Advertisement

Neuronal Mechanisms of the Lateral Geniculate Body

  • Hans-Joachim Freund
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 3 / 3 B)

Abstract

Like other sensory thalamic relay nuclei, the dorsal nucleus of the lateral geniculate body (LGB) differentiates and increases in size parallel to the development of the appropriate cortical projection areas. In addition to the correlation with the position of the animal on the evolutionary scale, the structural organization of the LGB shows considerable species differences corresponding to the enormous range of visual behaviour in mammals. Unfortunately there are only a few data available from the viewpoint of comparative physiology, since our knowledge on the physiology of the LGB is almost exclusively based on studies of the main laboratory animals.

Keywords

Receptive Field Retinal Ganglion Cell Lateral Geniculate Nucleus Optic Tract Lateral Geniculate Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abkamov, I.: Further analysis of the responses of LGN cells. J. Opt. Soc. Amer. 58, 574–579 (1968).CrossRefGoogle Scholar
  2. Ajmone-Marsan, C., Mordllo, A.: Cortical control and callosal mechanisms in the visual system of cat. Electroenceph. clin. Neurophysiol. 13, 553–563 (1961).Google Scholar
  3. Altman, J.: Some fibre projections to the superior colliculus in the cat. J. comp. Neurol. 119, 77–95 (1962).CrossRefGoogle Scholar
  4. Andén, N.E., Dahlström, A., Fuxe, K., Larsson, K., Olson, L., Ungerstedt, U.: Ascending monoamine neurons to the telencephalon and diencephalon. Acta physiol. scand. 67, 313–326 (1966).CrossRefGoogle Scholar
  5. Anderson, P., Brooks, C.Mc.C., Eccles, J.C., Sears, T.A.: The ventro-basal nucleus of the thalamus: potential fields, synaptic transmission and excitability of both presynaptic and postsynaptic components. J. Physiol. (Lond.) 174, 348–369 (1964).Google Scholar
  6. Angel, A., Magni, F., Strata, P.: Excitability of intra-geniculate optic fibres after reticular stimulation in the mid-pontine pretrigeminal cat. Arch. ital. Biol. 103, 668–693 (1965).PubMedGoogle Scholar
  7. Arden, G.B.: Types of response and organization of simple receptive fields in cells of the rabbit’s lateral geniculate body. J. Physiol. (Lond.) 166, 449–467 (1963).Google Scholar
  8. Arden, G.B., Söderberg, U.: The transfer of optic information through the lateral geniculate body of the rabbit. In: Rosenblith, W.A. (Ed.): Sensory Communication Symposium, pp. 521 to 544. New York: M. I. T. Press 1961.Google Scholar
  9. Arduini, A.: Influence of visual deafferentation and of continuous retinal illumination on the excitability of geniculate neurones. In: Jung, R., Kornhuber, H. (Eds.): The Visual System: Neurophysiology and Psychophysics, pp. 117–125. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  10. Arduini, A., Pinneo, L.R.: The tonic activity of the lateral geniculate nucleus in dark and light adaptation. Arch. ital. Biol. 101, 493–507 (1963).PubMedGoogle Scholar
  11. Baker, F., Sanseverino, E.R., Lamarre, Y., Poggio, G.F.: Excitatory responses of geniculate neurones of the cat. J. Neurophysiol. 32, 916–929 (1969).PubMedGoogle Scholar
  12. Barris, R.W., Ingram, W.R., Ranson, S.W.: Optic connections of the diencephalon and midbrain of the cat. J. comp. Neurol. 62, 117–153 (1935).CrossRefGoogle Scholar
  13. Baumgartner, G., Brown, J.L., Schulz, A.: Responses of single units of the cat visual system to rectangular stimulus pattern. J. Neurophysiol. 28, 1–18 (1965).PubMedGoogle Scholar
  14. Baumgartner, G., Eichin, F., Schulz, A.: Unterschiede neuronaler Aktivierung im zentralen visuellen System bei langdauernder Verdunklung und Belichtung des Auges. Pflügers Arch. ges. Physiol. 279, R4 (1964).Google Scholar
  15. Beresford, W.A.: Fibre degeneration following lesions of the visual cortex of the cat. In: Jung, R., Kornhuber, H. (Eds.): The Visual System: Neurophysiology and Psychophysics, pp. 247–255. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  16. Beresford, W.A.: A nauta and gallocyamin study of the cortico-lateral geniculate projection in the cat and monkey. J. Hirnforsch. 5, 210–228 (1962).PubMedGoogle Scholar
  17. Biemond, A.: Experimentell-anatomische Untersuchungen über die corticofugalen optischen Verbindungen bei Kaninchen und Affen. Z. ges. Neurol. Psychiat. 129, 65–127 (1930).CrossRefGoogle Scholar
  18. Bishop, G.H., Clare, M.M.: Organization and distribution of fibres in the optic tract of the cat. J. comp. Neurol. 103, 269–304 (1955).PubMedCrossRefGoogle Scholar
  19. Bishop, G.H., Clare, M.M., Landau, W.M.: Further analysis of fibre groups in the optic tract of the cat. Exp. Neurol. 24, 386–399 (1969).PubMedCrossRefGoogle Scholar
  20. Bishop, G.H., Clare, M.M., O’Leary, J.S.: Electrical activity of the lateral geniculate of cats following optic nerve stimuli. J. Neurophysiol. 3, 308–322 (1940).Google Scholar
  21. Bishop, P.O.: Properties of afferent synapses and sensory neurones in the lateral geniculate nucleus. Int. Rev. Biol. 6, 191–255 (1964).Google Scholar
  22. Bishop, P.O., Burke, W., Davis, R.: The identification of single units in central visual pathways. J. Physiol. (Lond.) 162, 409–431 (1962).Google Scholar
  23. Bishop, P.O., Burke, W., Davis, R.: Single-unit recording from antidromically activated optic radiation neurones. J. Physiol. (Lond.) 162, 432–450 (1962).Google Scholar
  24. Bishop, P.O., Burke, W., Davis, R.: The interpretation of the extracellular response of single lateral geniculate cells. J. Physiol. (Lond.) 162, 451–472 (1962).Google Scholar
  25. Bishop, P.O., Burke, W., Davis, R., Hayhow, W.R.: Binocular interaction in the lateral geniculate nucleus — a general review. Trans. ophthal. Soc. Aust. 18, 15–35 (1958).Google Scholar
  26. Bishop, P.O., Burke, W., Hayhow, W.R.: Lysergic acid diethylamide block of lateral geniculate synapses and relief by repetitive stimulation. Exp. Neurol. 1, 556–568 (1959).PubMedCrossRefGoogle Scholar
  27. Bishop, P.O., Davis, R.: Bilateral interaction in the lateral geniculate. Science 118, 241–243 (1953).PubMedCrossRefGoogle Scholar
  28. Bishop, P.O., Davis, R.: The recovery of responsiveness of the sensory synapses in the lateral geniculate body. J. Physiol. (Lond.) 150, 214–238 (1960).Google Scholar
  29. Bishop, P.O., Field, G., Hennesy, B.L., Smith, J.R.: Action of d-lysergic acid diethylamide on lateral geniculate synapses. J. Neurophysiol. 21, 529–549 (1958).PubMedGoogle Scholar
  30. Bishop, P.O., Jeremy, D., Lance, J.W.: The optic nerve: properties of a central tract. J. Physiol. (Lond.) 121, 415–432 (1953).Google Scholar
  31. Bishop, P.O., Kozak, W., Levick, W.R., Vakkur, G.: The determination of the projection of the visual field on to the lateral geniculate nucleus of the cat. J. Physiol. (Lond.) 163, 503–539 (1962).Google Scholar
  32. Bishop, P.O., Kozak, W., Vakkur, G.J.: Some quantitative aspects of the cat’s eye: axis and plane of reference, visual field co-ordinates and optics. J. Physiol. (Lond.) 163, 466–502 (1962).Google Scholar
  33. Bishop, P.O., Levick, W.R., Williams, W.O.: Statistical analysis of the dark discharge of lateral geniculate neurones. J. Physiol. (Lond.) 170, 598 1–612 (1964).Google Scholar
