Control of the Access of Afferent Activity to Somatosensory Pathways

  • Robert F. Schmidt
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 2)

Abstract

The central nervous system of a mammal, or any other vertebrate for that matter, is continuously exposed to a barrage of afferent impulses coming from the receptors of its various sense organs. For instance, the dorsal roots of the cat’s spinal cord contain on each side roughly 500,000 fibres (Duncan and Keyser, 1938; Holmes and Davenport, 1940), and many of these will be active even in the absence of a sensory stimulus. Although practically no data are available on their the temporal and spatial profile of afferent impulses reaching the spinal cord after a sensory stimulus, or on its overall information processing capabilities, I should like to assume that in most circumstances the afferent input is greater than the maximal number of impulses the spinal system can deal with, and that the central action of the “surplus” inflow is reduced or a abolished by inhibition. For example, many stimulus continua range through several orders of magnitude. Thus, the central apparatus connected to the peripheral receptors has to react as appropriately to one or a few impulses from a single receptor as to the maximal discharge rates which the receptor population involved will eventually produce. Since several properties of the neuronal elements put rather narrow limits on the range of responses of a neuronal network, the central nervous system is forced to adapt its input sensitivity to the range of the peripheral stimuli by inhibiting the inflow: the greater the afferent inflow, the greater the inhibition.

Keywords

Depression Noradrenaline Halothane Monoamine Urethane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdelmoumène, M., Besson, J.-M., Aléonard, P.: Cortical areas exerting presynaptic inhibitory action on the spinal cord in cat and monkey. Brain Res. 20, 327–329 (1970).PubMedGoogle Scholar
  2. Andén, N.E., Jukes, M.G.M., Lundberg, A.: Spinal reflexes and monoamine liberation. Nature (Lond.) 202, 1222–1223 (1964).Google Scholar
  3. Andén, N.E., Jukes, M.G.M., Lundberg, A.: The effect of Dopa on the spinal cord. 2. A pharmacological analysis. Acta physiol. scand. 67, 387–397 (1966).PubMedGoogle Scholar
  4. Andén, N.E., Jukes, M.G.M., Lundberg, A., Vyklický, L.: A new spinal flexor reflex. Nature (Lond.) 202, 1344–1345 (1964).Google Scholar
  5. Andén, N.E., Jukes, M.G.M., Lundberg, A., Vyklický, L.: The effect of Dopa on the spinal cord. 1. Influence on transmission from primary afferents. Acta physiol. scand. 67, 373–380 (1966a).PubMedGoogle Scholar
  6. Andén, N. E., Jukes, M. G. M., Lundberg, A., Vyklický, L.: The effect of Dopa on the spinal cord. 3. Depolarization evoked in the central terminals of ipsilateral Ia afferents by volleys in the flexor reflex afferents. Acta physiol. scand. 68, 322–336 (1966b).Google Scholar
  7. Andén, N.E., Lundberg, A., Rosengren, E., Vyklický, L.: The effect of Dopa on spinal reflexes from the ERA (flexor reflex afferents). Experientia (Basel) 19, 654–655 (1963).Google Scholar
  8. Andersen, P., Brooks, C. McC, Eccles, J.C., Sears, T.A.: The ventro-basal nucleus of the thalamus: potential fields, synaptic transmission and excitability of both presynaptic and post-synaptic components. J. Physiol. (Lond.) 174, 348–369 (1964).Google Scholar
  9. Andersen, P., Eccles, J.C., Oshima, T., Schmidt, R.F.: Mechanisms of synaptic transmission in the cuneate nucleus. J. Neuro Physiol. 27, 1096–1116 (1964).Google Scholar
  10. Andersen, P., Eccles, J.C., Schmidt, R.F., Yokota, T.: Slow potential waves produced in the cuneate nucleus by cutaneous volleys and by cortical stimulation. J. Neuro Physiol. 27, 78–91 (1964a).Google Scholar
  11. Andersen, P., Eccles, J.C., Schmidt, R.F., Yokota, T.: Depolarization of presynaptic fibers in the cuneate nucleus. J. Neuro Physiol. 27, 92–106 (1964b).Google Scholar
  12. Andersen, P., Eccles, J.C., Schmidt, R.F., Yokota, T.: Identification of relay cells and interneurons in the cuneate nucleus. J. Neuro Physiol. 27, 1080–1095 (1964c).Google Scholar
