Ablation of Visual Areas in the Central Nervous System

  • Robert W. Doty
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 3 / 3 B)

Abstract

Experiments utilizing ablation of cerebral tissue fall into two classes, those which leave a particular behavior undisturbed and thus demonstrate that the tissue removed is nonessential to the behavior; and those which disrupt the behavior under study. Results in the former case may be trivial, as they frequently were prior to adequate knowledge of the functional anatomy of the cerebral cortex. For instance, Franz (1911) performed a careful study of vision following occipital lobectomy in monkeys, but came to erroneous conclusions by missing what is now known to be the representation of the fovea in the far lateral striate cortex (and probably also the deeply concealed anterior tip of the striate area). Presently available techniques should preclude repetition of this type of error. The functional state of surviving tissue can be assayed electrophysiologically and the extent and location of a neocortical lesion can be checked against retrograde thalamic degeneration1. Using such criteria it is now apparent that visual pattern discrimination (Fig. 4) in the cat (Doty, 1961b, 1971; Spear and Braun, 1969; Wetzel et al., 1965; Winans, 1967) and possibly in the tree shrew (Snyder and Diamond, 1968) or rat (Lewellyn et al., 1969), can survive loss of the striate cortex. In view of the elaborate physiological processing of visual information known to occur in the striate cortex (e.g., Hubel and Wiesel, 1962) this result is clearly unexpected and raises difficult questions concerning the functions and organization of the neocortical visual system.

Keywords

Retina Neurol Melatonin Azimuth Amphetamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarons, L., Halasz, Hisako, K., Riesen, A. H.: Interocular transfer of visual intensity discrimination after ablation of striate cortex in dark-reared kittens. J. comp. physiol. Psychol. 56, 196–199 (1963).CrossRefGoogle Scholar
  2. Ades, H.W., Raab, D.H.: Effect of preoccipital and temporal decortication on learned visual discrimination in monkeys. J. Neurophysiol. 12, 101–108 (1949).PubMedGoogle Scholar
  3. Anderson, K. V., Symmes, D.: The superior colliculus and higher visual functions in the monkey. Brain Res. 13, 37–52 (1969).PubMedCrossRefGoogle Scholar
  4. Armstrong, C. M.: Monosynaptic activation of pyramidal cells in area 18 by optic radiation fibers. Exp. Neurol. 21, 413–428 (1968).PubMedCrossRefGoogle Scholar
  5. Aronson, L.R., Kaplan, Harriett: Function of the teleostean forebrain. In: Ingle, D. (Ed.): The central nervous system and fish behavior, pp. 107–125. Chicago: University of Chicago Press 1968.Google Scholar
  6. Arora, H.L., Sperry, R.W.: Studies on color discrimination following optic nerve regeneration in cichlid fish, Astronotus ocellatus. Anat. Rec. 131, 529 (1958).Google Scholar
  7. Avanzini, G., Mancia, D., Pelliccioli, G.: Ascending and descending connections of the insular cortex of the cat. Arch. ital. Biol. 107, 696–714 (1969).Google Scholar
  8. Baden, J.P., Urbaitis, J.C., Meikle, T.H., jr.: Effects of serial bilateral neocortical ablations on a visual discrimination by cats. Exp. Neurol. 13, 233–251 (1965).PubMedCrossRefGoogle Scholar
  9. Bauer, J. H., Cooper, R. M.: Effects of posterior cortical lesions on performance of a brightness-discrimination task. J. comp. physiol. Psychol. 58, 84–92 (1964).PubMedCrossRefGoogle Scholar
  10. Bellrose, F.C.: Orientation in waterfowl migration. In: Storm, R.M. (Ed.): Animal Orientation and Navigation (Proc. 27 Ann. Biol. Colloq. 1966), pp. 73–99. Corvallis: Oregon State University Press 1967.Google Scholar
  11. Bernstein, J.J.: Role of the telencephalon in color vision of fish. Exp. Neurol. 6, 173–185 (1962).PubMedCrossRefGoogle Scholar
  12. Biersner, R., Melzack, R.: Approach-avoidance responses to visual stimuli in frogs. Exp. Neurol. 15, 418–424 (1966).PubMedCrossRefGoogle Scholar
  13. Bignall, K.E.: Comparison of optic afferents to primary visual and polysensory areas of cat neocortex. Exp. Neurol. 17, 327–343 (1967).PubMedCrossRefGoogle Scholar
  14. Bignall, K.E., Imbert, M., Buser, P.: Optic projections to nonvisual cortex of the cat. J. Neurophysiol. 29, 396–409 (1966).PubMedGoogle Scholar
  15. Bignall, K.E., Singer, P.: Auditory, somatic and visual input to association and motor cortex of the squirrel monkey. Exp. Neurol. 18, 300–312 (1967).PubMedCrossRefGoogle Scholar
  16. Binggeli, R.L., Paule, W.J.: The pigeon retina: quantitative aspects of the optic nerve and ganglion cell layer. J. comp. Neurol. 137, 1–18 (1969).PubMedCrossRefGoogle Scholar
  17. Blake, Lillian: The effect of lesions of the superior colliculus on brightness and pattern discriminations in the cat. J. comp. physiol. Psychol. 52, 272–278 (1959).PubMedCrossRefGoogle Scholar
  18. Braak, T.W.G., ter, Schenk, V.W.D., Vliet, A.G.M., van: Visual reactions in a case of long-lasting cortical blindness. Neurol. Neurosurg. Psychiat. 34, 140–147 (1971).CrossRefGoogle Scholar
  19. Braemer, W.: A critical review of the sun-azimuth hypothesis. Cold Spr. Harb. Symp. quant. Biol. 25, 413–427 (1960).Google Scholar
  20. Braun, J. J., Gault, F.P.: Monocular and binocular control of horizontal optokinetic nystagmus in cats and rabbits. J. comp. physiol. Psychol. 69, 12–16 (1969).PubMedCrossRefGoogle Scholar
  21. Braun, J. J., Meyer, Patricia N., Meyer, D.R.: Sparing of a brightness habit in rats following visual decortication. J. comp. physiol. Psychol. 61, 79–82 (1966).PubMedCrossRefGoogle Scholar
  22. Breder, C.M., jr., Rasquin, P.: Comparative studies in the light sensitivity of blind characins from a series of Mexican caves. Bull. Amer. Mus. Nat. Hist. 89, 314–352 (1947).Google Scholar
  23. Breed, F.: The development of certain instincts and habits in chicks. Behavior Monogr. 1, 78 pp. (1911).Google Scholar
  24. Bridgman, C.S., Smith, K.U.: The absolute threshold of vision in cat and man with observations on its relation to the optic cortex. Amer. J. Physiol 136, 463–466 (1942).Google Scholar
  25. Brindley, G.S., Gautier-Smith, P.C., Lewin, W.: Cortical blindness and the functions of the non-geniculate fibers of the optic tracts. J. Neurol. Neurosurg. Psychiat. 32, 259–264 (1969).PubMedCrossRefGoogle Scholar
  26. Buchtel, H.A.: Visual form discrimination on the basis of relative distribution of light. Science 164, 857–858 (1969).PubMedCrossRefGoogle Scholar
  27. Buchwald, N. A., Wyers, E.J., Carlin, J., Farley, R.E.: Effects of caudate stimulation on visual discrimination. Exp. Neurol. 4, 23–36 (1961).CrossRefGoogle Scholar
  28. Buddenbrock, W. von: Vergleichende Physiologie. II: Nervenphysiologie, p. 254. Basel: Birkhäuser 1953.Google Scholar
  29. Butter, C.M.: Impairments in selective attention to visual stimuli in monkey with inferotemporal and lateral striate lesions. Brain Res. 12, 374–383 (1969).PubMedCrossRefGoogle Scholar