  34. Bishop, P.O., McLeod, J.G.: Nature of potentials associated with synaptic transmission in lateral geniculate of cat. J. Neurophysiol. 17, 387–414 (1954).PubMedGoogle Scholar
  35. Bizzi, E.: Changes in the orthodromic and antidromic response of optic tract during the eye movements of sleep. Physiologist 8, 113 (1965).Google Scholar
  36. Bizzi, E.: Changes in the orthodromic and antidromic response of optic tract during the eye movements of sleep. J. Neurophysiol. 24, 861–870 (1966).Google Scholar
  37. Bizzi, E.: Discharge patterns of single geniculate neurons during the rapid eye movements of sleep. J. Neurophysiol. 24, 1087–1095 (1966).Google Scholar
  38. Bizzi, E., Brooks, O.C.: Functional connections between pontine reticular formation and lateral geniculate nucleus during deep sleep. Arch. ital. Biol. 101, 666–680 (1963).PubMedGoogle Scholar
  39. Bodian, D.: An experimental study of the optic tracts and retinal projection of the virginia opossum. J. comp. Neurol. 66, 113–144 (1937).CrossRefGoogle Scholar
  40. Bodian, D.: Studies on the diencephalon of the Virginia opossum. II. The fibre connections in normal and experimental material. J. comp. Neurol. 72, 207–297 (1940).CrossRefGoogle Scholar
  41. Bowsher, D.: Reticular projections to lateral geniculate in cat. Brain Res. 23, 247–249 (1970).PubMedCrossRefGoogle Scholar
  42. Brody, S.: Preliminary investigation concerning the representation of the fovea in the external geniculate body of the monkey. Proc. Kon. Akad. Wetensch. Amsterdam 37, Part. 2, 724–731 (1934).Google Scholar
  43. Brooks, B.A.: Neurophysiological correlates of brightness discrimination in the lateral geniculate nucleus of the squirrel monkey. Exp. Brain Res. 2, 1–17 (1966).PubMedCrossRefGoogle Scholar
  44. Brooks, B.A., Bohn, H.: Activity in the optic tract and lateral geniculate nucleus of the cat during the first moments of light adaptation in the scotopic region. Exp. Brain Res. 11, 213–228 (1970).PubMedCrossRefGoogle Scholar
  45. Brooks, D.C.: Localization of lateral geniculate nucleus potentials during the “deep” phase of sleep. Anat. Rec. 148, 264 (1964).Google Scholar
  46. Brooks, D.C., Bizzi, E.: Brain stem electrical activity during deep sleep. Arch. ital. Biol. 101, 648–665 (1963).PubMedGoogle Scholar
  47. Brouwer, B.: Centrifugal influence on centripetal systems in the brain. J. nerv. ment. Dis. 77, 621–627 (1933).CrossRefGoogle Scholar
  48. Brooks, D.C., Heuven, G.J.von, Biemond, A.: Experimentell-anatomische Untersuchungen über die optischen Systeme im Gehirn. Proc. Kon. Akad. Wetensch. Amsterdam 31, 603–619 (1931).Google Scholar
  49. Brooks, D.C., Zeeman, W.P.C.: Experimental anatomical investigation concerning the projection of the retina on the primary optic centers in apes. J. Neurol. Psychopath. 6, 1–10 (1925).CrossRefGoogle Scholar
  50. Brooks, D.C., Zeeman, W.P.C.: The projection of the retina in the primary optic neuron in monkeys. Brain 49, 1–35 (1926).CrossRefGoogle Scholar
  51. Brooks, D.C., Zeeman, W.P.C., Houwer, A.W.M.: Experimentell-anatomische Untersuchungen über die Projection der Retina auf die primären Opticuszentren. Schweiz. Arch. Neurol. Psychiat. 13, 118–137 (1923).Google Scholar
  52. Bruesch, S.R., Arey, L.B.: The number of myelinated and unmyelinated fibers in the optic nerve of vertebrates. J. comp. Neurol. 77, 631–665 (1942).CrossRefGoogle Scholar
  53. Burgen, A.S.V., Chipman, L.M.: Cholinesterase and succinic dehydrogenase in the central nervous system of the dog. J. Physiol. (Lond.) 114, 296–305 (1951).Google Scholar
  54. Burke, W., Hayhow, W.R.: Disuse of a central synapse and spontaneous activity in the optic nerve. Nature (Lond.) 188, 668–669 (1960).CrossRefGoogle Scholar
  55. Burke, W., Sefton, A.J.: Discharge patterns of principal cells and interneurones in LGN in the rat J. Physiol. (Lond.) 187, 201–212 (1966a).Google Scholar
  56. Burke, W., Sefton, A.J.: Recovery of responsiveness of cells of lateral geniculate nucleus of rat. J. Physiol. (Lond.) 187, 213–229 (1966b).Google Scholar
  57. Burke, W., Sefton, A.J.: Inhibitory mechanisms in LGN of rat. J. Physiol. (Lond.) 187, 231–246 (1966c).Google Scholar
  58. Büttner, U., Grusser, O.-J.: Quantitative Untersuchungen zur räumlichen Erregungssummation im rezeptiven Feld retinaler Neurone der Katze. Kybernetik 4, 81–94 (1968).PubMedCrossRefGoogle Scholar
  59. Cajal, S. Ramony: Histologie du système nerveux de l’homme et des vertébrés. Vol. II. 1955 édition, Consejo Superior de Investigaciones cientificas (Madrid) 1911.Google Scholar
  60. Campos-Ortega, J.A.: Descending subcortical projections from the occipital lobe of Galago crassicaudatus. Exp. Neurol. 21, 440–454 (1968).PubMedCrossRefGoogle Scholar
  61. Chang, H.T.: Fiber groups in primary optic pathway of cat. J. Neurophysiol. 19, 224–231 (1956).PubMedGoogle Scholar
  62. Chow, K.L.: Integrative functions of the thalamocortical visual system of the cat. Biology of memory, pp. 273–292. New York-London: Academic Press 1970.Google Scholar
  63. Chow, K.L., Lindsley, D.F., Gollender, M.: Modification of response patterns of lateral geniculate neurones after paired stimulation of contralateral and ipsilateral eyes. J. Neurophysiol. 31, 729–739 (1968).PubMedGoogle Scholar
  64. Clark, W.E. Le Gros, Penman, G.G.: The projection of the retina in the lateral geniculate body. J. Neurophysiol. 19, 416–423 (1934).Google Scholar
  65. Cleland, B.G., Dubin, M.W., Levick, W.R.: Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. J. Physiol. (Lond.) 217, 473–496 (1971).Google Scholar
  66. Cobbin, L.B., Leeder, S., Pollard, J.: Smooth muscle stimulants in extracts of optic nerves, optic tracts and lateral geniculate bodies of sheep. Brit. J. Pharm. Chemother. 25, 295–306 (1965).Google Scholar
  67. Coenen, A.M.L., Vendrik, A.J.H.: Determination of the transfer ratio of cat’s geniculate neurons through quasi-intracellular recordings and the relation with the level of consciousness. Exp. Brain Res. 14, 227–242 (1972).PubMedCrossRefGoogle Scholar
  68. Cohen, B., Feldman, M.: Relationship of electrical activity in pontine reticular formation and lateral geniculate body to rapid eye movements. J. Neurophysiol. 31, 806–817 (1968).PubMedGoogle Scholar
  69. Collonier, M., Guillery, R.W.: Synpatic organization in the lateral geniculate nucleus of the monkey. Z. Zellforsch. 62, 333–355 (1964).CrossRefGoogle Scholar
  70. Coombs, J.S., Curtis, D.R., Eccles, J.C.: The interpretation of spike potentials of motoneurones. J. Physiol. (Lond.) 139, 198–231 (1957).Google Scholar
  71. Corazza, R., Tradardi, V., Umiltà, C.: Tonic responses to steady diffuse illumination of the maintained neuronal discharge in the cat central visual pathways. Brain Res. 27, 241–250 (1971).PubMedCrossRefGoogle Scholar
  72. Creutzfeldt, O.: Functional synaptic organization in the lateral geniculate body and its implication for information transmission. In: Euler, C.von, Skoglund, S., Söderberg, V. (Eds.): Structure and Function of Inhibitory Neuronal Mechanisms, pp. 117–122. Oxford: Pergamon 1968.Google Scholar