  13. Andersen, P., Eccles, J.C., Sears, T.A.: Presynaptic inhibitory action of cerebral cortex on the spinal cord. Nature (Lond.) 194, 740–743 (1962).Google Scholar
  14. Andersen, P., Eccles, J.C., Sears, T.A.: Cortically evoked depolarization of primary afferent fibers in the spinal cord. J. Neuro Physiol. 27, 63–77 (1964a).Google Scholar
  15. Andersen, P., Eccles, J.C., Sears, T.A.: The ventro-basal complex of the thalamus: types of cells, their responses and their functional organization. J. Physiol. (Lond.) 174, 370–399 (1964b).Google Scholar
  16. Angel, A., Magni, F., Strata, P.: Evidence from pre-synaptic inhibition in the lateral geniculate body. Nature (Lond.) 208, 495–496 (1965).Google Scholar
  17. Angel, A., Magni, F., Strata, P.: Excitability of intra-geniculate optic tract fibres after reticular stimulation in the midpontine pretrigeminal cat. Arch. ital. Biol. 103, 668–693 (1966).Google Scholar
  18. Atwood, H.L., Morin, W.A.: Neuromuscular and axo-axonal synapses of the crayfish opener muscle. J. Ultrastruct. Res. 32, 351–369 (1970).PubMedGoogle Scholar
  19. Baldissera, F., Broggi, G.: An analysis of potential changes in the spinal cord during desynchronized sleep. Brain Res. 6, 706–715 (1967).PubMedGoogle Scholar
  20. Baldissera, F., Broggi, G., Mancia, M.: Presynaptic inhibition of trigeminal afferent fibres during the rapid eye movements of desynchronized sleep. Experientia (Basel) 22, 754–755 (1966).Google Scholar
  21. Baldissera, F., Broggi, G., Mancia, M.: Depolarization of trigeminal afferents induced by stimulation of brain-stem and peripheral nerves. Exp. Brain Res. 4, 1–17 (1967).PubMedGoogle Scholar
  22. Baldissera, F., Cesa-Bianchi, M.G., Mancia, M.: Phasic events indicating presynaptic inhibition of primary afferents to the spinal cord during desynchronized sleep. J. Neuro Physiol. 29, 871–887 (1966).Google Scholar
  23. Banna, N.R., Hazbun, J.: Analysis of the convulsant action of pentylenetetrazol. Experientia (Basel) 25, 382–383 (1969).Google Scholar
  24. Banna, N.R., Jabbur, S.J.: Antagonism of presynaptic inhibition in the cuneate nucleus by Picrotoxin. Nature (Lond.) 217, 83–84 (1968).Google Scholar
  25. Banna, N.R., Jabbur, S.J.: Pharmacological studies on inhibition in the cuneate nucleus of the cat. Int. J. Neuropharmacol. 8, 299–308 (1969).PubMedGoogle Scholar
  26. Banna, N.R., Jabbur, S.J.: The action of bemegride on presynaptic inhibition. Int. J. Neuropharmacol. 9, 553–560 (1970).Google Scholar
  27. Barnes, C.D., Pompeiano, O.: Presynaptic inhibition of extensor monosynaptic reflex by la afferents from flexors. Brain Res. 18, 380–383 (1970a).PubMedGoogle Scholar
  28. Barnes, C.D., Pompeiano, O.: Effects of muscle vibration on the pre- and postsynaptic components of the extensor monosynaptic reflex. Brain Res. 18, 384–387 (1970b).PubMedGoogle Scholar
  29. Barnes, C.D., Pompeiano, O.: Inhibition of monosynaptic extensor reflex attributable to presynaptic depolarization of the group la afferent fibers produced by vibration of flexor muscle. Arch. ital. Biol. 108, 233–258 (1970c).PubMedGoogle Scholar
  30. Barnes, C.D., Pompeiano, O.: Presynaptic and postsynaptic effects in the monosynaptic reflex pathway to extensor motoneurons following vibration of synergic muscles. Arch, ital. Biol. 108, 259–294 (1970d).Google Scholar
  31. Barnes, C.D., Pompeiano, O.: Dissociation of presynaptic and postsynaptic effects produced in the lumbar cord by vestibular volleys. Arch. ital. Biol. 108, 295–324 (1970e).PubMedGoogle Scholar
  32. Barron, D.H., Matthews, B.H.C.: The interpretation of potential changes in the spinal cord. J. Physiol. (Lond.) 92, 276–321 (1938).Google Scholar
  33. Bell, J. A., Anderson, E.G.: A comparison of the actions of semicarbazide and picrotoxin on spinal synaptic activity. Pharmacologist 12, 252 (1970).Google Scholar
  34. Besson, J.M., Abdelmoumène, M.: Modifications of the dorsal root potentials during cortical seizures. Electroenceph. clin. Neuro Physiol. 29, 166–172 (1970).Google Scholar