  30. Chorover, S.L., Chase, R.: Persistence of visual pattern discrimination in binocularly-occluded albino rats. J. comp. physiol. Psychol. 65, 238–245 (1968).PubMedCrossRefGoogle Scholar
  31. Chow, K.L.: Anatomical and electrographical analysis of temporal neocortex in relation to visual discrimination learning in monkeys. In: Fessard, A., Gerard, R.W., Konorski, J., Delafresnaye, J.F., (Eds.): Brain Mechanisms and Learning, pp. 507–525. Oxford: Blackwell 1961.Google Scholar
  32. Chow, K.L.: Visual discriminations after extensive ablation of optic tract and visual cortex in cats. Brain Res. 9, 363–366 (1968).PubMedCrossRefGoogle Scholar
  33. Chow, K.L., Blum, Josephine S., Blum, R. A.: Effects of combined destruction of frontal and posterior “associative areas” in monkeys. J. Neurophysiol. 14, 59–71 (1951).PubMedGoogle Scholar
  34. Cohen, B., Feldman, M., Diamond, S.P.: Effects of eye movement, brain-stem stimulation and alertness on transmission through lateral geniculate body of monkey. J. Neurophysiol. 32, 583–594 (1969).PubMedGoogle Scholar
  35. Cohen, D.H.: The hyperstriatal region of the avian forebrain: a lesion study of possible functions, including its role in cardiac and respiratory conditioning. J. comp. Neurol. 131, 559–570 (1967).PubMedCrossRefGoogle Scholar
  36. Cohen, D.H., Trauner, Doris A.: Studies of avian visual pathways involved in cardiac conditioning: nucleus rotundus and ectostriatum. Exp. Brain Res. 7, 133–142 (1969).PubMedCrossRefGoogle Scholar
  37. Cooper, R.M., Freeman, I., Pinel, J.P.J.: Absolute threshold of vision in the rat after removal of striate cortex. J. comp. physiol. Psychol. 64, 36–39 (1967).PubMedCrossRefGoogle Scholar
  38. Cowey, A.: Perimetric study of field defects in monkeys after cortical and retinal ablations. Quart. J. exp. Psychol. 19, 232–245 (1967).CrossRefGoogle Scholar
  39. Cowey, A., Weiskrantz, L.: A comparison of the effects of inferotemporal and striate cortex lesions on the visual behaviour of rhesus monkeys. Quart. J. exp. Psychol. 19, 246–253 (1967).CrossRefGoogle Scholar
  40. Craft, L. H., Butter, C. M.: Effect of striate cortex removal on wavelength discrimination in rats. Psychol. Rec. 18, 311–316 (1968).Google Scholar
  41. Cragg, B.G.: The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. Vision Res. 9, 733–747 (1969).PubMedCrossRefGoogle Scholar
  42. Cronly-Dillon, J.R., Sutherland, N.S., Wolfe, J.: Intraretinal transfer of a learned visual shape discrimination in goldfish after section and regeneration of the optic nerve brachia. Exp. Neurol. 15, 455–462 (1966).CrossRefGoogle Scholar
  43. Daniel, P.M., Whitteridge, D.: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. (Lond.) 159, 203–221 (1961).Google Scholar
  44. Denny-Brown, D.: The Basal Ganglia, 142 pp. London: Oxford University Press 1962.Google Scholar
  45. Denny-Brown, D., Chambers, R.A.: Visuomotor function in the cerebral cortex. Arch. Neurol. Psychiat. 73, 566 (1955).Google Scholar
  46. Denny-Brown, D., Chambers, R.A.: The parietal lobe and behavior. In: The Brain and Human Behavior. Ass. Res. Nerv. Ment. Dis. Vol. 36, pp. 35–117. Baltimore: Williams & Wilkins Comp. 1958.Google Scholar
  47. Diamond, I.T., Hall, W.C: Evolution of neocortex. Science 164, 251–262 (1969).PubMedCrossRefGoogle Scholar
  48. Dodwell, P.C., Freedman, N.L.: Visual form discrimination after removal of the visual cortex in cats. Science 160, 559–560 (1968).PubMedCrossRefGoogle Scholar
  49. Doty, R.W.: Effects of ablations of visual cortex in neonatal and adult cats. Abst. Comm.XIX Int. Physiol. Cong. 316–317 (1953).Google Scholar
  50. Doty, R.W.: Potentials evoked in cat cerebral cortex by diffuse and by punctiform photic stimuli. J. Neurophysiol. 21, 437–464 (1958).PubMedGoogle Scholar
  51. Doty, R.W.: Remarks on the optic tectum. In: Jung, R., Kornhuber, H. (Eds.): The Visual System: Neurophysiology and Psychophysics, pp. 215–245. Berlin-Göttingen-Heidelberg: Springer 1961a.Google Scholar
  52. Doty, R.W.: Functional significance of the topographical aspects of the retino-cortical projection. In: Jung, R., Kornhuber, H. (Eds.): The Visual System: Neurophysiology and Psychophysics, pp. 228–245. Berlin-Göttingen-Heidelberg: Springer 1961b.Google Scholar
  53. Doty, R.W.: Characteristics of central visual pathways in macaques. Physiologist 8, 154 (1965).Google Scholar
  54. Doty, R.W., Grimm, Frances R.: Cortical responses to local electrical stimulation of retina. Exp. Neurol. 5, 319–334 (1962).PubMedCrossRefGoogle Scholar
  55. Doty, R.W.: Survival of pattern vision after removal of striate cortex in the adult cat. J. comp. Neurol. 143, 341–369 (1971).PubMedCrossRefGoogle Scholar
  56. Doty, R.W., Kimura, D.S., Mogenson, G.J.: Photically and electrically elicited responses in the central visual system of the squirrel monkey. Exp. Neurol. 10, 19–51 (1964).PubMedCrossRefGoogle Scholar
  57. Dow, B.M., Dubner, R.: Visual receptive fields and responses to movement in an association area of cat cerebral cortex. J. Neurophysiol. 32, 773–784 (1969).PubMedGoogle Scholar
  58. Dreher, B., Żernicki, B.: Studies on the visual fixation reflex III. The effects of frontal lesions in the cat. Acta Biol. exp. (Warszawa) 29, 153–173 (1969).Google Scholar
  59. Dubner, R., Brown, F. J.: Response of cells to restricted visual stimuli in an association area of cat cerebral cortex. Exp. Neurol. 20, 70–86 (1968).PubMedCrossRefGoogle Scholar
  60. Dücker, G., Rensch, B.: Verzögerung des Vergessens erlernter visueller Aufgaben bei Fischen durch Dunkelhaltung. Pflügers Arch. ges. Physiol. 301, 1–6 (1968).CrossRefGoogle Scholar
  61. Ehrenfeld, D.W., Carr, A.: The role of vision in the sea-finding orientation of the green turtle (Chelonia mydas). Anim. Behav. 15, 25–36 (1967).PubMedCrossRefGoogle Scholar
  62. Emlen, S.T.: Bird migration: influence of physiological state upon celestial orientation. Science 165, 716–718 (1969).PubMedCrossRefGoogle Scholar
  63. Ettlinger, G., Iwai, E., Mishkin, M., Rosvold, H.E.: Visual discrimination in the monkey following serial ablation of inferotemporal and preoccipital cortex. J. Comp. physiol. Psychol. 65, 110–117 (1968).PubMedCrossRefGoogle Scholar
  64. Ewert, J.-P.: Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung beim Beutefang der Erdkröte (Bufo bufo L.). Z. vergl. Physiol. 57, 263–298 (1967).CrossRefGoogle Scholar
  65. Ewert, J.-P.: Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute- und Fluchtverhalten der Erdkröte (Bufo bufo L.). Z. vergl. Physiol. 61, 41–70 (1968a).Google Scholar
  66. Ewert, J.-P.: Verhaltensphysiologische Untersuchungen zum „stroboskopischen Sehen“ der Erdkröte (Bufo bufo L.). Pflügers Arch. ges. Physiol. 229, 158–166 (1968b).Google Scholar
  67. Ewert, J.-P.: Das Beuteverhalten Zwischenhirn-defekter Erdkröten (Bufo bufo L.) gegenüber bewegten und ruhenden visuellen Mustern. Pflügers Arch. ges. Physiol. 306, 210–218 (1969).CrossRefGoogle Scholar
  68. Exner, S., Paneth, J.: Über Sehstörungen nach Operationen im Bereich des Vorderhirns. Pflügers Arch. ges. Physiol. 40, 62–64 (1887).CrossRefGoogle Scholar