  73. Creutzfeldt, O., Fuster, J.M., Herz, A., Straschill, M.: Some problems of the information transmission in the visual system. In: Eccles, J.C. (Ed.): Brain and Conscious Experience, pp. 138–164. Berlin-Heidelberg-New York: Springer 1964.Google Scholar
  74. Creutzfeldt, O., Maekawa, K., Hösli, L.: Forms of spontaneous and evoked postsynaptic potentials of cortical nerve cells. In: Akert, K., Waser, P.G. (Eds.): Progress in Brain Research 31, 265–273. Mechanisms of Synaptic Transmission. Amsterdam: Elsevier 1969.Google Scholar
  75. Curtis, D.R., Davis, R.: Pharmacological studies upon neurones of the LGN of the cat. Brit. J. Pharmacol. 18, 217–246 (1962).PubMedGoogle Scholar
  76. Dagnino, N., Favale, E., Loeb, C., Manfredi, M.: Sensory transmission in the geniculostriate system of the cat during natural sleep and arousal. J. Neurophysiol. 28, 443–456 (1965).PubMedGoogle Scholar
  77. Daniel, P.M., Kerr, D.B.J., Seneviratne, K., Whitteridge, D.: The topographical representation of the visual field on the lateral geniculate nucleus in the cat and monkey. J. Physiol. (Lond.) 159, 87–88 (1961).Google Scholar
  78. David, J.P., Murayama, S., Machne, X., Unna, K.R.: Evidence supporting cholinergic transmission in the lateral geniculate body of the cat. Int. J. Neuropharmacol. 2, 113–125 (1963).CrossRefGoogle Scholar
  79. Daw, N.W., Pearlman, A.L.: Cat colour vision: evidence for more than one cone process. J. Physiol. (Lond.) 211, 125–137 (1970).Google Scholar
  80. Deffenu, G., Bertaccini, G., Pepeu, G.: Acetylcholine and 5-hydroxy-tryptamine levels of the lateral geniculate bodies and superior colliculus of cats after visual deafferentation. Exp. Neurol. 17, 203–209 (1967).PubMedCrossRefGoogle Scholar
  81. De Valois, R.L.: Contribution of different lateral geniculate cell types to visual behaviour. Vision. Res. Suppl. No. 3, 383–396 (1971).CrossRefGoogle Scholar
  82. De Valois, R.L.: Color vision mechanisms in the monkey. J. gen. Physiol. 43, 115–128 (1960).CrossRefGoogle Scholar
  83. De Valois, R.L.: Abramov, I., Jacobs, G.H.: Analysis of response patterns of LGN cells. J. Opt. Soc. Amer. 56, 966–977 (1966).CrossRefGoogle Scholar
  84. De Valois, R.L., Pease, P. L.: Contours and contrast: Responses of monkey lateral geniculate nucleus cells to luminance and color figures. Science 171, 694–696 (1971).PubMedCrossRefGoogle Scholar
  85. De Valois, R.L., Smith, C.H., Kitai, S.T., Karoly, A.J.: Responses of single cells in different layers of the primate. Science 127, 238–239 (1958).CrossRefGoogle Scholar
  86. De Voss, J.C., Ganson, R.: Colour blindness of cats. J. Anim. Behav. 5, 115–139 (1915).CrossRefGoogle Scholar
  87. Donovan, A.: The nerve fibre composition of the cat optic nerve. J. Anat. (Lond.) 101, 1–11 (1967).Google Scholar
  88. Doty, R.V.: Remarks on the optic tectum. In: Jung, R., Kornhuber, H. (Eds.): The Visual System: Neurophysiology and Psychophysics, pp. 215–216. Berlin-Göttingen-Heidelberg: Springer 1960.Google Scholar
  89. Doty, R.W., Kimura, D.S.: Oscillatory potentials in the visual system of cats and monkeys. J. Physiol. (London) 168, 205–218 (1963).Google Scholar
  90. Eisman, J.A., Hansen, S.M., Burke, W.: Synaptic responsiveness in the lateral geniculate nucleus of the alert cat. Vision Res. 7, 385–399 (1967).PubMedCrossRefGoogle Scholar
  91. Enroth-Cugell, C., Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. (Lond.) 187, 517–552 (1966).Google Scholar
  92. Erulkar, S.D., Fillenz, M.: Patterns of discharge of single units of the LGB of the cat in response to binocular stimulation. J. Physiol. (Lond.) 140, 6–7P (1957).Google Scholar
  93. Erulkar, S.D., Fillenz, M.: Single-unit activity in the lateral geniculate body of the cat. J. Physiol. (Lond.) 154, (1960).Google Scholar
  94. Evarts, E.V., Landau, W., Freygang, W., Jr., Marshall, W.H.: Some effects of lysergic acid diethylamide and bufotenine on electrical activity in the cat’s visual system. Amer. J. Physiol. 182, 594–598 (1955).PubMedGoogle Scholar
  95. Eysel, U.Th., Gaedt, Chr.: Maintained activity in the lateral geniculate body of the cat and the effects of visual deprivation. Pflügers Arch. 327, 68–81 (1971).PubMedCrossRefGoogle Scholar
  96. Feldberg, W., Vogt, M.: Acetylcholine synthesis in different regions of the central nervous system. J. Physiol. (Lond.) 107, 372–381 (1948).Google Scholar
  97. Feldman, M., Cohen, B.: Electrical activity in the lateral geniculate body of the alert monkey associated with eye movements. J. Neurophysiol. 31, 455–466 (1968).PubMedGoogle Scholar
  98. Fischer, B., Freund, H.-J.: Eine mathematische Formulierung für Reiz-Reaktionsbeziehungen retinaler Ganglienzellen. Kybernetik 7, 160–166 (1970).PubMedCrossRefGoogle Scholar
  99. Freund, H.-J., Grünewald, G.: Räumliche Summation und Hemmungsvorgänge im rezeptiven Feldzentrum von Retinaneuronen der Katze. Exp. Brain Res. 8, 37–52 (1969).Google Scholar
  100. Freund, H.-J., Grünewald, G., Baumgartner, G.: Räumliche Summation im receptiven Feldzentrum von Neuronen des Geniculatum laterale der Katze. Exp. Brain Res. 8, 53–65 (1969).PubMedGoogle Scholar
  101. Freund, H.-J., Hennerici, M.: Neuronale Mechanismen des Sukzessivkontrastes im Corpus Geniculatum Laterale. Pflügers Arch. ges. Physiol. Suppl. 335, R 86 (1972).Google Scholar
  102. Freund, H.-J., Wita, C.W., Brüstle, R.: Latency differences between inhibitory and excitatory responses of cat optic tract neurones. Exp. Brain Res. 16, 60–74 (1972).PubMedCrossRefGoogle Scholar
  103. Fujino, T., Go, Y.: On the retinal representation in the lateral geniculate body. Jap. J. Ophthal. 4, 1–7 (1960).Google Scholar
  104. Fukuda, Y., Iwama, K.: Inhibition des interneurones du corps genouillé latéral par l’activation de la formation réticulée. Brain Res. 18, 548–551 (1970).PubMedCrossRefGoogle Scholar
  105. Fuster, J.M., Creutzfeldt, O., Straschill, M.: Intracellular recordings of neuronal activity in the visual system. Z. vergl. Physiol. 49, 605–622 (1965).CrossRefGoogle Scholar
  106. Fuster, J.M., Herz, A., Creutzfeldt, O.: Interval analysis of cell discharge in spontaneous and optically modulated activity in the visual system. Arch. ital. Biol. 103, 159–177 (1965).PubMedGoogle Scholar
  107. Fuxe, K.: Evidence for the existence of monoamine neurones in the central nervous system. Acta physiol. scand. 64, Suppl. 247, 37–85 (1965).Google Scholar
  108. Garey, L.J.: Interrelationships of the visual cortex and superior colliculus in the cat. Nature (Lond.) 207, 1410–1411 (1965).CrossRefGoogle Scholar
  109. Garey, L.J., Jones, E.G., Powell, T.P.S.: Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway. J. Neurol. Neurosurg. Psychiat. 31, 135–157 (1968).PubMedCrossRefGoogle Scholar
  110. Garey, L.J., Powell, T.P.S.: The projection of the retina in the cat. J. Anat. (Lond.) 102, 189–222 (1968).Google Scholar
  111. Gerebtzoff, M.A., Wauters, A.: Recherches sur l’écorce cérébrale et le thalamus du cobaye. Cellule 49, 5–70 (1941).Google Scholar
  112. Glees, P.: The termination of optic fibers in the lateral geniculate nucleus of the cat. J. Anat. (Lond.) 75, 434–440 (1941).Google Scholar