  35. Besson, J.M., Abdelmoumène, M., Rivot, J.-P.: Some pharmacological effects on the transmission of afferent impulses on the interneurons in the cat lumbar dorsal horn. In: The Somato-sensory System. Ed. by H.H. Kornhuber, J. Aschoef. Stuttgart: Georg Thieme Verlag 1973 (in press).Google Scholar
  36. Besson, J.M., Rivot, J.-P., Aleonard, P.: Action of picrotoxin on presynaptic inhibition of various origins in the cat’s spinal cord. Brain Res. 26, 212–216 (1971).Google Scholar
  37. Biedenbach, A., Jabbur, S. J., Towe, A.L.: Afferent inhibition in the cuneate nucleus of the rhesus monkey. Brain Res. 27, 179–182 (1971).PubMedGoogle Scholar
  38. Bloedel, J., Gage, P.W., Lunás, R., Quastel, D.M.J.: Transmitter release at the squid giant synapse in the presence of tetrodotoxin. Nature (Lond.) 212, 49–50 (1966).Google Scholar
  39. Bloedel, J., Gage, P.W., Lunás, R., Quastel, D.M.J.: Transmission across the squid giant synapse in the presence of tetrodotoxin. J. Physiol. (Lond.) 188, 52–53P (1967).Google Scholar
  40. Boyd, E. S., Meritt, D.A., Gardner, L.C.: The effect of convulsant drugs on transmission through the cuneate nucleus. J. Pharmacol. exp. Ther. 154, 398–409 (1966).PubMedGoogle Scholar
  41. Brazier, M. A. (Editor): The Interneuron. UCLA Forum in Medical Sciences Nr. 11, pp. 1–552. Berkeley and Los Angeles: University of California Press 1969.Google Scholar
  42. Brown, A.G., Franz, D.N.: Responses of spinocervical tract neurones to natural stimulation of identified cutaneous receptors. Exp. Brain Res. 7, 231–249 (1969).PubMedGoogle Scholar
  43. Brown, A.G., Franz, D.N.: Patterns of response in spinocervical tract neurones to different stimuli of long duration. Brain Res. 17, 156–160 (1970).PubMedGoogle Scholar
  44. Brown, A.G., Iggo, A.: A quantitative study of cutaneous receptors and afferent fibres in the cat and rabbit. J. Physiol. (Lond.) 193, 707–733 (1967).Google Scholar
  45. Burke, R.E., Rudomin, P., Vyklický, L., Zajac III, F.E.: Primary afferent depolarization and flexion reflexes produced by radiant heat stimulation of the skin. J. Physiol. (Lond.) 213, 185–214 (1971).Google Scholar
  46. Calma, I.: Presynaptic inhibition of the terminals of cutaneous nerve fibres by stimulation of the ventral thalamo-diencephalic region. J. Physiol. (Lond.) 185, 58–60P (1966).Google Scholar
  47. Calma, I., Quayle, A.A.: Supraspinal control of the presynaptic effects for forepaw and hindpaw skin stimulation in the cat under chloralose anaesthesia. Brain Res. 33, 101–114 (1971).PubMedGoogle Scholar
  48. Cangiano, A., Cook, W.A., Pompeiano, O.: Primary afferent depolarization in the lumbar cord evoked from the fastigial nucleus. Arch. ital. Biol. 107, 321–340 (1969a).PubMedGoogle Scholar
  49. Cangiano, A., Cook, W.A., Pompeiano, O.: Cerebellar inhibitory control of the vestibular reflex pathways to primary afferents. Arch. ital. Biol. 107, 341–364 (1969b).PubMedGoogle Scholar
  50. Carli, G., Diete-Spiff, K., Pompeiano, O.: Presynaptic and postsynaptic inhibition on transmission of cutaneous afferent volleys through the cuneate nucleus during sleep. Experientia (Basel) 22, 239–240 (1966).Google Scholar
  51. Carlson, C.B.: Sodium and the dorsal root potential. J. Physiol. (Lond.) 172, 295–304 (1964).Google Scholar
  52. Carlsson, A., Falck, B., Fuxe, K., Hillarp, N.: Cellular localization of monoamines in the spinal cord. Acta physiol. scand. 60, 112–119 (1964).PubMedGoogle Scholar
  53. Carpenter, D., Engberg, L., Funkenstein, H., Lundberg, A.: Decerebrate control of reflexes to primary afferents. Acta physiol. scand. 59, 424–437 (1963).PubMedGoogle Scholar
  54. Carpenter, D., Engberg, I., Lundberg, A.: Presynaptic inhibition in the lumbar cord evoked from the brain stem. Experientia (Basel) 18, 450–451 (1962).Google Scholar
  55. Carpenter, D., Engberg, I., Lundberg, A.: Primary afferent depolarization evoked from the brain stem and the cerebellum. Arch. ital. Biol. 104, 73–85 (1966).PubMedGoogle Scholar
  56. Carpenter, D., Lundberg, A., Norrsell, U.: Effects from the pyramidal tract on primary afferents and on spinal reflex actions to primary afferents. Experientia (Basel) 18, 337–338 (1962).Google Scholar