  69. Feldman, M., Cohen, B.: Electrical activity in the lateral geniculate body of the alert monkey associated with eye movements. J. Neurophysiol. 31, 455–466 (1968).PubMedGoogle Scholar
  70. Ferguson, D.E.: Sun-compass orientation in anurans. In: Storm, R.M. (Editor) Animal Orientation and Navigation (Proc.27 Ann. Biol. Colloq. 1966), pp. 21–34. Corvallis: Oregon State University Press 1967.Google Scholar
  71. Ferguson, D.E., Landreth, H.F., McKeown, J.P.: Sun compass orientation of the northern cricket frog (Acris crepitans). Anim. Behav. 15, 45–53 (1967).PubMedCrossRefGoogle Scholar
  72. Fischman, M.W., Meikle, T.H., jr.: Visual intensity discrimination in cats after serial tectal and cortical lesions. J. comp. physiol. Psychol. 59, 193–201 (1965).PubMedCrossRefGoogle Scholar
  73. Franz, S.I.: On the function of the cerebrum: the occipital lobes. Psychol.Monogr. 13, (1911), 118 pp.Google Scholar
  74. Frommer, G. P., Galambos, R., Norton, T. T.: Visual evoked responses in cats with optic tract lesions. Exp. Neurol. 21, 346–363 (1968).PubMedCrossRefGoogle Scholar
  75. Fukuda, T.: The unidirectionality of the labyrinthine reflex in relation to the unidirectionality of the optokinetic reflex. Acta oto-laryng. (Stockh.) 50, 507–516 (1959).CrossRefGoogle Scholar
  76. Galambos, R., Norton, T.T., Frommer, G.P.: Optic tract lesions sparing pattern vision in cats. Exp. Neurol. 18, 8–25 (1967).PubMedCrossRefGoogle Scholar
  77. Garey, L. J., Powell, T.P.S.: The projection of the lateral geniculate nucleus upon the cortex in the cat. Proc. roy. Soc. B 169, 107–126 (1967).CrossRefGoogle Scholar
  78. Garey, L. J., Jones, E.G., Powell, T.P.S.: Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway. J. Neurol. Neurosurg. Psychiat. 31, 135–157 (1968).PubMedCrossRefGoogle Scholar
  79. Garey, L. J., The superior colliculus in vision. J. comp. Neurol. 67, 451–467 (1937).CrossRefGoogle Scholar
  80. Ghiselli, E.E.: Mass action and equipotentiality of the cerebral cortex in brightness discrimination. J. comp. Psychol. 25, 273–287 (1938).CrossRefGoogle Scholar
  81. Glaser, V.D.: Zum Verhalten blinder Fische. Z. Tierpsychol. 25, 648–658 (1969).Google Scholar
  82. Godfraind, J.M., Meulders, M., Veraart, C: Visual receptive fields of neurons in pulvinar, nucleus lateralis posterior and nucleus suprageniculatus thalami of the cat. Brain Res. 15, 552–555 (1969).PubMedCrossRefGoogle Scholar
  83. Goldman, Patricia S., Rosvold, H.E., Mishkin, M.: Evidence for behavioral impairment following prefrontal lobectomy in the infant monkey. J. comp. physiol. Psychol. 70, 454–463 (1970).PubMedCrossRefGoogle Scholar
  84. Goodman, D.C., Horel, J.A.: Sprouting of optic tract projections in the brain stem of the rat. J. comp. Neurol. 127, 71–88 (1966).PubMedCrossRefGoogle Scholar
  85. Gouras, P.: Antidromic responses of orthodromically identified ganglion cells in monkey retina. J. Physiol. (Lond.) 204, 407–419 (1969).Google Scholar
  86. Grobbel, G., Hahn, G.: Morphologie und Histologie der Seitenorgane des augenlosen Höhlenfisches Anoptichthys Jordani im Vergleich zu anderen Telcosteern. Z. Morph. Ökol. Tiere 47, 249–266 (1958).CrossRefGoogle Scholar
  87. Grüsser, O.-J., Grüsser-Cornehls, Ursula: Neurophysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Z. vergl. Physiol. 59, 1–24 (1968).CrossRefGoogle Scholar
  88. Gudden, B. von: Über die Frage der Localisation der Functionen der Großhirnrinde. Allg. Psychiat. 42, 478–499 (1886).Google Scholar
  89. Gudden, B. von: Gesammelte und hinterlassene Abhandlungen, 227 pp. Wiesbaden: J. F. Bergmann 1889.Google Scholar
  90. Gybels, J., Meulders, M., Klyens, M., Colle, J.: Disturbances of visuomotor integration in cats with small lesions of the caudate nucleus. Arch. int. Physiol. 75, 283–302 (1967).PubMedCrossRefGoogle Scholar
  91. Hackett, J.T., Marczynski, T.J.: Post-reinforcement electrocortical synchronization and enhancement of cortical photic evoked potentials during instrumentally conditioned appetitive behavior in the cat. Brain Res. 15, 447–464 (1969).PubMedCrossRefGoogle Scholar
  92. Hajos, A.: Farbunterscheidung ohne „Farbigsehen“. Naturwissenschaften 49, 93–97 (1962).CrossRefGoogle Scholar
  93. Hall, W.C., Diamond, I.T.: Organization and function of the visual cortex in hedgehog: II. An ablation study of pattern discrimination. Brain Behav. Evol. 1, 215–243 (1968).CrossRefGoogle Scholar
  94. Hamilton, C.R., Hillyard, S.A., Sperry, R.W.: Interhemispheric comparison of color in split-brain monkeys. Exp. Neurol. 21, 486–494 (1968).PubMedCrossRefGoogle Scholar
  95. Hamilton, D.M., Treichler, F.R.: Multiple-stimulus dimensions in brightness-discrimination learning by rats with striate lesions. J. comp. physiol. Psychol. 66, 363–368 (1968).PubMedCrossRefGoogle Scholar
  96. Hara, K.: Visual defects resulting from prestriate cortical lesions in cats. J. comp. physiol. Psychol. 55, 293–298 (1962).PubMedCrossRefGoogle Scholar
  97. Hasler, A.D., Schwassman, H.O.: Sun orientation of fish at different latitudes. Cold Spr. Harb. Symp. quant. Biol. 25, 429–441 (1960).Google Scholar
  98. Hasler, A.D.: Underwater guideposts for migrating fishes. In: Storm, R.M. (Ed.): Animal Orientation and Navigation (Proc. 27 Ann. Biol. Colloq. 1966), pp. 1–20. Corvallis: Oregon State University Press 1967.Google Scholar
  99. Hayashi, Y., Sumitomo, I., Iwama, K.: Activation of lateral geniculate neurons by electrical stimulation of superior colliculus in cats. Jap. J. Physiol. 17, 638–651 (1967).CrossRefGoogle Scholar
  100. Hayes, W.N., Saiff, E.I.: Visual alarm reactions in turtles. Anim. Behav. 15, 102–106 (1967).PubMedCrossRefGoogle Scholar
  101. Hayhow, W.R.: The cytoarchitecture of the lateral geniculate body in the cat in relation to the disctribution of crossed and uncrossed optic fibers. J. comp. Neurol. 110, 1–63 (1958).PubMedCrossRefGoogle Scholar
  102. Hemmings, C.C.: Olfaction and vision in fish schooling. J. exp. Biol. 45, 449–464 (1966).Google Scholar
  103. Herrick, C.J.: The Brain of the Tiger Salamander. Chicago: University of Chicago Press 1948.Google Scholar
  104. Herrnstein, R. J., Loveland, D.H.: Complex visual concept in the pigeon. Science 146, 549–551 (1964).PubMedCrossRefGoogle Scholar
  105. Hertzler, D.R., Hayes, W.N.: Cortical and tectal function in visually guided behavior of turtles. J. comp. physiol. Psychol. 63, 444–447 (1967).PubMedCrossRefGoogle Scholar
  106. Hertzler, D.R., Hayes, W.N.: Effects of monocular vision and midbrain transection on movement detection in the turtle. J. comp. physiol. Psychol. 67, 473–478 (1969).PubMedCrossRefGoogle Scholar
  107. Hitzig, E.: Zur Physiologie des Großhirns. Arch. Psychiat. 15, 270–275 (1884).Google Scholar
  108. Hodos, W., Karten, H.J.: Brightness and pattern discrimination deficits in the pigeon after lesions of nucleus rotundus. Exp. Brain Res. 2, 151–167 (1966).PubMedCrossRefGoogle Scholar