  113. Godfraind, J.M., Meulders, M.: Effects de la stimulation sensorielle somatique sur les champs visuels des neurones de la région genouillée chez le chat anesthésié au chloralose. Exp. Brain Res. 9, 183–200 (1969).PubMedCrossRefGoogle Scholar
  114. Grüsser, O.-J.: A quantitative analysis of spatial summation of excitation and inhibition within the receptive field of retinal ganglion cells of cats. Vision Res. Suppl. No. 3, 103–127 (1971).CrossRefGoogle Scholar
  115. Grüsser, O.-J., Grüsser-Cornehls, U.: Neurophysiologische Grundlagen des Binocularsehens. Arch. Psychiat. Nervenkr. 207, 296–317 (1965).PubMedCrossRefGoogle Scholar
  116. Grüsser, O.-J., Saur, G.: Monoculare und binoculare Lichtreizung einzelner Neurone im Geniculatum laterale der Katze. Pflügers Arch. ges. Physiol. 271, 595–612 (1960).CrossRefGoogle Scholar
  117. Grüsser-Cornehls, U., Grüsser, O.-J.: Mikroelektrodenuntersuchungen am Geniculatum laterale der Katze: Nervenzell- und Axonentladungen nach elektrischer Opticusreizung. Pflügers Arch. ges. Physiol. 271, 50–63 (1960).CrossRefGoogle Scholar
  118. Guillery, R.W.: A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat. J. comp. Neurol. 128, 21–50 (1966).PubMedCrossRefGoogle Scholar
  119. Guillery, R.W.: A light and electron microscopical study of neurofibrils and neurofilaments at neuroneuronal junctions in the dorsal lateral geniculate nucleus of the cat. Amer. J. Anat. 120, 583–604 (1967a).CrossRefGoogle Scholar
  120. Guillery, R.W.: Patterns of fiber degeneration in the dorsal lateral geniculate nucleus of the cat following lesions in the visual cortex. J. comp. Neurol. 130, 197–222 (1967b).PubMedCrossRefGoogle Scholar
  121. Guillery, R.W.: The laminar distribution of retinal fibers in the dorsal lateral geniculate nucleus body of the cat. A new interpretation. J. comp. Neurol. 138, 339–368 (1970).CrossRefGoogle Scholar
  122. Guillery, R.W.: Patterns of synaptic interactions on the dorsal lateral geniculate nucleus of cat and monkey: A brief review. Vision Res. Suppl. 3, 211–227 (1971).CrossRefGoogle Scholar
  123. Guillery, R.W., Scott, G.L.: Obervations on synaptic patterns in the dorsal lateral geniculate nucleus of the cat: The C laminae and the perikaryal synapses. Exp. Brain Res. 12, 184–203 (1971).PubMedCrossRefGoogle Scholar
  124. Gunter, R.: The discrimination between lights of different wavelengths in the cat. J. comp. Physiol. Psychol. 47, 169–172 (1954).PubMedCrossRefGoogle Scholar
  125. Hansen, S.M., Bruce, J.S.C., Burke, W.: The effect of retinal illumination and retinal blockade on synaptic transmission in the lateral geniculate nucleus of the cat. Vision Res. 7, 401–414 (1967).PubMedCrossRefGoogle Scholar
  126. Hayashi, Y., Sumitomo, I., Iwama, K.: Activation of lateral geniculate neurons by electrical stimulation of superior colliculus in cats. Jap. J. Physiol. 17, 638–651 (1967).CrossRefGoogle Scholar
  127. Hayhow, W.R.: The cytoarchitecture of the lateral geniculate body in the cat in relation to the distribution of crossed and uncrossed optic fibres. J. comp. Neurol. 110, 1–63 (1958).PubMedCrossRefGoogle Scholar
  128. Hayhow, W.R., Sefton, A., Webb, C.: Primary optic centers of the rat in relation to the terminal distribution of the crossed and uncrossed optic nerve fibers. J. comp. Neurol. 118, 295–322 (1962).PubMedCrossRefGoogle Scholar
  129. Hebb, C.O., Silver, A.: Choline acetylase in the central nervous system of man and some other mammals. J. Physiol. (Lond.) 134, 718–728 (1956).Google Scholar
  130. Henschen, S.W.: Über Localisation innerhalb des äußeren Kniehöckers. Neurol. Zbl. 16, 923–924 (1897).Google Scholar
  131. Henschen, S.W.: Über Localisation innerhalb des äußeren Knieganglions. Neurol. Zbl. 17, 194–199 (1898).Google Scholar
  132. Herz, A., Creutzfeldt, O., Fuster, J.: Statistische Eigenschaften der Neuronenaktivität im ascendierenden visuellen System. Kybernetik 2, 61–71 (1964).PubMedCrossRefGoogle Scholar
  133. Hind, J.E., Goldberg, I.M., Greenwood, D.D., Rose, J.E.: Some discharge characteristics of single neurones in the inferior colliculus of the cat. II. Timing of the discharges and observations on binaural stimulation. J. Neurophysiol. 26, 321–341 (1963).PubMedGoogle Scholar
  134. Hirasawa, K.: The cortical extrapyramidal system. Osaka-Tokyo: Sogensha 1951.Google Scholar
  135. Hoffmann, K.-P., Stone, J., Sherman, S.M.: Relay of receptive field properties in dorsal lateral geniculate nucleus of the cat. J. Neurophysiol. 35, 518–531 (1972).PubMedGoogle Scholar
  136. d’Hollander, F.: Recherches anatomiques sur les couches optiques. Les voies corticothalamiques et les voies corticotectales. Arch. Biol. 32, 249–344 (1922).Google Scholar
  137. Holländer, H.: The projection from the visual cortex to the lateral geniculate body (LGB). An experimental study with silver impregnation methods in the cat. Exp. Brain Res. 10, 219–235 (1970).PubMedCrossRefGoogle Scholar
  138. Hotta, T., Kameda, K.: Interactions between somatic and visual or auditory responses in the thalamus of the cat. Exp. Neurol. 8, 1–13 (1963).CrossRefGoogle Scholar
  139. Hubel, D.H.: Single unit activity in lateral geniculate body and optic tract of unrestrained cats. J. Physiol. (Lond.) 150, 91–104 (1960).Google Scholar
  140. Hubel, D.H.: Integrative processes in central visual pathways of the cat. J. opt. Soc. Amer. 53, 58–66 (1963).CrossRefGoogle Scholar
  141. Hubel, D.H., Wiesel, T.N.: Integrative action in cat’s lateral geniculate body. J. Physiol. (Lond.) 155, 385–398 (1961).Google Scholar
  142. Hughes, G.W., Maffei, L.: Retinal ganglion cell response to sinusoidal light stimulation. J. Neurophysiol. 29, 333–352 (1966).PubMedGoogle Scholar
  143. Hull, E.: Corticofugal influence in the macaque lateral geniculate nucleus. Vision Res. 8, 1285–1298 (1968).PubMedCrossRefGoogle Scholar
  144. Iwama, K., Kawamato, T., Sakakura, H., Kasamatsu, T.: Responsiveness of cat lateral geniculate at pre- and postsynaptic levels during natural sleep. Physiol. Behav. 1, 45–53 (1966).CrossRefGoogle Scholar
  145. Iwama, K., Sakakura, H.: Impulse transmission in cat lateral geniculate and so-called deep sleep wave. Proc. Japan Acad. 41, 499–502 (1965).Google Scholar
  146. Iwama, K., Sakakura, H., Kasamatsu, T.: Presynaptic inhibition in primate lateral geniculate body induced by stimulation of the cerebral cortex. Japan J. Physiol. 15, 310–322 (1965).CrossRefGoogle Scholar
  147. Jacobs, G.H.: Effects of adaptation on the lateral geniculate response to light increment and decrement. J. Opt. Soc. Amer. 55, 1535–1540 (1965).CrossRefGoogle Scholar
  148. Jacobs, G.H.: Responses of the lateral geniculate nucleus to light increment and decrement and the encoding of brightness. Vision Res. 6, 83–87 (1966).PubMedCrossRefGoogle Scholar
  149. Jeannerod, M., Putkonen, P.T.S.: Oculomotor influences on lateral geniculate body neurons. Brain Res. 24, 125–129 (1970).PubMedCrossRefGoogle Scholar
  150. Jeannerod, M., Putkonen, P.T.S.: Lateral geniculate unit activity and eye movements: Saccade-locked changes in dark and light. Exp. Brain Res. 13, 533–546 (1971).PubMedCrossRefGoogle Scholar
  151. Jefferson, J.M.: A study of the subcortical connexions of the optic tract system of the ferret, with special reference to gonadal activation by retinal stimulation. J. Anat. (Lond.) 75, 106–134 (1940).Google Scholar