  57. Carpenter, D., Lundberg, A., Norrsell, U.: Primary afferent depolarization evoked from the sensorimotor cortex. Acta physiol. scand. 59, 126–142 (1963).PubMedGoogle Scholar
  58. Carreras, M., Levitt, M., Chambers, W.W., Liu, C.N.: Unit activity in the posterior column nuclei and cortofugal influences upon it. Anat. Rec. 136, 174–175 (1960).Google Scholar
  59. Castillo, J. Del, Katz, B.: The membrane change produced by the neuromuscular transmitter. J. Physiol. (Lond.) 125, 546–565 (1954).Google Scholar
  60. Cesa-Bianchi, M.G., Mancia, M., Sotgiu, M.L.: Depolarization of afferent fibers to the Goll and Burdach nuclei induced by stimulation of the brain stem. Exp. Brain Res. 5, 1–15 (1968).PubMedGoogle Scholar
  61. Cesa-Bianchi, M.G., Sotgiu, M.L.: Control by brain stem reticular formation of sensory transmission in Burdach nucleus. Analysis of single units. Brain Res. 13, 129–139 (1969).PubMedGoogle Scholar
  62. Chambers, W.W., Liu, C.N.: Cortico-spinal tract of the cat. An attempt to correlate the pattern of degeneration with deficits in reflex activity following neocortical lesions. J. comp. Neurol. 108, 23–56 (1957).PubMedGoogle Scholar
  63. Chambers, W.W., Liu, C.N., McCouch, G.P.: Inhibition of the dorsal column nuclei. Exp. Neurol. 7, 13–23 (1963).PubMedGoogle Scholar
  64. Chan, S.H.H., Barnes, C.D.: Presynaptic facilition: positive dorsal root potentials evoked from brain stem reticular formation in lumbar cord. Brain Res. 28, 176–179 (1971).PubMedGoogle Scholar
  65. Colonnier, M., Guillery, R.W.: Synaptic organization in the lateral geniculate nucleus of the monkey. Z. Zellforsch. 62, 333–355 (1964).PubMedGoogle Scholar
  66. Conradi, S.: On motoneuron synaptology in adult cats. Acta physiol. scand. Suppl., 332, 1–115 (1969).Google Scholar
  67. Cook, W.A., Cangiano, A., Pompeiano, O.: Vestibular influences on primary afferents in the spinal cord. Pflügers Arch. ges. Physiol. 299, 334–338 (1968).Google Scholar
  68. Cook, W. A., Cangiano, A., Pompeiano, O.: Dorsal root potentials in the lumbar cord evoked from the vestibular system. Arch. ital. Biol. 107, 275–295 (1969a).PubMedGoogle Scholar
  69. Cook, W.A., Cangiano, A., Pompeiano, O.: Vestibular control of transmission in primary afferents to the lumbar spinal cord. Arch. ital. Biol. 107, 296–320 (1969b).PubMedGoogle Scholar
  70. Cook, W.A., Neilson, D.R., Brookhart, J.M.: Primary afferent depolarization and monosynaptic reflex depression following succinylcholine administration. J. Neuro Physiol. 28, 290–311 (1965).Google Scholar
  71. Curtis, D.R.: Pharmacology and neurochemistry of mammalian central inhibitory processes. In: Structure and Function of Inhibitory Neuronal Mechanisms, pp. 429–456. Oxford and New York: Pergamon Press 1968.Google Scholar
  72. Curtis, D.R.: The pharmacology of spinal postsynaptic inhibition. Progr. Brain Res. 31, 171–189 (1969).Google Scholar
  73. Curtis, D.R.: Central synaptic transmitters. Proc. Aust. Assoc. Neurologists 7, 55–60 (1970).Google Scholar
  74. Curtis, D.R., Duggan, A.W., Felix, D., Johnston, G.A.R.: Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord of the cat. Brain Res. 32, 69–96 (1971a).PubMedGoogle Scholar
  75. Curtis, D.R., Duggan, A.W., Felix, D., Johnston, G.A.R., McLennan, H.: Antagonism between bicuculline and GABA in the cat brain. Brain Res. 33, 57–73 (1971b).PubMedGoogle Scholar
  76. Curtis, D.R., Phillis, J. W., Watkins, J.C.: Actions of amino acids on the isolated hemisected spinal cord of the toad. Brit. J. Pharmacol. 16, 262–283 (1961).PubMedGoogle Scholar
  77. Curtis, D.R., Ryall, R.W.: Pharmacological studies upon spinal presynaptic fibres. Exp. Brain Res. 1, 195–204 (1966).Google Scholar
  78. Dahlström, A., Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbo-spinal neuron systems. Acta physiol. scand. 64, Suppl. 247, 1–85 (1965).Google Scholar
  79. Darian-Smith, I.: Presynaptic component in the afferent inhibition observed within trigeminal brain-stem nuclei of the cat. J. Neuro Physiol. 28, 695–709 (1965).Google Scholar
  80. Darian-Smith, I., Yokota, T.: Cortically evoked depolarization of trigeminal cutaneous afferent fibres in the cat. J. Neuro Physiol. 29, 170–184 (1966a).Google Scholar