  109. Holst,E. von: Quantitative Messung von Stimmungen im Verhalten der Fische. In: Physiological Mechanisms in Animal Behaviour. (Symposia of the Society for Experimental Biology, No. IV), pp. 143–173. New York: Academic Press 1950.Google Scholar
  110. Horel, J.A.: Effects of subcortical lesions on brightness discrimination acquired by rats without visual cortex. J. comp. physiol. Psychol. 65, 103–109 (1968).PubMedCrossRefGoogle Scholar
  111. Hosch, L.: Untersuchungen über Großhirnfunktionen der Elritze (Phoxinus laevis) und des Gruendlings (Gobio fluviatilis). Zool. Jahrb. Abt. Allgem. Zool. Physiol. Tiere 57, 57–98 (1936).Google Scholar
  112. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).Google Scholar
  113. Hubel, D.H., Wiesel, T.N.: Visual area of the lateral suprasylvian gyrus (Clare-Bishop area) of the cat. J. Physiol. (Lond.) 202, 251–260 (1969).Google Scholar
  114. Humphrey, N.K., Weiskrantz, L.: Vision in monkeys after removal of the striate cortex. Nature (Lond.) 215, 595–597 (1967).CrossRefGoogle Scholar
  115. Ingle, D.: Two visual mechanisms underlying the behavior of fish. Psychol. Forsch. 31, 44–51 (1967).PubMedCrossRefGoogle Scholar
  116. Ingle, D.: Visual releasers of prey-catching behavior in frogs and toads. Brain Behav. Evol. I, 500–518 (1968).Google Scholar
  117. Jahn, T.: Optische Gleichgewichtsregelung und zentrale Kompensation bei Amphibien, insbesondere bei der Erdkröte (Bufo bufo L.). Z. vergl. Physiol. 43, 119–140 (1960).Google Scholar
  118. Jenkner, F. L., Kutschera, E.: Frontal lobes and vision. Confin. neurol. 25, 63–78 (1965).CrossRefGoogle Scholar
  119. Karli, P.: Les dégénérescences rétiniennes spontanées et expérimentales chez l’animal. Progr. Ophthal. 14, 51–89 (1963).Google Scholar
  120. Karli, P., Stoeckel, M. E., Porte, A.: Dégénérescence des cellules visuelles photoréceptrices et persistance d’une sensibilité de la rétine à la stimulation photique. Observations au microscope électronique. Z. Zellforsch. 65, 238–252 (1965).PubMedGoogle Scholar
  121. Keane, J., Pasik, Tauba, Pasik, P.: Extrageniculostriate vision in the monkey: effect of visual deafferentation of one superior colliculus. Proc. Int. Union Physiol. Sci. 7, (1968).Google Scholar
  122. Kennard, Margaret A.: Alterations in response to visual stimuli following lesions of frontal lobe in monkeys. Arch. Neurol. Psychiat. 41, 1153–1165 (1939).Google Scholar
  123. Kennedy, J. L.: The effects of complete and partial occipital lobectomy upon thresholds of visual real movement discrimination in the cat. J. genet. Psychol. 54, 119–149 (1939).Google Scholar
  124. Killackey, H., Snyder,M., Diamond, I.T.: Function of striate and temporal cortex in the tree shrew. J. comp. physiol. Psychol. 74, 1–29 (1971).PubMedCrossRefGoogle Scholar
  125. King, Elspeth: The nature of visual field defects. Brain 90, 647–668 (1967).PubMedCrossRefGoogle Scholar
  126. Kinston, W.J., Vadas, M.A., Bishop, P.O.: Multiple projection of the visual field to the medial portion of the dorsal lateral geniculate nucleus and the adjacent nuclei of the thalamus of the cat. J. comp. Neurol. 136, 295–316 (1969).PubMedCrossRefGoogle Scholar
  127. Klüver, H.: An analysis of the effects of the removal of the occipital lobes in monkeys. J. Psychol. 2, 49–61 (1936).CrossRefGoogle Scholar
  128. Klüver, H.: Visual functions after removal of the occipital lobes. J. Psychol. 11, 23–45 (1941).CrossRefGoogle Scholar
  129. Klüver, H.: Functional significance of the geniculo-striate system. In: Cattell, J., Klüver, H. (Eds.): Biol. Symp., Vol. 7, Visual Mechanisms, pp. 253–299. Lancaster: Cattell 1942.Google Scholar
  130. Koch, A.L., Carr, A., Ehrenfeld, D.W.: The problem of open-sea navigation: the migration of the green turtle to Ascension Island. J. theor. Biol. 22, 163–179 (1969).PubMedCrossRefGoogle Scholar
  131. Koroleva, L. V.: Conditioned reflexes to photic stimuli in baboons after removal of occipital lobes at various ages. Zh. vyssh. nerv. Deyat. Pavlova 13, 482 (1963) (Translation in: Fed. Proc. Transl. Suppl. 23, T1117–T1121 1964).Google Scholar
  132. Koshtoiants, Kh.S., Maliukina, G.A., Aleksandriuk, S.P.: Role of the forebrain in the manifestation of the “group effect” in fishes. Fiziol. Zh. (Mosk.) 46, 1209–1216 (1960) (Transl.).Google Scholar
  133. Kraft, MarciaS., Obrist, W.D., Pribam, K.H.: The effect of irritative lesions of the striate cortex on learning of visual discriminations in monkeys. J. comp. physiol. Psychol. 53, 17–22 (1960).PubMedCrossRefGoogle Scholar
  134. Kruger, L.: Francois Pourfour du Petit, 1664–1741. Exp. Neurol. 7, II V (1963).CrossRefGoogle Scholar
  135. Landreth, H.F., Ferguson, D.E.: Newts: sun-compass orientation. Science 158, 1459–1461 (1967).PubMedCrossRefGoogle Scholar
  136. Lashley, K.S.: Brain Mechanisms and Intelligence. Chicago: Univ. of Chicago Press 1929. (Republished by Dover, 1963).CrossRefGoogle Scholar
  137. Lashley, K.S.: The mechanism of vision I. A method for rapid analysis of pattern-vision in the rat. J. genet. Psychol. 37, 453–460 (1930a).Google Scholar
  138. Lashley, K. S.: The mechanism of vision: II. The influence of cerebral lesions upon the threshold of discrimination for brightness in the rat. J. genet. Psychol. 37, 461–480 (1930b).Google Scholar
  139. Lashley, K. S.: The mechanism of vision IV. The cerebral areas necessary for pattern vision in the rat. J. comp. Neurol. 53, 419–478 (1931).CrossRefGoogle Scholar
  140. Lashley, K. S.: The mechanism of vision XII. Nervous structures concerned in the acquisition and retention of habits based on reactions to light. Comp. Psychol. Monogr. 11, 43–79 (1935).Google Scholar
  141. Lashley, K. S.: The mechanism of vision XIII. Cerebral function in discrimination of brightness when detail vision is controlled. J. comp. Neurol. 66, 471–480 (1937a).CrossRefGoogle Scholar
  142. Lashley, K. S.: The mechanism of vision: XIV. Visual perception of distance after injuries to the cerebral cortex, colliculi, or optic thalamus. J. genet. Psychol. 51, 189–207 (1937b).Google Scholar
  143. Lashley, K. S.: Conditional reactions in the rat. J. Psychol. 6, 311–324 (1938).CrossRefGoogle Scholar
  144. Lashley, K. S.: The mechanism of vision XVI. The functioning of small remnants of the visual cortex. J. comp. Neurol. 70, 45–67 (1939).CrossRefGoogle Scholar
  145. Lashley, K. S.: Studies of cerebral function in learning XII. Loss of the maze habit after occipital lesions in blind rats. J. comp. Neurol. 79, 431–462 (1943).CrossRefGoogle Scholar
  146. Lashley, K. S.: The mechanism of vision XVIII. Effects of destroying the visual “associative areas” of the monkey. Genet. Psych. Monogr. 37, 107–166 (1948).Google Scholar
  147. Lashley, K. S., Chow, K. L., Semmes, Josephine,: An examination of the electrical field theory of cerebral integration. Psychol. Rev. 58, 123–136 (1951).PubMedCrossRefGoogle Scholar
  148. Lashley, K. S., Russell, J. T.: The mechanism of vision XI. A preliminary test of innate organization. J. genet. Psychol. 45, 136–144 (1934).Google Scholar