  152. Jones, A.E.: Wavelength and intensity effects on the response of single lateral geniculate nucleus units in the owl monkey. J. Neurophysiol. 29, 125–138 (1966).PubMedGoogle Scholar
  153. Jordan, H., Holländer, H.: The structure of a ventral part of the lateral geniculate neurones. Cyto- and myeloarchitectonic study in the cat. J. comp. Neurol. 145, 259–277 (1972).PubMedCrossRefGoogle Scholar
  154. Joshua, D.E., Bishop, P.O.: Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction on peripheral single units in cat striate cortex. Exp. Brain Res. 10, 389–416 (1970).PubMedCrossRefGoogle Scholar
  155. Jung, R.: Neurophysiologie corticaler Neurone: Ein Beitrag zur Koordination der Hirnrinde und des visuellen Systems. In: Tower, D.B., Schade, J.P. Structure and Function of the Cerebral Cortex. Amsterdam: Elsevier 1959.Google Scholar
  156. Jung, R.: Neuronale Grundlagen des Hell-Dunkelsehens und der Farbwahrnehmung. Ber. dtsch. Ophthalm. Ges. 66, 69–111 (1964).Google Scholar
  157. Jung, R., Baumgartner, G.: Hemmungsmechanismen und bremsende Stabilisierung an einzelnen Neuronen des optischen Cortex. Ein Beitrag zur Koordination corticaler Erregungsvorgänge. Pflügers Arch. ges. Physiol. 261, 434–456 (1955).CrossRefGoogle Scholar
  158. Kahn, N., Magni, F., Pillai, R.V.: Depolarization of optic fiber endings in the lateral geniculate body. Arch. ital. Biol. 105, 573–582 (1967).PubMedGoogle Scholar
  159. Kalil, R.E., Chase, R.: Corticofugal influence on activity of lateral geniculate neurons in the cat. J. Neurophysiol. 33, 459–474 (1970).PubMedGoogle Scholar
  160. Kasamatsu, T., Iwama, K.: Two types of light sleep and central visual function in cat. Tohoku J. exp. Med. 88, 289–303 (1966).PubMedCrossRefGoogle Scholar
  161. Kato, H., Yamamoto, M., Nakahama, H.: Intracellular recordings from the lateral geniculate neurones of cats. Jap. J. Physiol. 21, 307–323 (1971).CrossRefGoogle Scholar
  162. Kinston, W.J., Vadas, M.A., Bishop, P.O.: Multiple projection of the visual field to the medial portion of the dorsal lateral geniculate nucleus and the adjacent nuclei of the thalamus of the cat. J. comp. Neurol. 136, 295–316 (1969).PubMedCrossRefGoogle Scholar
  163. Koikegami, H., Imogawa, M.: Über die Fasern, insbesondere die kortikalen extrapyramidalen Bahnen aus der Area 19 der Großhirnrinde beim Affen. Morph. Jb. 77, 587–604 (1936).Google Scholar
  164. Kozak, W., Rodieck, R.W., Bishop, P.O.: Responses of single units in lateral geniculate nucleus of cat to moving visual patterns. J. Neurophysiol. 28, 19–47 (1965).PubMedGoogle Scholar
  165. Kusama, T., Otani, K., Kawana, E.: Projections of the motor, somatic sensory, auditory and visual cortices in cats. In: Tokizane, T., Schadé, J.P. (Eds.): Progress in Brain Research, Vol. 21 A. Amsterdam: Elsevier 1966.Google Scholar
  166. Kwak, R.: Effect of cortical stimulation upon synaptic transmission in the lateral geniculate body of the cat. Tohoku J. exp. Med. 86, 290–300 (1965).PubMedCrossRefGoogle Scholar
  167. Lashley, K.S.: The mechanism of vision. VII: The projection of the retina upon the primary optic centers in the rat. J. comp. Neurol. 59, 341–373 (1934).CrossRefGoogle Scholar
  168. Lashley, K.S.: Thalamo-cortical connections of the rat’s brain. J. comp. Neurol. 75, 67–121 (1941).CrossRefGoogle Scholar
  169. Laties, A.M., Sprague, J.M.: The projection of optic tract fibers to the visual centers in the cat. J. comp. Neurol. 127, 35–70 (1966).PubMedCrossRefGoogle Scholar
  170. Laufer, M., Verzeano, M.: Periodic activity in the visual system of the cat. Vision Res. 7, 215–229 (1967).PubMedCrossRefGoogle Scholar
  171. Leblanc, C.L.: Recherches sur la systematisation des voies corticotectales. Cellule 38, 353–384 (1928).Google Scholar
  172. Lennox, M.A.: Single fibre responses to electrical stimulation in cat’s optic tract. J. Neurophysiol. 20, 62–69 (1957).Google Scholar
  173. Levick, W.R.: Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit’s retina. J. Physiol. (Lond.) 188, 285–307 (1967).Google Scholar
  174. Levick, W.R., Oyster, C.W., Takahashi, E.: Rabbit lateral geniculate nucleus: Sharpener of directional information. Science 165, 712–714 (1969).PubMedCrossRefGoogle Scholar
  175. Levick, W. R., Williams, W.O.: Maintained activity of lateral geniculate neurones in darkness. J. Physiol. (Lond.) 170, 582–597 (1964).Google Scholar
  176. Levick, W. R., Zacks, J.L.: Responses of cat retinal ganglion cells to brief flashes of light. J. Physiol. (Lond.) 206, 677–700 (1970).Google Scholar
  177. Lindsley, D.F., Chow, K.L., Gollender, M.: Dichoptic interactions of lateral geniculate neurons of cats to contralateral and ipsilateral eye stimulation. J. Neurophysiol. 30, 628–644 (1967).PubMedGoogle Scholar
  178. Loepp, W.H.: Über die zentralen Opticusendigungen beim Kaninchen. Anat. Anz. 40, 309–323 (1912).Google Scholar
  179. Maekawa, K., Rosina, A.: Synaptic transmission in the sensory relay neurons of the thalamus. Progr. Brain Res. 31, Eds.: K. Akert and P. G. Waser 259–264 (1969).Google Scholar
  180. Maffei, L.: Spatial and temporal averages in retinal channels. J. Neurophysiol. 31, 283–287 (1968).PubMedGoogle Scholar
  181. Maffei, L., Ceevetto, L., Fiorentini, A.: Transfer characteristics of excitation and inhibition in cat retinal ganglion cells. J. Neurophysiol. 33, 276–284 (1970).PubMedGoogle Scholar
  182. Maffei, L., Fiorentini, A.: Retinogeniculate convergence and analysis of contrast. J. Neurophysiol. 35, 65–72 (1972).PubMedGoogle Scholar
  183. Maffei, L., Moruzzi, G., Rizzolatti, G.: Influence of sleep and wakefulness on the response of lateral geniculate units to sinewave photic stimulation. Arch. ital. Biol. 103, 596–608 (1965).PubMedGoogle Scholar
  184. Maffei, L., Rizzolatti, G.: Effect of synchronized sleep on the response of lateral geniculate units to flashes of light. Arch. ital. Biol. 103, 609–622 (1965).PubMedGoogle Scholar
  185. Maffei, L., Rizzolatti, G.: Transfer properties of the lateral geniculate body. J. Neurophysiol. 30, 333–340 (1967).PubMedGoogle Scholar
  186. Malcolm, L.J., Bruce, L.C.S., Burke, W.: Excitability of the lateral geniculate nucleus in the alert, non-alert and sleeping cat. Exp. Brain Res. 10, 283–297 (1970).PubMedCrossRefGoogle Scholar
  187. Marchiafava, P.L.: Binocular reciprocal interaction upon optic fibre endings in the lateral geniculate nucleus of the cat. Brain Res. 2, 188–192 (1966).PubMedCrossRefGoogle Scholar
  188. Marchiafava, P.L., Pompeiano, O.: Enhanced excitability of intrageniculate optic tract endings produced by vestibular volleys. Arch. ital. Biol. 104, 459–479 (1966).PubMedGoogle Scholar
  189. McCance, I., Phillis, J.W., Westerman, R.A.: Responses of thalamic neurones to iontophoretically applied drugs. Nature (Lond.) 209, 715–716 (1966).CrossRefGoogle Scholar
  190. McIlwain, J.T.: Receptive fields of optic tract axons and lateral geniculate cells: peripheral extent and barbiturate sensitivity. J. Neurophysiol. 27, 1154–1173 (1964).PubMedGoogle Scholar