  81. Darian-Smith, I., Yokota, T.: Corticofugal effects on different neuron types within the cat’s brain stem activated by tactile stimulation on the face. J. Neuro Physiol. 29, 185–206 (1966b).Google Scholar
  82. Davies, W.I.R., Scott, D., Jr., Vesterstrøm, K., Vyklický, L.: Depolarization of the tooth pulp afferent terminals in the brain stem of the cat. J. Physiol. (Lond.) 218, 515–532 (1971).Google Scholar
  83. Dawson, G. D.: The effect of cortical stimulation on transmission through the cuneate nucleus in the anaesthetized rat. J. Physiol. (Lond.) 142, 2–3P (1958a).Google Scholar
  84. Dawson, G.D.: The central control of sensory inflow. Proc. roy. Soc. Med. 51, 531–535 (1958b).PubMedGoogle Scholar
  85. Dawson, G.D., Merrill, E.G., Wall, P.D.: Dorsal root potentials produced by stimulation of fine afferents. Science 167, 1385–1387 (1970).Google Scholar
  86. Dawson, G.D., Podachin, V.P., Schatz, S.W.: Facilitation of cortical responses by competing stimuli. J. Physiol. (Lond.) 166, 363–381 (1963).Google Scholar
  87. Decandia, M., Eldred, E., Grover, F.S.: Effects of prolonged stretch of flexor muscles upon excitability of an extensor reflex arc. Exp. Brain Res. 12, 161–170 (1971).PubMedGoogle Scholar
  88. Decandia, M., Gasteiger, E.L., Mann, M.D.: Escape of the extensor monosynaptic reflex from presynaptic inhibition. Brain Res. 7, 317–319 (1968).PubMedGoogle Scholar
  89. Decandia, M., Gasteiger, E.L., Mann, M.D.: Excitability changes of extensor motoneurons and primary afferent endings during prolonged stimulation of flexor afferents. Exp. Brain Res. 12, 150–160 (1971).PubMedGoogle Scholar
  90. Decandia, M., Provini, L., Táboříková, H.: Excitability changes in the Ia extensor terminals induced by stimulation of agonist afferent fibres. Brain Res. 2, 402–404 (1966).PubMedGoogle Scholar
  91. Decandia, M., Provini, L., Táboříková, H.: Presynaptic inhibition of the monosynaptic reflex following the stimulation of nerves to extensor muscles of the ankle. Exp. Brain Res. 4, 34–42 (1967).Google Scholar
  92. Decima, E.E., Goldberg, L.J.: Centrifugal dorsal root discharges induced by motoneurone activation. J. Physiol. (Lond.) 207, 103–118 (1970).Google Scholar
  93. Devanandan, M.S., Eccles, R.M., Stenhouse, D.: Presynaptic inhibition evoked by muscle contraction. J. Physiol. (Lond.) 185, 471–485 (1968).Google Scholar
  94. Devanandan, M.S., Eccles, R.M., Yokota, T.: Presynaptic inhibition induced by muscle stretch. Nature (Lond.) 204, 996–998 (1964).Google Scholar
  95. Devanandan, M.S., Eccles, R.M., Yokota, T.: Depolarization of afferent terminals evoked by muscle stretch, J. Physiol. (Lond.) 179, 417–429 (1965a).Google Scholar
  96. Devanandan, M.S., Eccles, R.M., Yokota, T.: Muscle stretch and the presynaptic inhibition of the group la pathway to motoneurones. J. Physiol. (Lond.) 179, 430–441 (1965b).Google Scholar
  97. Devanandan, M.S., Holmqvist, B., Yokota, T.: Presynaptic depolarization of group I muscle afferents by contralateral afferent volleys. Acta physiol. scand. 63, 46–54 (1965).PubMedGoogle Scholar
  98. Dubner, R., Sessle, B.J.: Presynaptic excitability changes of primary afferent and corticofugal fibers projecting to trigeminal brain stem nuclei. Exp. Neurol. 30, 223–238 (1971).PubMedGoogle Scholar
  99. Dubner, R., Sessle, B.J., Gobel, S.: Presynaptic depolarization of corticofugal fibres participating in a feedback loop between trigeminal brain stem nuclei and sensorimotor cortex. Nature (Lond.) 223, 72–73 (1969).Google Scholar
  100. Dudel, J.: Presynaptic inhibition of the excitatory nerve terminal in the neuromuscular junction of the crayfish. Pflügers Arch. ges. Physiol. 277, 537–557 (1963).Google Scholar
  101. Dudel, J.: The mechanism of presynaptic inhibition at the crayfish neuromuscular junction. Pflügers Arch. ges. Physiol. 284, 66–80 (1965).Google Scholar
  102. Dudel, J., Kuffler, S.W.: Presynaptic inhibition at the crayfish neuromuscular junction. J. Physiol. (Lond.) 155, 543–562 (1961).Google Scholar
  103. Duncan, D., Keyser, L.L.: Further determinations of the number of fibers and cells in the dorsal roots and ganglia of the cat. J. comp. Neurol. 68, 479–490 (1938).Google Scholar
