H. Koprowski, eds.), p. 109–125. Philadelphia: Wistar Inst. Press 1963.Google Scholar
  128. Johnston, M.: Perivascular lymphoid tissue associated with the axillary sinus and the lateral vein of Gehyra variegata (Reptilia: Jekkonidae) (1972, in press).Google Scholar
  129. Jordan, H. E., Flippin, J. C.: Hematopoiesis in Chelonia. Folia haemat. 15, 1–24 (1913).Google Scholar
  130. Jordan, H. E., Speidel, C. C.: Blood cell formation and distribution in relation to the mechanism of thyroid accelerated metamorphosis in larval frog. J. exp. Med. 38, 525–541 (1923).CrossRefGoogle Scholar
  131. Jordan, H. E., Speidel, C. C.: Studies on lymphocytes I. Effect of splenectomy, experimental hemorrhage and a hemolytic toxin in the frog. Amer. J. Anat. 32, 155–176 (1924a).CrossRefGoogle Scholar
  132. Jordan, H. E., Speidel, C. C.: Studies on lymphocytes III. Granulocytopoiesis in the Salamander with special reference to the monophyletic theory of blood cell origin. Amer. J. Anat. 33, 485–505 (1924b).CrossRefGoogle Scholar
  133. Jurd, K., Maclean, N.: An immunofluorescent study of the hemoglobins in metamorphosing Xenopus laevis. J. Embryol. exp. Morph. 23, 299–309 (1970).PubMedGoogle Scholar
  134. Kallman, K. D.: Genetics of tissue transplantation in Teleostei. Transplant. Proc. 2, 263–281 (1970).PubMedGoogle Scholar
  135. Kallman, K. D., Gordon, M.: Transplantation of fins in xiphophorin fishes. Ann. N.Y. Acad. Sci. 71, 305 (1957).CrossRefGoogle Scholar
  136. Kanakambika, P., Muthukkaruppan, V. R.: Immunological competence in the newly hatched lizard, Calotes diversicolor. Proc. Soc. exp. Biol. (N.Y.) 140, 21–23 (1972).PubMedGoogle Scholar
  137. Kapa, E. A.: Histological and histochemical analysis of the thymus in tailless amphibians. Acta morph. Acad. Sci. hung. 12, 1–8 (1963).Google Scholar
  138. Kent, S. P., Evans, E. E., Attleberger, M. H.: Comparative immunology: Lymph nodes in the amphibian Bufo marinus. Proc. Soc. exp. Biol. (N.Y.) 116, 456–459 (1964).PubMedGoogle Scholar
  139. Kleihauer, E., Braun, H., Betke, K.: Demonstration von fetalem Hämoglobin in den Erythrocyten eines Blutausstriches. Klin. Wschr. 35, 637–638 (1957).PubMedCrossRefGoogle Scholar
  140. Laguesse, G. E.: Recherches sur le développement de la rate chez les poissons. J. Anat. (Paris) 26, 345–406, 425–495 (1890).Google Scholar
  141. Le Douarin, N.: L’hématopoïèse dons les formes embryonnaires et jeunes de Vertébrés. Ann. Biol. 5, 105–171 (1966).Google Scholar
  142. Legler, D.W., Evans, E. E.: Hemolytic complement in amphibia. Proc. Soc. exp. Biol. (N.Y.) 121, 1158–1162 (1966).PubMedGoogle Scholar
  143. Legler, D. W., Evans, E. E., Weinheimer, P. F., Acton, R. T., Attleberger, M. H.: Immunoglobulin and complement systems of amphibian serum. In: Biology of amphibian tumors (M. Mizell, ed.), p. 169–176. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  144. Leon, C.: Histogenèse de l’ébauche splénique chez les Salmonidés. Arch. Anat. micr. Morph. exp. 28, 363–397 (1932).Google Scholar
  145. Lerch, E. G., Huggins, S. E., Bartel, A. H.: Comparative immunology. Active immunization of young alligators with hemocyanin. Proc. Soc. exp. Biol. (N.Y.) 124, 448–451 (1967).PubMedGoogle Scholar
  146. Linthicum, D.S., Hildemann, W. H.: Immunologie response of Pacific Hagfish. III. Serum antibodies to cellular antigens. J. Immunol. 105, 912–918 (1970).PubMedGoogle Scholar
  147. Loeb, L.: The biological basis of individuality. Springfield, Ill.: Ch. C. Thomas 1945.Google Scholar
  148. Loor, F., Forni, L., Pernis, B.: The dynamic state of the lymphocyte membrane. Factors affecting the distribution and turnover of surface immunoglobulins. Europ. J. Immunol. 2, 203–212 (1972).CrossRefGoogle Scholar
