Comparative Anatomy of Sclerophylls of Mediterranean Climatic Areas

  • Jochen Kummerow
Part of the Ecological Studies book series (ECOLSTUD, volume 7)


Vast territories in the Mediterranean Basin, in southern California, South Africa, southwestern Australia and central Chile are characterized by a physiognomically uniform vegetation. In general terms the predominant vegetation of these regions is termed “xerophytic” according to the concept of Schouv (1822), who so designated plants of dry habitats. Later this concept has been narrowed and precisely defined. Thoday (1933) proposed that the term “xerophyte” should not carry any particular functional or structural implication, but should be used for plants of dry areas, irrespective of their modes of adaptation to such habitats. Walter and Kreeb (1970) state that xerophytes are those plants growing in arid zones and on dry habitats without access to ground water. The aboveground organs of these plants remain alive through the entire year with the exception of the foliage of deciduous species. Excluded from this group are the water accumulating species, the succulents. Nevertheless, the remaining group of xerophytes is still extraordinarily heterogeneous and has been further subdivided. Walter and Kreeb (1970) distinguish the poikilohydrous, malakophyllous, sclerophyllous, aphyllous, and stenohydrous xerophytes.


Leaf Anatomy Comparative Anatomy Shade Leave Lower Epidermis Palisade Parenchyma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Breckle, S.: Oekologische Untersuchungen im Korkeichenwald Kataloniens. Diss., Naturw. Fak., Landw. Hochsch. Höhenheim 1966.Google Scholar
  2. Cooper, W. S.: The broad-sclerophyll vegetation of California. Carneg. Inst. Wash. Publ. 319, 1–124 (1922).Google Scholar
  3. Evenari, M.: The physiological anatomy of the transpiratory organs and the conducting systems of certain plants typical of the wilderness of Judaea. Journ. Linn. Soc. Lond. Bot. 51, 389–407 (1938).CrossRefGoogle Scholar
  4. Ewart, A. J.: Flora of Victoria, Univ. Press, Melbourne, Australia 1930 (not seen in original, cited after NOBS, 1963 ).Google Scholar
  5. Gindel, J.: Acclimatization of exotic woody plants in Israel. The theory of Phyto-Plasticity. Materiae Vegetabiles 2, 81–101 (1957).CrossRefGoogle Scholar
  6. Gindel, J.: Stomata] number and size as related to soil moisture in tree xerophytes in Israel. Ecology 50, 263–267 (1969).CrossRefGoogle Scholar
  7. Grieve, B. J.: The physiology of sclerophyll plants. J. Roy. Soc. W. Austr. 39, 31–45 (1955).Google Scholar
  8. Grieve, B. J., Hellmuth, E. O.: Eco-physiology of Western Australian plants. Oecol. Plant. 5, 33–68 (1970).Google Scholar
  9. Homann, C.: Estudio sobre reproducción y anatomia de hojas y frutos en Boldo (Peumus boldus Mol.). Thesis, Univ. de Chile, Fac. de Agronomia, Esc. Ing. Forestal 1968.Google Scholar
  10. Hurtado, P.: Observaciones sobre la anatomia foliar y la transpiración en Peumo (Cryptocarya alba (Mol.) Looser). Thesis, Univ. de Chile, Fac. de Agronomfa, Esc. Ing. Forestal 1969.Google Scholar
  11. Kalvip, H.: Untersuchungen über Kutikularbau und kutikuläre Transpiration von Blättern. Jb. wiss. Bot. 72, 403–465 (1930).Google Scholar
  12. Killian, CH., Lemée, G.: Les xérophytes: leur économie d’eau. Hdb. der Pflanzenphysiol. III, 787–824, herausgeg. von W. Ruhland. Berlin-Göttingen-Heidelberg: Springer 1956.Google Scholar
  13. Montfort, C.: Die Xeromorphie der Hochmoorpflanzen als Voraussetzung der physiologischen Trockenheit der Hochmoore. Z. Bot. 10, 257–352 (1918).Google Scholar
  14. Neger, F. W.: Biologie der Pflanzen auf experimenteller Grundlage (Binomie). Stuttgart: F. Enke 1913.Google Scholar
  15. Nobs, M. A.: Experimental studies on species relationships in Ceanothus. Carnegie Inst. Wash. Puh]. 623, 1–94 (1963).Google Scholar
  16. Oppenheimer, H. R.: Adaptation to drought: Xerophytism. 105–138. Arid Zone Res. XV. Plant-water relationships in arid and semi-arid conditions. Paris: UNESCO 1960.Google Scholar
  17. Pyykko, M.: The leaf anatomy of East Patagonian xeromorphic plants. Ann. Bot. Fennici 3, 453–622 (1966).Google Scholar
  18. Schouv, J. F.: Grundtrak tilen almindelig Plantegeografi. Kjobenhavn 1822 (not seen in original, cited after Walter and Kreeb, 1970 ).Google Scholar
  19. Shields, L. M.: Leaf xeromorphy as related to physiological and structural influences. Bot. Rev. 16, 399–447 (1950).CrossRefGoogle Scholar
  20. Stocker, O.: Die Dürreresistenz. Hdb. der Pflanzenphysiologie III, 696–741, herausg. von W. Ruh-Land. Berlin-Göttingen-Heidelberg: Springer 1956.Google Scholar
  21. Stocker, O.: Physiological and morphological changes in plants due to water deficiency. 63–104. Arid Zone Res. XV. Plant-water relationships in arid and semi-arid conditions. Paris: UNESCO 1960.Google Scholar
  22. Stocker, O.: Der Wasser-und Photosynthese-Haushalt von Wüstenpflanzen der mauretanischen Sahara. Flora 159, 539–572 (1970).Google Scholar
  23. Thoday, D.: The terminology of “xeromorphism”. J. Ecol. 21, 1–6 (1933).CrossRefGoogle Scholar
  24. Walter, H., Kreeb, K.: Die Hydratation und Hydratur des Protoplasmas der Pflanzen und ihre oekophysiologische Bedeutung. Protoplasmatologia II C 6, Wien-New York 1970.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • Jochen Kummerow

There are no affiliations available

Personalised recommendations