  104. Eccles, J.C.: The mechanism of synaptic transmission. Ergebn. Physiol. 51, 299–430 (1961).PubMedGoogle Scholar
  105. Eccles, J.C.: The Physiology of Synapses. pp. 1–316. Berlin-Göttingen-Heidelberg-New York: Springer 1964.Google Scholar
  106. Eccles, J. C.: The inhibitory pathways of the central nervous system. The Sherrington Lectures IX. Springfield, Ill.: Charles C. Thomas 1969.Google Scholar
  107. Eccles, J.C., Eccles, P.M., Magni, F.: Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys. J. Physiol. (Lond.) 159, 147–166 (1961).Google Scholar
  108. Eccles, J.C., Kostyuk, P.G., Schmidt, R.F.: Central pathways responsible for depolarization of primary afferent fibres. J. Physiol. (Lond.) 161, 237–257 (1962a).Google Scholar
  109. Eccles, J.C., Kostyuk, P.G., Schmidt, R.F.: Presynaptic inhibition of the central actions of flexor reflex afferents. J. Physiol. (Lond.) 161, 258–281 (1962b).Google Scholar
  110. Eccles, J.C., Kostyuk, P.G., Schmidt, R.F.: The effect of electric polarization of the spinal cord on central afferent fibres and on their excitatory synaptic action. J. Physiol. (Lond.) 162, 138–150 (1962c).Google Scholar
  111. Eccles, J.C., Kozak, W., Magni, F.: Dorsal root reflexes of muscle Group I afferent fibres. J. Physiol. (Lond.) 159, 128–146 (1961).Google Scholar
  112. Eccles, J.C., Krnjevič, K.: Potential changes recorded inside primary afferent fibres within the spinal cord. J. Physiol. (Lond.) 149, 250–273 (1959).Google Scholar
  113. Eccles, J.C., Magni, F., Willis, W.D.: Depolarization of central terminals of Group I afferent fibres from muscle. J. Physiol. (Lond.) 160, 62–93 (1962).Google Scholar
  114. Eccles, J.C., Malcolm, J.L.: Dorsal root potentials of the spinal cord. J. Neuro Physiol. 9, 139–160 (1946).Google Scholar
  115. Eccles, J.C., Schadé, J.P. (Editors): Physiology of Spinal Neurons. Progress in Brain Res. Vol. 12, pp. 1–317. Amsterdam-London-New York: Elsevier Publishing Comp. 1964.Google Scholar
  116. Eccles, J.C., Schmidt, R.F., Willis, W.D.: Presynaptic inhibition of the spinal monosynaptic reflex pathway. J. Physiol. (Lond.) 161, 282–297 (1962).Google Scholar
  117. Eccles, J.C., Schmidt, R.F., Willis, W.D.: Depolarization of central terminals of Group Ib afferent fibers from muscle. J. Neuro Physiol. 26, 1–27 (1963 a).Google Scholar
  118. Eccles, J.C., Schmidt, R.F., Willis, W.D.: The location and the mode of action of the presynaptic inhibitory pathways on to Group I afferent fibers from muscle. J. Neuro Physiol. 26, 506–522 (1963b).Google Scholar
  119. Eccles, J.C., Schmidt, R.F., Willis, W.D.: The mode of operation of the synaptic mechanism producing presynaptic inhibition. J. Neuro Physiol. 26, 523–538 (1963c).Google Scholar
  120. Eccles, J.C., Schmidt, R.F., Willis, W.D.: Inhibition of discharges into the dorsal and ventral spinocerebellar tracts. J. Neuro Physiol. 26, 635–645 (1963 d).Google Scholar
  121. Eccles, J.C., Schmidt, R.F., Willis, W.D.: Depolarization of the central terminals of cutaneous afferent fibers. J. Neuro Physiol. 26, 646–661 (1963e).Google Scholar
  122. Eccles, J.C., Schmidt, R.F., Willis, W.D.: Pharmacological studies on presynaptic inhibition. J. Physiol. (Lond.) 168, 500–530 (1963f).Google Scholar
  123. Eccles, R.M., Holmqvist, B., Voorhoeve, P.E.: Presynaptic inhibition from contralateral cutaneous afferent fibres. Acta physiol. scand. 62, 464–473 (1964 a).PubMedGoogle Scholar
  124. Eccles, R.M., Holmqvist, B., Voorhoeve, P.E.: Presynaptic depolarization of cutaneous afferents by volleys in contralateral muscle afferents. Acta physiol. scand. 62, 474–484 (1964b).PubMedGoogle Scholar
  125. Eccles, R. M., Lundberg, A.: Synaptic actions in motoneurones by afferents which may evoke the flexion reflex. Arch. ital. Biol. 97, 199–221 (1959).Google Scholar
  126. Eccles, R.M., Willis, W.D.: Presynaptic inhibition of the monosynaptic reflex pathway in kittens. J. Physiol. (Lond.) 165, 403–420 (1962).Google Scholar
  127. Engberg, I., Lundberg, A., Ryall, R.W.: Reticulospinal inhibition of transmission in reflex pathways. J. Physiol. (Lond.) 194, 201–223 (1968).Google Scholar