  191. McIlwain, J.T., Creutzfeldt, O.: Microelectrode study of synaptic excitation and inhibition in the lateral geniculate nucleus of the cat. J. Neurophysiol. 30, 1–21 (1967).Google Scholar
  192. Mello, N.K., Peterson, N.J.: Behavioral evidence for color discrimination in cat. J. Neurophysiol. 17, 289–294 (1964).Google Scholar
  193. Melzack, M., Konrad, K., Dubrovsky, B.: Prolonged changes in visual system activity produced by somatic stimulation. Exp. Neurol. 20, 443–459 (1968).PubMedCrossRefGoogle Scholar
  194. Mettler, F.A.: Corticofugal fiber connections of the cortex of Macaca mulatta. The occipital region. J. comp. Neurol. 61, 221–256 (1935).CrossRefGoogle Scholar
  195. Meulders, M., Godfraind, J.M.: Influence du réveil d’origine reticulaire sur l’étendue des champs visuels des neurones de la région genouillée chez le chat avec cerveau intact ou avec cerveau isolé. Exp. Brain Res. 9, 201–220 (1969).PubMedCrossRefGoogle Scholar
  196. Meyer, D.R., Anderson, R.A.: Colour discrimination in cats. In: De Renck, A.V.S. Knight, Julie (Eds.): Colour Vision, pp. 325–339. Boston: Little Brown 1965.Google Scholar
  197. Meyer, D.R., Miles, R.C., Ratoosh, P.: Absence of color vision in cat. J. Neurophysiol. 17, 289–294 (1954).PubMedGoogle Scholar
  198. Michael, C.: Receptive fields of single optic nerve fibres in a mammal with an all cone retina. I: Contrast sensitive units. J. Neurophysiol. 31, 249–256 (1968).PubMedGoogle Scholar
  199. Michael, C.: Dual opponent-color cells in the lateral geniculate nucleus of the ground squirrel. Amer. J. Physiol. 57, 254 (1971).Google Scholar
  200. Michael, I.A., Ichinose, L.Y.: Influence of oculomotor activity on visual processing. Brain Res. 22, 249–293 (1970).PubMedCrossRefGoogle Scholar
  201. Mikiten, T.M., Niebyl, P.H., Hendley, C.D.: EEG desynchronization during behavioral sleep associated with spike discharges from the thalamus of the cat. Fed. Proc. 20, 327 (1961).Google Scholar
  202. Minkowski, M.: Experimentelle Untersuchungen über die Beziehungen der Großhirnrinde und Netzhaut zu den primären optischen Zentren, besonders zum Corpus geniculatum externum. Arb. Hirnanat. Inst. Zürich 7, 259–362 (1913).Google Scholar
  203. Minkowski, M.: Über den Verlauf, die Endigung und die zentrale Repräsentation von gekreuzten Sehnervenfasern bei einigen Säugetieren und beim Menschen. Schweiz. Arch. Neurol. Psychiat. 6, 201–252 (1920).Google Scholar
  204. Montero, V.M.: Receptive fields of cells in the dorsal lateral geniculate nucleus of the rat. 4th IBRO-UNESCO Seminar at Santiago Chile Nr. 22. Dec. 7, 1966. Abstract in Science 158, 952 (1967).Google Scholar
  205. Montero, V.M., Guillery, R.W.: Degeneration in the dorsal lateral geniculate nucleus of the rat following interruption of the retinal or cortical connections. J. comp. Neurol. 134, 211–242 (1968).PubMedCrossRefGoogle Scholar
  206. Montero, V.M., Robles, L.: Saccadic modulation of cell discharges in the lateral geniculate nucleus. Vision Res. Suppl. No. 3, 253–268 (1971).Google Scholar
  207. Morell, F.: Electrical signs of sensory coding. In: Quarton, G.C., Melnechuk, T., Schmitt, F.O. (Eds.): The Neurosciences — A Study Program, pp. 452–469. New York: Rockefeller Univ. Press 1967.Google Scholar
  208. Morlock, N.L., Marshall, W.H.: Synaptic transfer in the lateral geniculate nucleus of cats. Exp. Neurol. 9, 96–106 (1964).PubMedCrossRefGoogle Scholar
  209. Morlock, N.L., Pearlman, H.L., Marshall, W.D.: Single unit study of post-tetanic potentiation and second subnormality in the lateral geniculate body of cats. Exp. Neurol. 11, 38–47 (1965).PubMedCrossRefGoogle Scholar
  210. Mountcastle, V.B., Poggio, G.F., Werner, G.: The relation of thalamic cell response to peripheral stimuli varied over an intensive continuum. J. Neurophysiol. 26, 807–834 (1963).PubMedGoogle Scholar
  211. Mouret, J.: Les mouvements oculaires au cours du sommeil paradoxal. Thesis. University of Lyon (1964).Google Scholar
  212. Nauta, W.J.H., Bucher, V.M.: Efferent connections of the striate cortex in the albino rat. J. comp. Neurol. 100, 257–281 (1954).PubMedCrossRefGoogle Scholar
  213. Nauta, W.J.H., Kuypers, H.G.J.M.: Some ascending pathways in the brain stem reticular formation. In: Jasper, H., Proctor, L.D., Knighton, R.S., Nashay, W.C., Costello, R.T. (Eds.): Reticular formation of the brain, pp. 3–30. Boston: Little Brown & Co. 1958.Google Scholar
  214. Nauta, W.J.H., van Straaten, J.J.: The primary optic centres of the rat. An experimental study by the “Bouton” method. J. Anat. (Lond.) 81, 127–134 (1947).Google Scholar
  215. Negishi, K., Verzeano, M.: Recordings with multiple microelectrodes from the lateral geniculate body and the visual cortex of the cat. In: Jung, R., Kornhuber, H. (Eds.): The Visual System: Neurophysiology and Psychophysics, pp. 288–295. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  216. Negishi, K., Lu, E.S., Verzeano, M.: Neuronal activity in the lateral geniculate body and the nucleus reticularis of the thalamus. Vision Res. 1, 343–353 (1962).CrossRefGoogle Scholar
  217. Niemer, W.T., Jimenez-Castellanos, J.: Cortico-thalamic connections in the cat as revealed by “physiological neuronography”. J. comp. Neurol. 93, 101–124 (1950).PubMedCrossRefGoogle Scholar
  218. Nilmi, K., Kanaseki, P., Takimoto, T.: The comparative anatomy of the ventral nucleus of the LGB in mammals. J. comp. Neurol. 21, 313–324 (1963).Google Scholar
  219. Nilmi, K., Kawamura, S., Ishimaru, S.: Anatomical organization of corticogeniculate projections in the cat. Proc. Jap. Acad. 46, 878–883 (1970).Google Scholar
  220. Nilmi, K., Kawamura, S., Ishimaru, S.: Projections of the visual cortex to the lateral geniculate and posterior thalamic nuclei in the cat. J. comp. Neurol. 143, 279–312 (1971).CrossRefGoogle Scholar
  221. Noda, H., Iwama, K.: Unitary analysis of retinogeniculate response time in rats. Vision Res. 7, 205–213 (1967).PubMedCrossRefGoogle Scholar
  222. Ogawa, T.: Midbrain reticular influences upon single neurons in LGN. Science 139, 343–344 (1963).PubMedCrossRefGoogle Scholar
  223. Ogden, T.E., Miller, R.F.: Studies of the optic nerve of the rhesus monkey: Nerve fiber spectrum and physiological properties. Vision Res. 6, 485–506 (1966).PubMedCrossRefGoogle Scholar
  224. O’Leary, J.L.: A structural analysis of the lateral geniculate nucleus of the cat. J. comp. Neurol. 73, 405–430 (1940).CrossRefGoogle Scholar
  225. Okuma, T., Fujimori, M.: Electrographic and evoked potential studies during sleep in the cat. I. The study on sleep. Folia psychiat. neurol. jap. 17, 25–50 (1963).PubMedGoogle Scholar
  226. Orban, G., Wissaert, R., Callens, M.: Influence of brain stem oculomotor area stimulation on single unit activity in the visual cortex. Mathematical analysis of results. Brain Res. 17, 351–354 (1970).PubMedCrossRefGoogle Scholar
  227. Oshinomi, T.: Über die Sehbahn, welche die primären Sehzentren mit der Sehrinde verbinden, besonders mit Rücksicht auf die Verbindung zwischen dem Corpus geniculatum externum und dem Hinterhauptpol. Okayama Igakkai Zasshi 42, 253–265 (1930).Google Scholar
  228. Otani, K.: Projection fibers from the visual cortex of the cat. J. Chiba med. Soc. 40, 125–138 (1964).Google Scholar