  149. Luzzati, A. L., Tosi, R. M., Carbonara, A. O.: Electrophoretically homogenous antibody synthesized by spleen foci of irradiated repopulated mice. J. exp. Med. 132, 199–210 (1970).PubMedCrossRefGoogle Scholar
  150. Lykakis, J. J.: The production of two classes of antibody in the toad Xenopus laevis, homologous with mammalian M (19 S) and G (7 S) immunoglobulins. Immunology 16, 91–98 (1969).PubMedGoogle Scholar
  151. Lykakis, J. J., Cox, F. E. G.: Immunological responses of the toad Xenopus laevis to the antigens of the ciliate Tetrahymena pyriformis. Immunology 15, 429–437 (1968).PubMedGoogle Scholar
  152. Maniatis, G. M., Steiner, L. A., Ingram, V. M.: Tadpoles antibodies against frog hemoglobin and their effect on development. Science 165, 67–69 (1969).PubMedCrossRefGoogle Scholar
  153. Manning, M. J.: The affect of early thymectomy on histogenesis of the lymphoid organs in Xenopus laevis. J. Embryol. exp. Morph. 26, 219–229 (1971).PubMedGoogle Scholar
  154. Manning, M. J., Horton, J. D.: Histogenesis of lymphoid organs in larvae of the south african clawed toad, Xenopus laevis (Daudin). J. Embryol. exp. Morph. 22, 265–277 (1969).PubMedGoogle Scholar
  155. Marchalonis, J. J.: Immunoglobulins and antibody production in Amphibians. Amer. Zool. 11, 171–181 (1971a).Google Scholar
  156. Marchalonis, J. J.: Ontogenic emergence of immunoglobulins in Rana pipiens larvae. Develop. Biol. 25, 479–491 (1971b).PubMedCrossRefGoogle Scholar
  157. Marchalonis, J. J., Allen, R. B., Saarni, E. S.: Immunoglobulin classes of the clawed toad Xenopus laevis. Comp. Biochem. Physiol. 35, 49–56 (1970).PubMedCrossRefGoogle Scholar
  158. Marchalonis, J. J., Cone, R. E., Atwell, J. L.: Isolation and partial characterization of lymphocyte surface immunoglobulins. J. exp. Med. 135, 956–971 (1972).PubMedCrossRefGoogle Scholar
  159. Marchalonis, J. J., Edelman, G. M.: Phylogenetic origin of antibody structure. II. Immunoglobulins in the primary immune response of the bullfrog Rana catesbiana. J. exp. Med. 124, 901–913 (1966).PubMedCrossRefGoogle Scholar
  160. Marchalonis, J. J., Germain, R. N.: Tolerance to a protein antigen in poikilotherm, the marine toad Bufo marinus. Nature (Loud.) 231, 321–322 (1971).PubMedCrossRefGoogle Scholar
  161. Maximow, A.: Über embryonale Entwicklung der Blutzellen bei Selachieren und Amphibien. Anat. Anz. 37, 64–70 (1910).Google Scholar
  162. May, R. M.: Skin grafts in the lizard Anolis carolinensis. Brit. J. exp. Biol. 1, 539–555 (1923).Google Scholar
  163. Meier, H.A., Dalanney, L. E.: Histocompatibility studies in the Mexican axolotl. Amer. Zool. 2, 431 (1962).Google Scholar
  164. Metzger, H.: Structure and function of γM Macroglobulins. Advanc. Immunol. 12, 57–116 (1970).CrossRefGoogle Scholar
  165. Miller, J. F. A. P., De Burgh, F. M., Grant, G. A.: Thymus and the production of plaque forming cells. Nature (Lond.) 208, 1332–1334 (1965).PubMedCrossRefGoogle Scholar
  166. Miller, J. F. A. P., MacIntire, K. R., Sell, S.: The role of the thymus in the development of immunological competence. In: La greffe des cellules hématopoiétiques allogéniques, p. 105–108. Paris: CNRS 1965.Google Scholar
  167. Minden, P., Anthony, B. F., Farr, R. S.: A comparison of seven procedures to detect the primary binding of antigen by antibody. J. Immunol. 102, 832–841 (1969).PubMedGoogle Scholar
  168. Mintz, B.: Genetic mosaicism in adult mice of quadriparental lineage. Science 148, 1232–1233 (1965).PubMedCrossRefGoogle Scholar
  169. Moticka, E. J., Cooper, E. L., Brown, B. A.: Immunoglobulin synthesis in Bullfrog larvae. Submitted 1972.Google Scholar