  128. Engberg, I., Thaller, A.: On the interaction of picrotoxin with GABA and glycine in the spinal cord. Brain Res. 19, 151–154 (1970).PubMedGoogle Scholar
  129. Euler, C. von, Skogltjnd, S., Söderberg, U. (Editors): Structure and function of inhibitory neuronal mechanisms, pp. 1–563. Oxford: Pergamon Press 1968.Google Scholar
  130. Fadiga, E., Brookhart, J.M.: Monosynaptic activation of different portions of the motor neuron membrane. Amer. J. Physiol. 198, 693–703 (1960).PubMedGoogle Scholar
  131. Fatt, P., Katz, B.: An analysis of the end-plate potential recorded with an intracellular electrode. J. Physiol. (Lond.) 115, 320–370 (1951).Google Scholar
  132. Fedina, L., Gordon, G., Lundberg, A.: The source and mechanisms of inhibition in the lateral cervical nucleus of the cat. Brain Res. 11, 694–696 (1968).PubMedGoogle Scholar
  133. Felix, D., Wiesendanger, M.: Cortically induced inhibition in the dorsal column nuclei of monkeys. Pflügers Arch. 320, 285–288 (1970).PubMedGoogle Scholar
  134. Frank, K., Fuortes, M.G.F.: Presynaptic and postsynaptic inhibition of monosynaptic reflexes. Fed. Proc. 16, 39–40 (1957).Google Scholar
  135. Franz, D.N., Iggo, A.: Dorsal root potentials and ventral root reflexes evoked by nonmyelinated fibers. Science 162, 1140–1142 (1968).PubMedGoogle Scholar
  136. Fuortes, M.G.F.: Potential changes of the spinal cord following different types of afferent excitation. J. Physiol. (Lond.) 113, 372–386 (1951).Google Scholar
  137. Galindo, A.: GABA-picrotoxin interaction in the mammalian central nervous system. Brain Res. 14, 763–767 (1969).PubMedGoogle Scholar
  138. Gillies, J.D., Lange, J.W., Neilson, P.D., Tassinari, O.A.: Presynaptic inhibition of the monosynaptic reflex by vibration. J. Physiol. (Lond.) 205, 329–339 (1969).Google Scholar
  139. Gobel, S., Dubner, R.: Axo-axonic synapses in the main sensory trigeminal nucleus. Experientia (Basel) 24, 1250–1251 (1968).Google Scholar
  140. Gobel, S., Dubner, R.: Fine structural studies of the main sensory trigeminal nucleus in the cat and rat. J. comp. Neurol. 137, 459–494 (1969).PubMedGoogle Scholar
  141. Godfraind, J.M., Krnjević, K., Pumain, R.: Doubtful value of bicuculline as a specific antagonist of GABA. Nature (Lond.) 228, 675–676 (1970).Google Scholar
  142. Gordon, G., Jukes, M.G.M.: Correlation of different excitatory and inhibitory influences on cells in the nucleus gracilis of the cat. Nature (Lond.) 196, 1183–1185 (1962).Google Scholar
  143. Gordon, G., Jukes, M.G.M.: Dual organization of the exteroceptive components of the cat’s gracile nucleus. J. Physiol. (Lond.) 173, 263–290 (1964a).Google Scholar
  144. Gordon, G., Jukes, M.G.M.: Descending influences on the exteroceptive organizations of the cat’s gracile nucleus. J. Physiol. (Lond.) 173, 291–319 (1964).Google Scholar
  145. Gordon, G., Miller, R.: Identification of cortical cells projecting to the dorsal column nuclei of the cat. Quart. J. exp. Physiol. 54, 85–98 (1969).PubMedGoogle Scholar
  146. Gordon, G., Paine, C.H.: Functional organization in nucleus gracilis of the cat. J. Physiol. (Lond.) 153, 331–349 (1960).Google Scholar
  147. Granit, R.: The case for presynaptic inhibition by synapses on the terminals of motoneurons. In: Structure and function of inhibitory neuronal mechanisms, pp. 183–196. Ed. by C. von Euler, S. Skoglund and U. Söderberg. Oxford and New York: Pergamon Press 1968.Google Scholar
  148. Gray, E.G.: A morphological basis for pre-synaptic inhibition? Nature (Lond.) 193, 82–83 (1962).Google Scholar
  149. Gray, E.G.: Electron microscopy of presynaptic organelles of the spinal cord. J. Anat. (Lond.) 97, 101–106 (1963).Google Scholar
  150. Grinnell, A. D.: A study of the interaction between motoneurones in the frog spinal cord. J. Physiol. (Lond.) 182, 612–648 (1966).Google Scholar
  151. Grinnell, A. D.: Electrical interaction between antidromically stimulated frog motoneurones and dorsal root afferents: enhancement by gallamine and TEA. J. Physiol. (Lond.) 210, 17–44 (1970).Google Scholar
