Calculation of Vertical Moisture Flow in a Soil Body during Evaporation, Infiltration and Redistribution

  • F. Kastanek
Part of the Ecological Studies book series (ECOLSTUD, volume 4)

Abstract

In order to supply a mathematical solution for non-steady moisture movement in the unsaturated stage, it is necessary to define unequivocally initial and boundary conditions. Moreover, knowledge about the relations between θ, h and k (or D or C) is necessary. If the functional relationships cannot be presented in a simple form or if the initial and boundary conditions are not simple, it may become necessary to apply numerical methods. Freeze (1969) gives a s.urvey of the known numerical methods for calculating both vertical and horizontal flow problems in unsaturated soils. In the same paper, Freeze also gives a numerical solution for the computation of vertical non-steady moisture movement when taking the groundwater into account. In his considerations he took as a basis the differential equation:
$$ C\frac{{\partial h}}{{\partial t}} = \frac{{\partial h}}{{\partial z}}\left( {k\frac{{\partial h}}{{\partial z}}} \right) + \frac{{\partial k}}{{\partial z}} $$
(1)
Hanks, Klute and Bresler (1969) and Bresler, Kemper and Hanks (1969) treat the same subject. Their starting point, however, leads to another differential equation
$$ \frac{{\partial \theta }}{{\partial t}} = \frac{{\partial h}}{{\partial z}}\left( {D\frac{{\partial \theta }}{{\partial z}}} \right) + \frac{{\partial k}}{{\partial z}} $$
(2)
Moreover, they consider hysteresis effects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bresler, E., Kemper, W. D., Hanks, R. J.: Infiltration, redistribution and subsequent evaporation of water from soil as affected by wetting rate and hysteresis. Soil Sci. Amer. Proc. 33, 832–840 (1969).CrossRefGoogle Scholar
  2. Freeze, A.: The mechanism of natural ground-water recharge and discharge. 1. One-dimensional, vertical, unsteady, unsaturated flow above a recharging or discharging ground-water flow system. Water Resources Res. 5 (1), 153–171 (1969).CrossRefGoogle Scholar
  3. Hanks, R. J., Klute, A., Bresler, E.: A numeric method for estimating infiltration, redistribution, drainage and evaporation of water from soil. Water Resources Res. 5 (5), 1064–1069 (1969).CrossRefGoogle Scholar
  4. Kastanek, F.: Simulation der Entwässerung einer Bodensäule. Nota nr. 566. Wageningen: Instituut voor Cultuurtechniek en Waterhuishouding 1970.Google Scholar
  5. Kastanek, F.: Numerical simulation technique for vertical drainage from a soil column. J. Hydrol. 14, 213–232(1971).CrossRefGoogle Scholar
  6. Richtmeyer, R. D.: Difference methods for initial value problems, pp. 101–104. New York: Inter-science Publishers 1957.Google Scholar
  7. Rijtema, P. E.: An analysis of actual evapotranspiration. Agric. Research Report 659. Wageningen: Pudoc 1965.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • F. Kastanek
    • 1
  1. 1.Hoschschule fü BodenkulturViennaAustria

Personalised recommendations