  229. Otsuka, R., Hassler, R.: Über Aufbau und Gliederung der corticalen Sehsphäre bei der Katze. Arch. Psychiat. Nervenkr. 203, 212–234 (1962).PubMedCrossRefGoogle Scholar
  230. Palestini, M., Pisano, M., Rosadini, G., Rossi, G.F.: Visual cortical response evoked by stimulating lateral geniculate body and optic radiations in awake and sleeping cats. Exp. Neurol. 9, 17–30 (1964).Google Scholar
  231. Pavlow, W.: Les connexions centrales du nerf optique chez le lapin. Le Nevraxe, T. 1, No. 3 pp. 237–246 (1900).Google Scholar
  232. Penman, G.G.: The representation of the areas of the retina in the lateral geniculate body. Trans. ophthal. Soc. U. K. 54, 232–270 (1934).Google Scholar
  233. Phillis, J.W., Tebêcis, A.K., York, D.M.: A study of cholinoceptive cells in the lateral geniculate nucleus. J. Physiol. (Lond.) 192, 695–713 (1967).Google Scholar
  234. Poggio, G.F., Baker, F.M., Lamarre, Y., Sanseverino, E.R.: Afferent inhibition at input to visual cortex of the cat. J. Neurophysiol. 32, 892–915 (1969).PubMedGoogle Scholar
  235. Polyak, S.: A contribution to the cerebral representation of the retina. J. comp. Neurol. 57, 541–617 (1933).CrossRefGoogle Scholar
  236. Polyak, S.: The vertebrate visual system. Chicago: The University of Chicago Press (1957).Google Scholar
  237. Probst, M.: Über den Verlauf der centralen Sehfasern (Rinden-Sehhügelfasern) und deren Endigung im Zwischen- und Mittelhirne und über die Associations- und Commissurenfasern der Sehsphäre. Arch. Psychiat. Nervenkr. 35, 22–43 (1902).CrossRefGoogle Scholar
  238. Rodieck, R.W., Stone, J.: Response of cat retinal ganglion cells to moving visual patterns. J. Neurophysiol. 28, 819–832 (1965).PubMedGoogle Scholar
  239. Rose, J.E., Greenwood, D.D., Goldberg, J.M., Hind, J.E.: Some discharge characteristics of single neurons in the inferior colliculus of the cat. I. Tonotopical organization, relation of spike-counts to tone intensity, and firing patterns of single elements. J. Neurophysiol. 26, 294–320 (1963).Google Scholar
  240. Sakakura, H.: Spontaneous and evoked unitary activities of cat lateral geniculate neurons in sleep and wakefulness. Jap. J. Physiol. 18, 23–42 (1968).CrossRefGoogle Scholar
  241. Sakakura, H., Iwama, K.: Presynaptic inhibition and postsynaptic facilitation in lateral geniculate body and so-called deep sleep wave activity. Tohoku J. exp. Med. 87, 40–51 (1965).PubMedCrossRefGoogle Scholar
  242. Sakakura, H., Iwama, K.: Effects of bilateral eye enucleation upon single unit activity of the lateral geniculate body in free behaving cats. Brain Res. 6, 667–678 (1967).PubMedCrossRefGoogle Scholar
  243. Sakurai, S.: Zur Kenntnis der Faserbeziehung der medialen Hemisphärenfläche der Katze. Z. mikr.-anat. Forsch. 48, 411–449 (1940).Google Scholar
  244. Sanderson, K.J.: Visual field projection columns and magnification factors in the lateral geniculate nucleus of the cat. Exp. Brain Res. 13, 159–177 (1971).PubMedGoogle Scholar
  245. Sanderson, K.J., Bishop, P.O., Darian-Smith, I.: The properties of the binocular receptive fields of lateral geniculate neurons. Exp. Brain Res. 13, 178–207 (1971).PubMedGoogle Scholar
  246. Sanderson, K.J., Darian-Smith, I., Bishop, P.O.: Binocular corresponding receptive fields of single units in the cat lateral geniculate nucleus. Vision Res. 9, 1297–1303 (1969).PubMedCrossRefGoogle Scholar
  247. Sanderson, K.J., Sherman, S.M.: Nasotemporal overlap in the visual field projected to the lateral geniculate nucleus in the cat. J. Neurophysiol. 34, 453–466 (1971).PubMedGoogle Scholar
  248. Satinsky, D.: Pharmacological responsiveness of lateral geniculate nucleus neurons. Int. J. Neuropharmacol. 6, 387–395 (1967).PubMedCrossRefGoogle Scholar
  249. Satinsky, D.: Reticular influences on lateral geniculate neuron activity. Electroenceph. clin. Neurophysiol. 25, 543–549 (1968).CrossRefGoogle Scholar
  250. Scheibel, M.E., Scheibel, A.B.: Structural substrates for integrative patterns in the brain stem reticular core. In: Jasper, H.H., Proctor, L.D., Knighton, R.S., Noshay, W.C., Costello, R.T. (Eds.): Reticular Formation of the Brain, pp. 31–35. Boston: Little & Brown 1958.Google Scholar
  251. Scheibel, M.E., Scheibel, A.B.: The organization of the nucleus reticularis thalami: A Golgi study. Brain Res. 1, 43–62 (1966).PubMedCrossRefGoogle Scholar
  252. Schiller, P.H.: Single unit analysis of backward visual masking and metacontrast in the cat lateral geniculate nucleus. Vision Res. 8, 855–866 (1968).PubMedCrossRefGoogle Scholar
  253. Sechzer, J.A., Brown, J.L.: Colour discrimination in the cat. Science 144, 427–429 (1964).PubMedCrossRefGoogle Scholar
  254. Sefton, A.J.: The innervation of the lateral geniculate nucleus and anterior colliculus in the rat. Vision Res. 8, 867–881 (1968).PubMedCrossRefGoogle Scholar
  255. Sefton, A.J., Bruce, I.S.C.: Properties of cells in the lateral geniculate nucleus. Vision Res. Suppl. No. 3, 239–252 (1971).CrossRefGoogle Scholar
  256. Sefton, A.J., Burke, W.: Mechanisms of recurrent inhibition in the lateral geniculate nucleus of the rat. Nature (Lond.) 211, 1276–1278 (1966).CrossRefGoogle Scholar
  257. Sefton, A.J., Swinburn, M.: Electrical activity of LGN and optic tract of the rat. Vision Res. 4, 315–328 (1964).PubMedCrossRefGoogle Scholar
  258. Seneviratne, K.N., Whitteridge, D.: Visual evoked responses in the lateral geniculate nucleus. Electroenceph. clin. Neurophysiol. 14, 785 (1962).CrossRefGoogle Scholar
  259. Shanzer, W., Wagman, I.H., Bender, M.B.: Brain activity evoked by optokinetic or vestibular stimulation. Intern. Congr. Physiol. Sci., 22nd, Leiden (1962).Google Scholar
  260. Sherman, S.M., Hoffmann, K.-P., Stone, J.: Loss of a specific cell type from dorsal lateral geniculate nucleus in visually deprived cats. J. Neurophysiol. 35, 532–541 (1972).PubMedGoogle Scholar
  261. Shute, C.C.D., Lewis, P.R.: Cholinesterase-containing systems of the brain of the rat. Nature (Lond.) 199, 1160–1164 (1963).CrossRefGoogle Scholar
  262. Shute, C.C.D., Lewis, P.R.: Cholinergic and monaminergic systems of the brain. Nature (Lond.) 212, 710–711 (1966).CrossRefGoogle Scholar
  263. Singer, W.: Inhibitory binocular interaction in the lateral geniculate body of the cat. Brain Res. 18, 165–170 (1970).PubMedCrossRefGoogle Scholar
  264. Singer, W., Creutzfeldt, O.: Reciprocal lateral inhibition of on- and off-center-neurones in the lateral geniculate body of the cat. Exp. Brain Res. 10, 311–330 (1970).PubMedCrossRefGoogle Scholar
  265. Singer, W., Pöppel, E., Creutzfeldt, O.: Inhibitory interaction in the cat’s lateral geniculate nucleus. Exp. Brain Res. 14, 210–226 (1972).PubMedCrossRefGoogle Scholar
  266. Smith, J.M., O’Leary, J.L., Harris, A.B., Gay, A.J.: Ultrastructural features of the lateral geniculate nucleus of the cat. J. comp. Neurol. 123, 357–378 (1964).PubMedCrossRefGoogle Scholar
  267. Spehlmann, R.: Compound action potentials of cat optic nerve produced by stimulation of optic tracts and optic nerves. Exp. Neurol. 19, 156–165 (1967).PubMedCrossRefGoogle Scholar
  268. Sperry, R.W.: Neural basis of the spontaneous optokinetic response produced by visual inversion. J. comp, physiol. Psychol. 43, 482–489 (1950).CrossRefGoogle Scholar