  170. Nace, G. W., Richards, C. M.: Development of biologically defined strains of amphibians. In: Biology of amphibian tumors (E. Mizell, ed.), p. 409–418. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  171. Nieuwkoop, P. D., Faber, J.: Normal table of Xenopus laevis Daudin, 2nd ed. Amsterdam: North Holland Publishing Company 1967.Google Scholar
  172. Nortanicola, L.: Trapianti larvale di membra di Bufo vulgaris negli Bufo viridis. Arch. Sci. Biol. ital. 43, 396–406 (1959).Google Scholar
  173. Orfila, C., Deparis, P.: Evolution des homogreffes cutanées chez la larve de Pleurodeles waltlii Michah. C. R. Soc. Biol. (Paris) 164, 1124–1128 (1970a).Google Scholar
  174. Orfila, C., Deparis, P.: Influence de l’âge du donneur et du receveur sur l’évolution des homogreffes cutanées chez les larves du Triton Pleurodeles waltlii Michah. Path. et Biol. 18, 1033–1040 (1970b).Google Scholar
  175. Pantelouris, E. M.: Absence ol thymus in a mouse mutant. Nature (Lond.) 217, 370–371 (1968).PubMedCrossRefGoogle Scholar
  176. Passalacqua, A.: Compatibilita e incompatibilita embrionale in espianti etero e xenoplastici. Ric. Sci. 22, 1224–1227 (1952).Google Scholar
  177. Pasteels, J. J.: Développement embryonnaire des reptiles. In: Traité de zoologie (P. P. Grassé, ed.), vol. 14, No 3, p. 892–971. Paris: Masson 1970.Google Scholar
  178. Perey, D. Y. E., Finstad, J., Pollara, B., Good, R. A.: Evolution of the immune response VI. First and second set skin homograft rejections in primitive fishes. Lab. Invest. 19, 591–597 (1968).PubMedGoogle Scholar
  179. Pernis, B., Forni, L., Amante, L.: Immunoglobulin spots on the surface of rabbit lymphocytes. J. exp. Med. 132, 1001–1018 (1970).PubMedCrossRefGoogle Scholar
  180. Rand, H. W., Pierce, M. E.: Skin grafting in frog tadpoles. Local specificity of skin and behaviour of epidermis. J. exp. Zool. 62, 125–172 (1937).CrossRefGoogle Scholar
  181. Roelants, G.: Antigen recognition by B and T lymphocytes. Current Topics in Microbiology and Immunology, 59, 135–165 (1972).PubMedCrossRefGoogle Scholar
  182. Romanovsky, A.: Studies on antigenic differentiation in the embryonic development of Rana temporaria. Folia. biol. (Prague) 10, 1–9 (1964).Google Scholar
  183. Romer, A. S.: The vertebrate story, 4th ed. Chicago: Chicago University Press 1959.Google Scholar
  184. Rossi, A.: Sulla incompatibilita larvale tardiva nei trapianti xenoplastici di Urodeli su Anuri. Atti Acad. naz. Lincei 18, 130–135 (1956).Google Scholar
  185. Rossi, A.: Sull incompatibilita larvale nei trapianti xenoplastici di Urodeli su Anuri. Processi degenerativi della code di Triton taeniatus trapiantate nei campo dell’arto posteriore di Discoglossus pictus e di Hyla arborea. Atti Accad. naz. Lincei 24, 193–200 (1958).Google Scholar
  186. Roth, B., Schneider, C. C.: Einfluß der Ionenstärke auf das Immunpräzipitationsvermögen von Amphibien-Antikörpern. Experientia (Basel) 27, 954–955 (1971).PubMedCrossRefGoogle Scholar
  187. Ruben, L. N.: Immunological maturation and lymphoreticular cancer transformation in larval Xenopus laevis the south african clawed toad. Develop. Biol. 22, 43–58 (1970).PubMedCrossRefGoogle Scholar
  188. Salkind, J.: La biologie comparée du thymus. Arch. Zool. exp. gen. 55, 81–322 (1915).Google Scholar
  189. Santoro d’Angelo, L., Cuomo, M.: New experiments on xenoplastic grafts between Anura and Urodela in relation to the problems of immunitary tolerance. Riv. Biol. 62, 41–54 (1969).PubMedGoogle Scholar
  190. Schaffer, J.: Über die Thymusanlage bei Petromyzon planeri. S.-B. Akad. Wiss. Wien, math.-nat. Kl. 103, 149–158 (1895).Google Scholar