  149. Laties, A.M., Sprague, J.M.: The projection of optic fibers to the visual centers in the cat. J. comp. Neurol. 127, 35–70 (1966).PubMedCrossRefGoogle Scholar
  150. Latto, R., Cowey, A.: Visual field defects after frontal eye-field lesions in monkeys. Brain Res. 30, 1–24 (1971a).PubMedCrossRefGoogle Scholar
  151. Latto, R., Cowey, A.: Fixation changes after frontal eye-field lesions in monkeys. Brain Res. 30, 25–36 (1971b).CrossRefGoogle Scholar
  152. Lauber, Jean K., Boyd, J. E., Axelrod, J.: Enzymatic synthesis of melatonin in avian pineal body: extraretinal response to light. Science 161, 489–490 (1968).PubMedCrossRefGoogle Scholar
  153. Layne, J.N.: Evidence for the use of vision in diurnal orientation of the bat Myotis austroriparius. Anim. Behav. 15, 409–415 (1967).PubMedCrossRefGoogle Scholar
  154. Lehmann, D., Koukkou, Martha: Neuronale Effekte der Caudatumreizung im visuellen Cortex. Pflügers Arch. ges. Physiol. 280, 297–315 (1964).CrossRefGoogle Scholar
  155. Lehr, E.: Experimentelle Untersuchungen an Affen und Halbaffen über Generalisation von Insekten und Blütenabbildungen. Z. Tierpsychol. 24, 208–244 (1967).PubMedGoogle Scholar
  156. Levick, W.R., Oyster, C.W., Davis, D.L.: Evidence that McIlwain’s periphery effect is not a stray light artifact. J. Neurophysiol. 28, 555–559 (1965).PubMedGoogle Scholar
  157. Lewellyn, D., Lowes, G., Isaacson, R.L.: Visually mediated behaviors following neocortical destruction in the rat. J. comp. physiol. Psychol. 69, 25–32 (1969).PubMedCrossRefGoogle Scholar
  158. Lubar, J.F., Perachio, A.A., Kavanagh, A.J.: Deficits in active avoidance behavior following lesions of the lateral and postero-lateral gyrus of the cat. J. comp. physiol. Psychol. 62, 263–269 (1966).PubMedCrossRefGoogle Scholar
  159. Lubar, J.F., Schostal, C. J., Perachio, A. A.: Non-visual functions of visual cortex in the cat. Physiol. Behav. 2, 179–184 (1967).CrossRefGoogle Scholar
  160. Luctani, L., Seppilli, G.: Die Functions-Localisation auf der Großhirnrinde, 414 pp. Leipzig: Denicke 1886.Google Scholar
  161. Lüling, K.H.: Untersuchungen am Blindfisch Anoptichthys jordani Hubbs und Innes (Characidae). II. Beobachtungen und Experimente an Anoptichthys jordani zur Prüfung der Einsteilung zum Futter, zum Licht und zur Wasserturbulenz. Zool. Jahrb. Abt. allg. Zool. Physiol. Tiere 65, 9–42 (1954).Google Scholar
  162. Lüling, K.H.: Morphologisch-anatomische und histologische Untersuchungen am Auge des Schützenfisches Toxotes jaculatrix (Pallas 1766) (Toxotidae), nebst Bemerkungen zum Spuckgehaben. Z. Morph. Ökol. Tiere 47, 529–610 (1958).CrossRefGoogle Scholar
  163. Lüling, K.H.: The archer fish. Sci. Amer. 209, 100–108 (1963).CrossRefGoogle Scholar
  164. Lussana, F., Lemoigne, A.: Fisiologia dei centri nervosi encefalici. Monografia premiata della R. Accademia di medicina di Bruxelles. 2 Vols. Padova; P. Prosperini, 1871. (Cited by Buddenbrock).Google Scholar
  165. Malmo, R.B.: Effects of striate cortex ablation on intensity discrimination and spectral intensity distribution in the rhesus monkey. Neuropsychologia 4, 9–26 (1966).CrossRefGoogle Scholar
  166. Marchiafava, P.L., Pepeu, G.C.: Electrophysiological study of tectal responses to optic nerve volley. Arch. ital. Biol. 104, 406–420, (1966).Google Scholar
  167. Marquis, D.G., Hilgard, E.R.: Conditioned lid responses to light in dogs after removal of the visual cortex. J. comp. Psych 22, 57–78 (1936).Google Scholar
  168. Marquis, D.G., Hilgard, E.R.: Conditioned responses to light in monkeys after removal of the occipital lobes Brain 60, 1–12 (1937a).CrossRefGoogle Scholar
  169. Marquis, D.G., Hilgard, E.R.: Conditioned lid responses to light in dogs after removal of the visual cortex. J. comp. Psychol. 23, 157–178 (1937b).Google Scholar
  170. Marty, R., Benoit, O., Larguier, M.M.: Étude topographique et stratigraphique des projections du corps genouillé latéral sur le cortex cérébral. Arch. ital. Biol. 107, 723–742 (1969).Google Scholar
  171. Matthews, Margaret R.: Further observations on transneuronal degeneration in the lateral geniculate nucleus of the macaque monkey. J. Anat. (Lond.) 98, 255–263 (1964).Google Scholar
  172. McIlwain, J.T.: Receptive field of optic tract axons and lateral geniculate cells: peripheral extent and barbiturate sensitivity. J. Neurophysiol. 27, 1154–1173 (1964).PubMedGoogle Scholar
  173. Meyer, D.R., Isaac, W., Maher, B.: The role of stimulation in spontaneous reorganization of visual habits. J. comp. physiol. Psychol. 51, 546–548 (1958).PubMedCrossRefGoogle Scholar
  174. Meyer, Patricia M.: Analysis of visual behavior in cats with extensive neocortical ablations. J. comp. physiol. Psychol. 56, 397–401 (1963).PubMedCrossRefGoogle Scholar
  175. Meyer, Patricia M., Horel, J.A., Meyer, D.R.: Effects of DL-amphetamine upon placing responses in neodecorticate cats. J. Comp. physiol. Psychol. 56, 402–404 (1963).PubMedCrossRefGoogle Scholar
  176. Minkowskt, M.: Zur Physiologie der Sehsphäre. Pflügers Arch. ges. Physiol. 141, 171–327 (1911).CrossRefGoogle Scholar
  177. Monakow, C. von: Über einige durch Exstirpation circumscripter Hirnrindenregionen bedingte Entwicklungshemmungen des Kaninchengehirns. Arch. Psychiat. Nervenkr. 12, 141–156 (1882).CrossRefGoogle Scholar
  178. Monakow, C. von: Die Lokalisation im Großhirn. Wiesbaden: J. F. Bergmann 1914.Google Scholar
  179. Moore, R.Y., Heller, A., Bhatnager, R.K., Wurtman, R.J., Axelrod, J.: Central control of the pineal gland: visual pathways. Arch. Neurol. 18, 208–218 (1968).PubMedGoogle Scholar
  180. Morin, G., Donnet, V., Maffre, R., Naquet, R.: Sur les troubles de la vision consecutifs aux decortications frontales chez le Chien. J. Physiol. (Paris) 43, 825–826 (1951).Google Scholar
  181. Mowrer, O.H.: A comparison of the reaction mechanisms mediating optokinetic nystagmus in human beings and in pigeons. Psychol. Monogr. 47, 294–305 (1936).CrossRefGoogle Scholar
  182. Munk, H.: Über die Funktion der Großhirnrinde. Gesammelte Mitteilungen aus den Jahren 1877–1880. Berlin: Hirschwald 1881.Google Scholar
  183. Muntz, W.R.A.: Microelectrode recordings from the diencephalon of the frog (Rana pipiens) and a blue-sensitive system. J. Neurophysiol. 25, 699–711 (1962).PubMedGoogle Scholar
  184. Muntz, W.R.A.: The photopositive response of the frog (Rana pipiens) under photopic and scotopic conditions. J. exp. Biol. 45, 101–111 (1966).PubMedGoogle Scholar
  185. Myers, R.E.: Visual deficits after lesions of brain stem tegmentum in cats. Arch. Neurol. 11, 73–90 (1964).PubMedGoogle Scholar
  186. Narikashvili, S.P., Kadzhaya, D.V., Timchenko, A.S.: Role of different layers of the dorsal lateral geniculate body in genesis of cortical association responses in cats. Fiziol. Zh. (Mosk.) 55, 948–956, 1969 (Neurosci. Trans. No. 12, 47–54, 1970).Google Scholar
  187. Nezlina, N.L, Vorob’eva, A.D.: Differences in configuration of evoked responses of the cat sensorimotor cortex. Zh. vyssh. nerv. Deyat. Pavlova 18, 500–506, 1968 (Neurosci. Transl. No. 6, 713–718, 1969).Google Scholar