  269. Steiner, F.A.: Influence of microelectrophoretically applied acetylcholine on the responsiveness of hippocampal and lateral geniculate neurones. Pflügers Arch. 303, 173–180 (1968).PubMedCrossRefGoogle Scholar
  270. Stewart, D.L., Chow, K.L., Masland, R.: Receptive-field characteristics of lateral geniculate neurons in the rabbit. J. Neurophysiol. 34, 139–147 (1971).PubMedGoogle Scholar
  271. Stone, J.: The nasotemporal division of the cat’s retina. J. comp. Neurol. 126, 585–600 (1966).PubMedGoogle Scholar
  272. Stone, J., Freeman, R.B.: Conduction velocity groups in the cat’s optic nerve classified according to their retinal origin. Exp. Brain Res. 13, 489–497 (1971).PubMedGoogle Scholar
  273. Stone, J., Hansen, S.M.: The projection of the cat’s retina on the LGN. J. comp. Neurol. 126, 601–624 (1966).PubMedGoogle Scholar
  274. Stone, J., Hoffmann, K.-P.: Conduction velocity as a parameter in the organization of the afferent relay in the cat’s lateral geniculate nucleus. Brain Res. 32, 454–459 (1971).PubMedCrossRefGoogle Scholar
  275. Stone, J., Holländer, H.: Optic nerve axon diameters measured in the cat retina: some functional considerations. Exp. Brain Res. 13, 498–503 (1971).PubMedGoogle Scholar
  276. Straschill, M.: Aktivität von Neuronen im Tractus opticus und Corpus geniculatum laterale bei langdauernden Lichtreizen verschiedener Aktivität. Kybernetik 3, 1, 1–8 (1966).CrossRefGoogle Scholar
  277. Sumitomo, I., Ide, K., Iwama, K., Arikuni, T.: Conduction velocity of optic nerve fibers innervating lateral geniculate body and superior colliculus in the rat. Exp. Neurol. 25, 378–392 (1969).PubMedCrossRefGoogle Scholar
  278. Suzuki, H., Ichijo, M.: Tonic inhibition in cat lateral geniculate nucleus maintained by retinal spontaneous discharge. Jap. J. Physiol. 47, 599–612 (1967).CrossRefGoogle Scholar
  279. Suzuki, H., Kato, E.: Binocular interaction at cat’s lateral geniculate body. J. Neuro-physiol. 29, 909–920 (1966).Google Scholar
  280. Suzuki, H., Taira, N.: Effect of reticular stimulation upon synaptic transmission in cat’s lateral geniculate body. Jap. J. Physiol. 191, 405–413 (1960).Google Scholar
  281. Suzuki, H., Takahashi, M.: Organization of lateral geniculate neurones in binocular inhibition. Brain Res. 23, 261–264 (1970).PubMedCrossRefGoogle Scholar
  282. Szentagothai, J.: The structure of the synapse in the lateral geniculate body. Acta Anat. 55, 166–185 (1963).PubMedCrossRefGoogle Scholar
  283. Szentagothai, J., Hamori, H., Tömböl, Th.: Degeneration and electron microscope analysis of the synaptic glomeruli in the lateral geniculate body. Exp. Brain Res. 2, 283–301 (1966).PubMedCrossRefGoogle Scholar
  284. Taboada, R.P.: Note sur la structure du corps genouillée externe. Trab. Lab. Inves. biol. Univ. Madr. 25, 319–329 (1927).Google Scholar
  285. Taira, N., Okuda, L.: Sensory transmission in visual pathway in various arousal states of cat. Tohoku J. exp. Med. 78, 76–97 (1962).Google Scholar
  286. Tebêcis, A.K., DiMaria, A.: A re-evaluation of the mode of action of 5-hydroxytryptamine on lateral geniculate neurones: comparison with catecholamines and LSD. Exp. Brain Res. 14, 480–493 (1972).PubMedCrossRefGoogle Scholar
  287. Tello, F.: Disposición macroscopia y estructura des cuerpo geniculado externo. Trab. Lab. Invest. biol. Univ. Madr. 3, 39–62 (1904).Google Scholar
  288. Teuber, H.L.: The riddle of frontal lobe function in man. In: Warren, J.M., Akert, K. (Eds.): The Frontal Granular Cortex and Behavior, pp. 410–444. New York: McGraw-Hill 1964.Google Scholar
  289. Teuber, H.L.: The frontal lobes and their function. Further observations on rodents, carnivores, subhuman primates and man. J. Neurol. (Montevideo) 5, 282–300 (1966).Google Scholar
  290. Tömböl, T.: Short neurons and their synaptic relations in the specific thalamic nuclei. Brain Res. 3, 307–326 (1966/1967).PubMedCrossRefGoogle Scholar
  291. Tömböl, T.: Terminal arborizations in specific afferents in the specific thalamic nuclei. Acta morph. Acad. Sci. hung. 17, 273–284 (1969a).Google Scholar
  292. Tömböl, T.: Two types of short axon (Golgi 2nd) interneurones in the specific thalamic nuclei. Acta morph. Acad. Sci. hung. 17, 285–297 (1969b).Google Scholar
  293. Tsang, Y.Ch.: Visual centers in blinded rats. J. comp. Neurol. 66, 211–261 (1937).CrossRefGoogle Scholar
  294. Uchishima, W.: An experimental study on the cortical extrapyramidal fibers from areas 18 and 19 in the cat. Hokuetsu Igakkai Zasshi 51, 428–465 (1936).Google Scholar
  295. Vastola, E.F.: Steady potential responses in the lateral geniculate body. Electr. oenceph. clin Neurophys. 7, 557–567 (1955).CrossRefGoogle Scholar
  296. Vastola, E.F.: Afterpositivity in the lateral geniculate body during repetitive stimulation. Exp. Neurol. 2, 54–61 (1960a).PubMedCrossRefGoogle Scholar
  297. Vastola, E.F.: Binocular inhibition in the lateral geniculate body. Exp. Neurol. 2, 221–231 (1960b).PubMedCrossRefGoogle Scholar
  298. Verzeano, M., Negishi, K.: Neuronal activity in cortical and thalamic networks. A study with multiple microelectrodes. J. gen. Physiol. 43, Suppl., 177–195 (1960).PubMedCrossRefGoogle Scholar
  299. Volkmann, F.C.: Vision during voluntary saccadic eye movements. J. Opt. Soc. Amer. 52, 571–578 (1962).CrossRefGoogle Scholar
  300. Volkmann, F.C., Schick, A.M.L., Riggs, L.A.: Time course of visual inhibition during voluntary saccades. J. Opt. Soc. Amer. 58, 562–569 (1968).CrossRefGoogle Scholar
  301. Wagner, H.G., MacNichol, E.F., Jr., Wolbarsht, M.L.: Functional basis for “on”-center and “off”-center receptive fields in the retina. J. Opt. Soc. Amer. 53, 66–70 (1963).CrossRefGoogle Scholar
  302. Wall, P.D.: Excitability changes in afferent fibre terminations and their relation to slow potentials. J. Physiol. (Lond.) 142, 1–21 (1958).Google Scholar
  303. Walsh, J.T., Cordeau, J.P.: Responsiveness in the visual system during various phases of sleep and waking. Exp. Neurol. 11, 90–103 (1965).CrossRefGoogle Scholar
  304. Widén, L., Ajmone-Marsan, C: Effects of corticopetal and corticofugal impulses upon single elements of the dorsolateral geniculate nucleus. Exp. Neurol. 2, 468–572 (1960).PubMedCrossRefGoogle Scholar
  305. Wiesel, T.N., Hubel, D.H.: Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29, 1115–1156 (1966).PubMedGoogle Scholar
  306. Winters, R.W., Hamasaki, D.I.: Comparison of LGN and optic tract intensity-response functions. Vision Res. 12, 589–608 (1972).PubMedCrossRefGoogle Scholar
  307. Wurtz, R.H.: Response of striate cortex neurons to stimuli during rapid eye movements in the monkey. J. Neurophysiol. 32, 975–986 (1969).PubMedGoogle Scholar
  308. Wurtz, R.H.: Comparison of effects of eye movements and stimulus movements on striate cortex neurons of the monkey. J. Neurophysiol. 32, 987–994 (1969).PubMedGoogle Scholar
  309. Zuber, B.L., Stark, L.: Saccadic suppression: elevation of visual threshold associated with saccadic eye movements. Exp. Neurol. 16, 65–79 (1966).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1973

Authors and Affiliations

  • Hans-Joachim Freund
    • 1
  1. 1.Freiburg i. Br.Germany

Personalised recommendations