  191. Schwab, G. E., Reeves, P. R.: Comparison of the bactericidal activity of difference vertebrate sera. J. Bact. 91, 106–112 (1966).PubMedGoogle Scholar
  192. Schwarzmann, L.: Zur Frage der Antikörperanwesenheit in Froschblut. Z. Immun.-Forsch. 41, 139–160 (1927).Google Scholar
  193. Sidky, Y. A., Auerbach, R.: Tissue culture analysis of immunological capacities of snapping turtles. J. exp. Zool. 167, 187–196 (1968).PubMedCrossRefGoogle Scholar
  194. Sigel, M. M., Clem, L. W.: Antibody response of fish to viral antigens. Ann. N.Y. Acad. Sci. 126, 662–677 (1965).PubMedCrossRefGoogle Scholar
  195. Simnett, J.D.: Histocompatibility in the platanna Xenopus laevis laevis (Daudin) following nuclear transplantation. Exp. Cell Res. 33, 232–239 (1964).PubMedCrossRefGoogle Scholar
  196. Simnett, J. D.: Factors influencing the differentiation of amphibian embryos implanted into homologous immunologically competent hosts (Xenopus laevis). Develop. Biol. 13, 112–143 (1966).PubMedCrossRefGoogle Scholar
  197. Sirotinin, N. N.: A comparative physiological study of the mechanism of antibody formation. Proc. Symp. “Mechanisms of antibody formation”, Academia Prague 1960, p. 113–117.Google Scholar
  198. Slonimsky, P.: Recherches expérimentales sur la genèse du sang chez les Amphibiens. Arch. Biol. (Liège) 42, 415–477 (1931).Google Scholar
  199. Spar, I. L.: Antigenic differences among early developmental stages of Rana pipiens. J. exp. Zool. 123, 467–497 (1953).CrossRefGoogle Scholar
  200. Sterba, G.: Über die morphologischen und histogenetischen Thymusprobleme bei Xenopus laevis (Daudin) nebst einigen Bemerkungen über die Morphologie der Kaulquappe. Abh. sächs. Akad. Wiss. 44, 1–54 (1950).Google Scholar
  201. Sterba, G.: Untersuchungen an der Milz des Krallenfrosches (Xenopus laevis laevis Daudin). Morph. Jb. 90, 221–248 (1951).Google Scholar
  202. Sterba, G.: Die Physiologie und Histogenèse der Schilddrüse und des Thymus bei Bachneunaugen. Wiss. Z. ti. Schiller. Univ. Jena, math.-nat. 2, 239–298 (1953).Google Scholar
  203. Stockard, C. R.: The development of the thyroid gland in Bdellolostoma Stoutii. Anat. Anz. 29, 91–99 (1906).Google Scholar
  204. Suran, A. A., Tarail, M. H., Papermaster, B. W.: Immunoglobulins of the leopard shark I. Isolation and characterization of 17 S and 7 S immunoglobulins with precipitating activity. J. Immunol. 99, 679–686 (1967).PubMedGoogle Scholar
  205. Szilagyi, T., Csernyansky, H.: Antibody production in the frog. Acta microbiol. Acad. Sci. hung. 14, 351–356 (1967).Google Scholar
  206. Thoenes, G. H., Hildemann, W. H.: Immunological responses of Pacific hagfish II. Serum antibody production to soluble antigen. Proc. Symp. Developmental aspects of antibody formation and structure, Academia Prague 1970, p. 711–722.Google Scholar
  207. Tournefier, A.: Etude histologique des hétérogreffes embryonnaires de tégument chez les Amphibiens Urodèles. Bull. Soc. Zool. France 93, 99–108 (1968).Google Scholar
  208. Triplett, E. L.: The development of the sympathie ganglia sheath cells and meninges in amphibians. J. exp. Zool. 138, 283–312 (1958).CrossRefGoogle Scholar
  209. Triplett, E. L.: On the mechanism of immunologic self recognition. J. Immunol. 89, 505–510 (1962).PubMedGoogle Scholar
  210. Triplett, E. L., Barrymore, S.: Tissue specificity in embryonic and adult Cymatogaster aggregata studied by scale transplantation. Biol. Bull. 118, 463–471 (1960).CrossRefGoogle Scholar
  211. Trnka, Z., Franek, F.: Studies on the formation and characteristics of antibodies in frogs. Folia microbiol. (Praha) 5, 374–380 (1960).CrossRefGoogle Scholar