  188. Niimi, K., Sprague, J.M.: Thalamo-cortical organization of the visual system in the cat. J. comp. Neurol. 138, 219–250 (1970).PubMedCrossRefGoogle Scholar
  189. Noble, G.K.: Function of the corpus striatum in the social behavior of fishes. Anat. Rec. 64 (Suppl.), 34 (1936).Google Scholar
  190. Noda, H., Iwama, K.: Unitary analysis of retino-geniculate response time in rats. Vision Res. 7, 205–213 (1967).PubMedCrossRefGoogle Scholar
  191. Norris, K.S.: Some observations on the migration and orientation of marine mammals. In: Storm, R.M. (Ed.): Animal Orientation and Navigation (Proc. 27 Ann. Biol. Colloq. 1966) pp. 101–125. Corvallis: Oregon State University Press 1967.Google Scholar
  192. Norton, A.C., Clark, G.: Effects of cortical and collicular lesions on brightness and flicker discriminations in the cat. Vision Res. 3, 29–44 (1963).CrossRefGoogle Scholar
  193. Norton, T T., Galambos, R., Frommer, G.P.: Optic tract lesions destroying pattern vision in cats. Exp. Neurol. 18, 26–37 (1967).PubMedCrossRefGoogle Scholar
  194. Orbach, J.: Disturbances of the maze habit following occipital cortex removals in blind monkeys. Arch. Neurol. Psychiat. (Chic.) 81, 49–54 (1959a).Google Scholar
  195. Orbach, J.: “Functions” of striate cortex and the problem of mass action. Psychol. Bull. 56, 271–292 (1959b).CrossRefGoogle Scholar
  196. Pache, J.: Formensehen bei Fröschen. Z. vergl. Physiol. 17, 423–463 (1932).Google Scholar
  197. Pasik, P.: Discussion. In: D.P. Purpura, Yahr, M.D. (Eds.): The Thalamus, pp. 415–416. New York: Columbia University Press 1966.Google Scholar
  198. Pasik, P., Bender, M.B.: Visuo-oculomotor behavior in monkeys with lesions of superior colliculi and neighboring structures. Fed. Proc. 24, 275 (1965).Google Scholar
  199. Pasik, P., Pasik, Tauba: Oculomotor functions in monkeys with lesions of the cerebrum and the superior colliculi. In: Bender, M.B. (Ed.): The Oculomotor System. New York: Harper & Row 1964.Google Scholar
  200. Pasik, P., Pasik, Tauba: Further studies on extrageniculostriate vision in the monkey. Trans. Amer. Neurol. Ass. 93, 262–264 (1968).PubMedGoogle Scholar
  201. Pasik, P., Pasik, Tauba, Krieger, H.P.: Effects of cerebral lesions upon optokinetic nystagmus in monkeys. J. Neurophysiol. 22, 297–304 (1959).PubMedGoogle Scholar
  202. Pasik, P., Pasik, Tauba, Schilder, P.: Extrageniculostriate vision in the monkey: discrimination of luminous flux equated figures. Exp. Neurol. 24, 421–437 (1969).PubMedCrossRefGoogle Scholar
  203. Pautler, E.L., Clark, G.: The effect of chlorpromazine on the discrimination between intermittent photic stimulation and a steady light in normal and brain-damaged cats. J. comp. physiol. Psychol. 54, 493–497 (1961).PubMedCrossRefGoogle Scholar
  204. Petrinovich, L., Bliss, D.: Retention of a learned brightness discrimination following ablations of the occipital cortex in the rat. J. comp. physiol. Psychol. 61, 136–138 (1966).PubMedCrossRefGoogle Scholar
  205. Polyak, S.: The Vertebrate Visual System. H. Klüver (Editor). Chicago: Univ. of Chicago Press 1957.Google Scholar
  206. Pribram, K.H., Spinelli, D.N.: Reitz, Sandra L.: The effects of radical disconnexion of occipital and temporal cortex on visual behaviour of monkeys. Brain 92, 301–312 (1969).PubMedCrossRefGoogle Scholar
  207. Prosser, C. L., Nagai, T.: Effects of low temperature on conditioning in goldfish. In: Ingle, D., (Ed.): The Central Nervous System and Fish Behavior, pp. 171–180. Chicago: Univ. of Chicago Press 1968.Google Scholar
  208. Rae, A.S.L.: Bilateral infarction of calcarine cortex with lateral geniculate degeneration. Confin. neurol. (Basel) 21, 225–232 (1961).CrossRefGoogle Scholar
  209. Rensch, B., Rahmann, H., Skrzipek, K.H.: Autoradiographische Untersuchungen über visuelle “Engramm” -Bildung bei Fischen (II). Pflügers Arch. 304, 242–252 (1968).PubMedCrossRefGoogle Scholar
  210. Revzin, A.M.: A specific visual projection area in the hyperstriatum of the pigeon. Brain Res. 15, 245–249 (1969).CrossRefGoogle Scholar
  211. Riddoch, G.: Dissociation of visual perceptions due to occipital injuries, with especial reference to appreciation of movement. Brain 40, 15–57 (1917).CrossRefGoogle Scholar
  212. Riesen, A.H.: Sensory deprivation. In: Stellar, E., Sprague, J.M.: (Eds.): Progress in Physiological Psychology, pp. 117–147. New York: Academic Press 1966.Google Scholar
  213. Rose, M.: Cytoarchitektonischer Atlas der Großhirnrinde des Kaninchens. J. Psychiat. Neurol. (Lpz.) 43, 353–440 (1931).Google Scholar
  214. Rosvold, H. E., Mishkin, M., Szwarcbart, Maria K.: Effects of subcortical lesions in monkeys on visual-discrimination and single-alternation performance. J. comp. physiol. Psychol. 51, 437–444 (1958).PubMedCrossRefGoogle Scholar
  215. Routtenberg, A., Glickman, S.E.: Visual cliff behavior in undomesticated rodents, land and aquatic turtles, and cats (Panthera). J. comp. physiol. Psychol. 58, 143–146 (1964).PubMedCrossRefGoogle Scholar
  216. Rutledge, L.T., Doty, R.W.: Surgical interference with pathways mediating responsas conditioned to cortical stimulation. Exp. Neurol. 6, 478–491 (1962).PubMedCrossRefGoogle Scholar
  217. Rutledge, L.T., Shellenberger, M.K.: The influence of visual cortex upon nonprimary area neurons. Arch. ital. Biol. 106, 353–363 (1968).PubMedGoogle Scholar
  218. Saavedra, Maria A., Pinto-Hamuy, Teresa: Effects of removal of the anterior or posterior portions of the neocortex on learning and retention of a visual habit. J. comp. physiol. Psychol. 56, 25–30 (1963).CrossRefGoogle Scholar
  219. Schiff, W.: Perception of impending collision: a study of visually directed avoidance behavior. Psychol. Monogr. 79, no. 11 (Whole No. 604), 26 pp. (1965).Google Scholar
  220. Schilder, P.: Loss of a brightness discrimination in the cat following removal of the striate area. J. Neurophysiol. 29, 888–897 (1966).PubMedGoogle Scholar
  221. Schilder, P., Pasik, P., Pasik, Tauba: Total luminous flux: a possible response determinant for the normal monkey. Science 158, 806–809 (1967).PubMedCrossRefGoogle Scholar
  222. Schilder, P., Pasik, P., Pasik, Tauba: Extrageniculostriate vision in the monkey. II. Demonstration of brightness discrimination. Brain Res. 32, 383–398 (1971).PubMedCrossRefGoogle Scholar
  223. Schmidt, U.: Untersuchungen zur visuellen Raumorientierung bei Totenkopfaffen (Saimiri sciureus L.). Z. vergl. Physiol. 60, 176–208 (1968).CrossRefGoogle Scholar
  224. Schmidt-Koenig, K.: Current problems in bird orientation. In: Lehrmann, D.S., Hinde, R. A. Shaw, E. (Eds.): Advances in the Study of Behavior, pp. 217–278, Vol. 1. New York — London: Academic Press 1965.CrossRefGoogle Scholar
  225. Schneider, G.E.: Two visual systems. Science 163, 895–902 (1969).PubMedCrossRefGoogle Scholar
  226. Schwartz, A. S., Cheney, C: Neural mechanisms involved in the critical flicker frequency of the cat. Brain Res. 1, 369–380 (1966).PubMedCrossRefGoogle Scholar