  212. Turner, R. J.: The functional development of the reticuloendothelial system in the toad Xenopus laevis (Daudin). J. exp. Zool. 170, 467–480 (1969).PubMedCrossRefGoogle Scholar
  213. Ver Eecke, A.: Structure et modification fonctionnelle du thymus de la grenouille. Bull. Acad. roy. Méd. Belg. 13, 67–86 (1899a).Google Scholar
  214. Ver Eecke, A.: Nouvelle contribution à l’anatomo-physiologie du thymus chez la grenouille. Ann. Soc. Méd. Gand. 78, 103–114 (1899b).Google Scholar
  215. Voisin, G. A., Kinsky, R. G., Duc, H. T.: Immune status of mice tolerant of living cells. II Continuous presence and nature of facilitation enhancing antibodies in tolerant animals. J. exp. Med. 135, 1185–1203 (1972).PubMedCrossRefGoogle Scholar
  216. Volpe, E. P.: Fate of neural crest homotransplants in pattern mutants of the leopard frog. J. exp. Zool. 157, 179–196 (1964).PubMedCrossRefGoogle Scholar
  217. Volpe, E. P.: Transplantation immunity and tolerance in Anurans. Transplant. Proc. 2, 286–292 (1970).PubMedGoogle Scholar
  218. Volpe, E. P.: Immunological tolerance in amphibians. Amer. Zool. 11, 207–218 (1971).Google Scholar
  219. Volpe, E. P., Gebhardt, B. M.: Effect of dosage on the survival of embryonic homotransplants in the leopard frog Rana pipiens. J. exp. Zool. 160, 11–28 (1965).PubMedCrossRefGoogle Scholar
  220. Volpe, E. P., Gebhardt, B. M.: Evidence from cultured leucocytes of blood cell chimerism in ex-parabiotic frogs. Science 154, 1197–1198 (1966).PubMedCrossRefGoogle Scholar
  221. Volpe, E. P., Gebhardt, B. M.: Chimerism of bone marrow cells in ex parabiotic frogs. Exp. Cell Res. 49, 194–229 (1968).PubMedCrossRefGoogle Scholar
  222. Volpe, E. P., Gebhardt, B. M., Curtis, S., Earley, E. M.: Immunologic tolerance and blood cell chimerism in experimentally produced parabiotic frogs. In: Biology of amphibian tumors (M. Mizell, ed.), p. 137–152. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  223. Vries, J. M. de, van Bekkum, D.W., van Putten, L. M., van der Waaij, D., Balner, H.: Signs of auto immune reactivity in neonatally thymectomized mice. In: La greffe des cellules hématopoiétiques allogéniques, p. 115–118. Paris: CNRS 1965.Google Scholar
  224. Vyazov, O. E., Sorokina, N. N.: Attempt to induce actively acquired tolerance in Amphibians. Proc. Symp. “Mechanisms of immunological tolerance”, Pub. House Czech. Acad. Sci. 1962, p. 175–178.Google Scholar
  225. Wallin, I. E.: The relationship in histogenesis of thymus like structures in Ammocetes. Amer. J. Anat. 22, 127–158 (1917).CrossRefGoogle Scholar
  226. Weinheimer, P. F., Evans, E. E., Acton, R. T.: Comparative immunology: the hemolytic complement system of the anuran amphibian Bufo marinus. Comp. Biochem. Physiol. 38, 483–488 (1971).CrossRefGoogle Scholar
  227. Witschi, E.: Development of vertebrates. London: W. B. Saunders Co. 1956.Google Scholar
  228. Wolf, K., Bullock, G. L., Dunbar, C. E., Quimby, M. C.: Tadpole edema virus: pathogenesis and growth studies and additional sites of virus infected bullfrog tadpoles. In: Biology of amphibian tumors (M. Mizell, ed.), p. 327–336. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  229. Wollman, E.: Recherches immunologiques sur les animaux inférieurs. Rev. Immunol. 4, 101–110 (1938).Google Scholar
  230. Yntema, C. L., Borysenko, M.: Survival of embryonic limb bud transplants in snapping turtles. Experientia (Basel) 27, 567–569 (1971).PubMedCrossRefGoogle Scholar
  231. Zaalberg, O. B.: A simple method for detecting single antibody forming cells. Nature (Lond.) 202, 1231 (1964).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1973

Authors and Affiliations

  • Louis Du Pasquier
    • 1
  1. 1.The Basel Institute for ImmunologyBaselSwitzerland

Personalised recommendations