  227. Schwartz, A. S., Clark, G.: Discrimination of intermittent photic stimulation in the rat without its striate cortex. J. comp. physiol. Psychol. 50, 468–471 (1957).PubMedCrossRefGoogle Scholar
  228. Schwassmann, H.O.: Visual projection upon the optic tectum in foveate marine teleosts. Vision Res. 8, 1337–1348 (1968).PubMedCrossRefGoogle Scholar
  229. Schwassmann, H.O., Kruger, L.: Experimental analysis of the visual system of the four-eyed fish, Anableps microlepsis. Vision Res. 5, 269–281 (1965).CrossRefGoogle Scholar
  230. Sefton, Ann J.: The innervation of the lateral geniculate nucleus and anterior colliculus in the rat. Vision Res. 8, 867–881 (1968).PubMedCrossRefGoogle Scholar
  231. Sefton, Ann J.: The electrical activity of the anterior colliculus in the rat. Vision Res. 9, 207–222 (1969).PubMedCrossRefGoogle Scholar
  232. Sladen, W. J.L.: Social structure among penguins. In: Schaffner, B. (Ed.): Group Processes, Transactions of Second Congerence, pp. 28–93. New York: Josiah Macy Jr. Fndn. 1956.Google Scholar
  233. Smith, K.U.: Visual discrimination in the cat: V. The postoperative effects of removal of the striate cortex upon intensity discrimination. J. genet. Psychol. 51, 329–369 (1937a).Google Scholar
  234. Smith, K.U.: Relation between visual acuity and optic projection centers of the brain. Science 86, 564–565 (1937b).PubMedCrossRefGoogle Scholar
  235. Smith, K.U.: Visual discrimination in the cat.: VI. The relation between pattern vision and visual acuity and the optic projection centers of the nervous system. J. genet. Psychol. 53, 251–272 (1938).Google Scholar
  236. Smith, K.U., Bridgman, M.: Neural mechanisms of movement vision and optic nystagmus. J. exp. Psychol. 33, 165–187 (1943).CrossRefGoogle Scholar
  237. Smith, K.U., Kappauf, W.E., Bojar, S.: The functions of the visual cortex in optic nystagmus at different velocities of movement in the visual field. J. genet. Psychol. 22, 341–357 (1940).CrossRefGoogle Scholar
  238. Smith, K.U., Warkentin, J.: The central neural organization of optic functions related to minimum visible acuity. J. genet. Psychol. 55, 177–195 (1939).Google Scholar
  239. Snyder, M., Diamond, I.T.: The organization and function of the visual cortex in the tree shrew. Brain Behav. Evol. 1, 244–288 (1968).CrossRefGoogle Scholar
  240. Snyder, M., Killackey, H., Diamond, I.T.: Color vision in the tree shrew after removal of posterior neocortex. J. Neurophysiol. 32, 554–563 (1969).PubMedGoogle Scholar
  241. Spear, P.D., Braun, J. J.: Pattern discrimination following removal of visual neocortex in the cat. Exp. Neurol. 25, 331–348 (1969).PubMedCrossRefGoogle Scholar
  242. Sperry, R. W.: Effect of 180 degree rotation of the retinal field on visuomotor coordination. J. exp. Zool. 92, 263–279 (1943).CrossRefGoogle Scholar
  243. Sperry, R. W.: Neural basis of the spontaneous optokinetic response produced by visual inversion. J. comp. physiol. Psychol. 43, 482–489 (1950).PubMedCrossRefGoogle Scholar
  244. Sperry, R. W., Miner, Nancy: Pattern perception following insertion of mica plates into visual cortex. J. comp. physiol. Psychol. 48, 463–469 (1955).PubMedCrossRefGoogle Scholar
  245. Sperry, R.W., Miner, Nancy, Myers, R.E.: Visual pattern perception following subpial slicing and tantalum wire implantations in the visual cortex. J. comp. physiol. Psychol. 48, 50–58 (1955).PubMedCrossRefGoogle Scholar
  246. Sperry, R.W., Myers, R.E., Schrier, A.M.: Perceptual capacity of the isolated visual cortex in the cat. Quart. J. exp. Psychol. 12, 65–71 (1960).CrossRefGoogle Scholar
  247. Sprague, J.M.: Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science 153, 1544–1547 (1966).PubMedCrossRefGoogle Scholar
  248. Sprague, J.M.: Visual, acoustic and somesthetic deficits in the cat after cortical and midbrain lesions. In: Purpura, D. P., Yahr, M.D., (Eds.): The Thalamus, pp. 391–417. New York: Columbia University Press 1966.Google Scholar
  249. Stettner, L.J., Matyniak, K.A.: The use of stimulus fading in assessing behavioral deficits produced by brain damage. Physiol. Behav. 4, 859–861 (1969).CrossRefGoogle Scholar
  250. Stone, J.: A quantitative analysis of the distribution of ganglion cells in the cat’s retina. J. comp. Neurol. 124, 337–352 (1965).PubMedCrossRefGoogle Scholar
  251. Stone, L.S., Zaur, I.: Reimplantation and transplantation of adult eyes in the salamander (Triturus viridescens) with return of vision. J. exp. Zool. 85, 243–269 (1940).CrossRefGoogle Scholar
  252. Strata, P.: Neurophysiological analysis of the “mobbing response” in the chaffinch (Fringilla coelebs). Arch. ital. Biol. 102, 22–28 (1964).PubMedGoogle Scholar
  253. Sumitomo, I., Ide, K., Iwama, K., Arikuni, T.: Conduction velocity of optic nerve fibers innervating lateral geniculate body and superior colliculus in the rat. Exp. Neurol. 25, 378–392 (1969).PubMedCrossRefGoogle Scholar
  254. Talbot, S.A., Marshall, W.H.: Physiological studies on neural mechanisms of visual localization and discrimination. Amer. J. Ophthal. 24; 1255–1264 (1941).Google Scholar
  255. Taravella, C.L., Clark, G.: Discrimination of intermittent photic stimulation in normal and brain-damaged cats. Exp. Neurol. 7, 282–293 (1963).PubMedCrossRefGoogle Scholar
  256. Taub, A., Bishop, P.O.: The spinocervical tract: dorsal column linkage, conduction velocity, primary afferent spectrum. Exp. Neurol. 13, 1–21 (1965).PubMedCrossRefGoogle Scholar
  257. Tauber, E.S., Atkin, A.: Disconjugate eye movement patterns during optokinetic stimulation of the African chameleon, Chamelo melleri. Nature (Lond.) 214; 1008–1010 (1967).CrossRefGoogle Scholar
  258. Tauber, E.S., Atkin, A.: Optomotor responses to monocular stimulation: relation to visual system organization Science 160, 1365–1367 (1968).PubMedCrossRefGoogle Scholar
  259. Thauer, R., Peters, G.: Sensibilität und Motorik bei lange überlebenden Zwischen-Mittelhirntauben. Pflügers Arch. ges. Physiol. 240, 501–526 (1938).Google Scholar
  260. Thauer, R., Stuke, F.: Über die funktionelle Bedeutung der motorischen Region der Großhirnrinde für den Sehakt des Hundes. Pflügers Arch. ges. Physiol. 243, 347–369 (1940).CrossRefGoogle Scholar
  261. Thines, G., Kähling, J.: Untersuchungen über die Farbempfindlichkeit des Höhlenfisches Anoptichthys jordani Hubbs und Innes (Characidae). Z. Biol. 109, 150–160 (1957).PubMedGoogle Scholar
  262. Thompson, J.M., Woolsey, C.N., Talbot, S.A.: Visual areas I and II of cerebral cortex of rabbit. J. Neurophysiol. 13, 277–288 (1950).PubMedGoogle Scholar
  263. Thompson, R.: Retention of a brightness discrimination following neocortical damage in the rat. J. comp. physiol. Psychol. 53, 212–215 (1960).PubMedCrossRefGoogle Scholar
  264. Thompson, R.: Localisation of the “visual memory system” in the white rat. J. comp. physiol. Psychol. Monogr. 69, 29pp. (1969).Google Scholar
  265. Thompson, R., Rich, Irene: Differential effects of posterior thalamic lesions on retention of various visual habits. J. comp. physiol. Psychol. 56, 60–65 (1963).CrossRefGoogle Scholar
  266. Tigges, J., Tigges, Margarete: The accessory optic system in Erinaceus (Insectivora) and Galago (Primates). J. comp. Neurol. 137, 59–70 (1969).PubMedCrossRefGoogle Scholar
  267. Treff, H.-A.: Tiefensehschärfe und Sehschärfe beim Galago (Galago senegalensis). Z. vergl. Physiol. 54, 26–57 (1967).CrossRefGoogle Scholar
  268. Trevarthen, C.B.: Two mechanisms of vision in primates. Psychol. Forsch. 31, 299–337 (1968a).PubMedCrossRefGoogle Scholar
  269. Trevarthen,C.B.: Vision in fish: the origins of the visual frame for action in vertebrates. In: Ingle, D. (Ed.): The Central Nervous System and Fish Behavior, pp. 61–94. Chicago: University of Chicago Press 1968 b.Google Scholar
  270. Tsang, Y.-C.: The functions of the visual areas of the cerebral cortex of the rat in the learning and retention of the maze. II. Comp. Psychol. Monogr. 12, 1–41 (1936).Google Scholar
  271. Tsang, Y-C.: Maze learning in rats hemidecorticated in infancy. J. comp. Psychol. 24, 221–254 (1937a).CrossRefGoogle Scholar
  272. Tsang, Y-C.: Visual sensitivity in rats deprived of visual cortex in infancy. J. comp. Psychol. 24, 255–262 (1937b).CrossRefGoogle Scholar
  273. Tucker, T.J., Kling, A., Scharlock, D.P.: Sparing of photic frequency and brightness discriminations after striatectomy in neonatal cats. J. Neurophysiol. 31, 818–832 (1968).PubMedGoogle Scholar
  274. Tuge, H., Shima, I.: Defensive conditioned reflex after destruction of the forebrain in pigeons. J. comp. Neurol. 111, 427–443 (1959).PubMedCrossRefGoogle Scholar
  275. Twitty, V.C: Migration and speciation in newts. Science 139, 1735–1743 (1959).CrossRefGoogle Scholar
  276. Twitty, V.C: Of Scientists and Salamanders. San Francisco: W. H. Freeman 1966.Google Scholar
  277. Underwood, H., Menaker, M.: Photoperiodically significant photoreception in sparrows: is the retina involved? Science 167, 298–301 (1970).PubMedCrossRefGoogle Scholar
  278. Urbaitis, J.C., Meikle, T.H., jr.: Relearning a dark-light discrimination by cats after cortical and collicular lesions. Exp. Neurol. 20, 295–311 (1968).PubMedCrossRefGoogle Scholar
  279. Van Buren, J.M.: Trans-synaptic retrograde degeneration in the visual system of primates. J. Neurol. Neurosurg. Psychiat. 26, 402–409 (1963a).CrossRefGoogle Scholar
  280. Van Buren, J.M.: The Retinal Ganglion Cell Layer: A Physiological Anatomical Correlation in Man and Primates of the Normal Topographical Anatomy of the Retinal Ganglion Cell Layer and its Alterations with Lesions of the Visual Pathways, 143 pp. Springfield, Ill.: Charles C Thomas 1963 b.Google Scholar
  281. Walk, R.D.: The study of visual depth and distance perception in animals. In: Lehrmann, D. S., Hinde, R.A., Shaw, E. (Eds.): Advances in the Study of Behavior. Vol. 1. New York: Academic Press 1965.Google Scholar
  282. Walls, G.L.: The evolutionary history of eye movements. Vision Res. 2, 69–80 (1962).CrossRefGoogle Scholar
  283. Ward, R. and Weiskrantz, L.: Impaired discrimination following polarisation of the striate cortex. Exp. Brain Res. 9, 346–356 (1969).PubMedCrossRefGoogle Scholar
  284. Weiler, I.J.: Restoration of visual acuity after optic nerve section and regeneration in Astronotus ocellatus. Exp. Neurol. 15, 377–386 (1966).PubMedCrossRefGoogle Scholar
  285. Weiskrantz, L.: Encephalization and the scotoma. In: Thorpe, W. H., Zangwill, O. L. (Eds.): Current Problems in Animal Behaviour, pp. 30–58. Cambridge: Cambridge University Press 1961.Google Scholar
  286. Weiskrantz, L.: Contour discrimination in a young monkey with striate cortex ablation. Neuropsychologia 1, 145–164 (1963).CrossRefGoogle Scholar
  287. Weiskrantz, L., Cowey, A.: Striate cortex lesions and visual acuity of the rhesus monkey. J. comp. physiol. Psychol. 56, 225–231 (1963).PubMedCrossRefGoogle Scholar
  288. Weiskrantz, L., Cowey, A.: Comparison of the effects of striate cortex and retinal lesions on visual acuity in the monkey. Science 155, 104–106 (1967).PubMedCrossRefGoogle Scholar
  289. Weiskrantz, L., Cowey, A.: Filling in the scotoma: a study of residual vision after striate cortex lesions in monkeys. In: Stellar, E. and Sprague, J.M. (Eds.): Progress in Physiological Psychology, Vol. 3. New York: Academic Press 1970.Google Scholar
  290. Wetterberg, L., Geller, E., Yuwiler, A.: Harderian gland: an extraretinal photoreceptor influencing the pineal gland in neonatal rats ? Science 167, 884–885 (1970).PubMedCrossRefGoogle Scholar
  291. Wetzel, A.B., Thompson, V.E., Horel, J.A., Meyer, Patricia M.: Some consequences of perinatal lesions of the visual cortex in the cat. Psychonom. Sci. 3, 381–382 (1965).Google Scholar
  292. Wiebalck, V.: Untersuchungen zur Funktion des Vorderhirns bei Knochenfischen. Zool. Anz. 117, 325–329 (1937).Google Scholar
  293. Williams, D., Gassel, M.M.: Visual function in patients with homonymous hemianopia. I. The visual fields. Brain 85, 175–250 (1962).PubMedCrossRefGoogle Scholar
  294. Wilson, M.E.: The detection of light scattered from stimuli in impaired regions of the visual field. J. Neurol. Neurosurg. Psychiat. 31, 509–513 (1968).PubMedCrossRefGoogle Scholar
  295. Wilson, M.E., Cragg, B.G.: Projections from the lateral geniculate nucleus in the cat and monkey. J. Anat. (Lond.) 101, 677–692 (1967).Google Scholar
  296. Winans, Sarah S.: Visual form discrimination after removal of the visual cortex in cats. Science 158, 944–946 (1967).PubMedCrossRefGoogle Scholar
  297. Winans, Sarah S.: Visual form discrimination after removal of the visual cortex in cats. Science 160, 560 (1968).PubMedGoogle Scholar
  298. Winans, Sarah S.: Visual form discrimination on the basis of relative distribution of light. Science 164, 858 (1969).CrossRefGoogle Scholar
  299. Wing, K.G.: The role of the optic cortex of the dog in the retention of learned responses to light: conditioning with light and shock. Amer. J. Psychol. 59, 583–612 (1946).PubMedCrossRefGoogle Scholar
  300. Wing, K.G.: The role of the optic cortex of the dog in the retention of learned responses to light: conditioning with light and food. Amer. J. Psychol. 60, 30–67 (1947).PubMedCrossRefGoogle Scholar
  301. Wing, K.G., Smith, K.U.: The role of the optic cortex in the dog in the determination of the functional properties of conditioned reactions to light. J. exp. Psychol. 31, 478–496 (1942).CrossRefGoogle Scholar
  302. Yoshimura, K.: Über die Beziehungen des Balkens zum Sehakt. Pflüger’s Arch. ges. Physiol. 129, 425–460 (1909).CrossRefGoogle Scholar
  303. Zeigler, H.P.: Effects of endbrain lesions upon visual discrimination learning in pigeons. J. comp. Neurol. 120, 161–181 (1963).PubMedCrossRefGoogle Scholar
  304. Zeki, S.M.: Visual deficits related to size of lesions in “prestriate” cortex of optic chiasm sectioned monkeys. Life Sci. 6 1627–1638 (1967).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1973

Authors and Affiliations

  • Robert W. Doty
    • 1
  1. 1.RochesterUSA

Personalised recommendations