  152. Groves, P.M., Glanzman, D.L., Patterson, M.M., Thompson, R.F.: Excitability of cutaneous afferent terminals during habituation and sensitization in acute spinal cat. Brain Res. 18, 388–391 (1970).PubMedGoogle Scholar
  153. Guzman-Flores, C., Buendia, N., Anderson, C., Lindsley, D.B.: Cortical and reticular influences upon evoked responses in dorsal column nuclei. Exp. Neurol. 5, 37–46 (1962).PubMedGoogle Scholar
  154. Guzman-Flores, C., Buendia, N., Lindsley, D.B.: Cortical and reticular influences upon evoked responses in dorsal column nuclei. Fed. Proc. 20, 330 (1960).Google Scholar
  155. Hammer, B., Tarnecki, R., Vyklický, L., Wiesendanger, M.: Corticofugal control of presynaptic inhibition in the spinal trigeminal complex of the cat. Brain Res. 2, 216–218 (1966).Google Scholar
  156. Harris, F., Jabbur, S. J., Morse, R.W., Towe, A.L.: Influence of the cerebral cortex on the cuneate nucleus of the monkey. Nature (Lond.) 208, 1215–1216 (1965).Google Scholar
  157. Hepp-Reymond, M.-C., Wiesendanger, M.: Pyramidal influence on the spinal trigeminal nucleus of the cat. Arch. ital. Biol. 107, 54–66 (1969).PubMedGoogle Scholar
  158. Hernández-Peón, R., Hagbarth, K.E.: Interaction between afferent and cortically induced reticular responses. J. Neuro Physiol. 18, 44–55 (1955).Google Scholar
  159. Hernández-Peón, R., Scherrer, H., Velasco, M.: Central influences on afferent conduction in the somatic and visual pathways. Acta neurol. lat.-amer. 2, 8–22 (1956).Google Scholar
  160. Holmes, F.W., Davenport, H.A.: Cells and fibers in spinal nerves; number of neurites in dorsal and ventral roots of cat. J. comp. Neurol. 73, 1–5 (1940).Google Scholar
  161. Hongo, T., Jankowska, E.: Effects from the sensorimotor cortex on the spinal cord in cats with transected pyramids. Exp. Brain Res. 3, 117–134 (1967).PubMedGoogle Scholar
  162. Hongo, T., Okada, Y.: Cortically evoked pre- and postsynaptic inhibition of impulse transmission to the dorsal spinocerebellar tract. Exp. Brain Res. 3, 163–177 (1967).PubMedGoogle Scholar
  163. Houk, J., Henneman, E.: Feedback control of skeletal muscles. Brain Res. 5, 433–451 (1967).PubMedGoogle Scholar
  164. Howland, B., Lettvin, J. Y., McCulloch, W. S., Pitts, W.H., Wall, P. D.: Reflex inhibition by dorsal root interaction. J. Neuro Physiol. 18, 1–17 (1955).Google Scholar
  165. Hubbard, J. I., Llinás, R., Quastel, O.M.J.: Electrophysiological analysis of synaptic transmission. London: E. Arnold 1969.Google Scholar
  166. Hubbard, J. I., Schmidt, R.F.: Repetitive activation of motor nerve endings. Nature (Lond.) 196, 378–379 (1962).Google Scholar
  167. Hubbard, J.I., Schmidt, R.F.: An electrophysiological investigation of mammalian motor nerve terminals. J. Physiol. (Lond.) 166, 145–165 (1963).Google Scholar
  168. Hudson, R.D., Wolpert, N.K.: Central muscle relaxant effects of diazepam. Neuropharmacology 9, 481–488 (1970a).PubMedGoogle Scholar
  169. Hudson, R.D., Wolpert, N.K.: Anticonvulsant and motor depressant effects of Diazepam. Arch. int. Pharmacodyn. 186, 388–401 (1970b).Google Scholar
  170. Jabbur, S.J.: The effect of the visual and the auditory systems on the dorsal-column medial-lemniscal system. In: The Somato-sensory System. Ed. by H.H. Kornhuber, J. Aschofe. Stuttgart: Georg Thieme Verlag 1972 (in press).Google Scholar
  171. Jabbur, S.J., Banna, N.R.: Presynaptic inhibition of cuneate transmission by widespread cutaneous inputs. Brain Res. 10, 273–276 (1968).PubMedGoogle Scholar
  172. Jabbur, S.J., Banna, N.R.: Widespread cutaneous inhibition in dorsal column nuclei. J. Neuro Physiol. 33, 616–624 (1970).Google Scholar
  173. Jabbur, S. J., Towe, A.L.: Effect of pyramidal tract activity on dorsal column nuclei. Science 132, 547–548 (1960).PubMedGoogle Scholar
  174. Jabbur, S. J., Towe, A.L.: Cortical excitation of neurons in dorsal column nuclei of cat, including an analysis of pathways. J. Neuro Physiol. 24, 499–509 (1961a).Google Scholar
  175. Jabbur, S. J., Towe, A.L.: The influence of the cerebral cortex on the dorsal column nuclei. In: Nervous Inhibition Proc. Int. Symp. Ed. by E. Florey. New York: Pergamon Press 1961b.Google Scholar
  176. Jänig, W., Schmidt, R.F., Zimmermann, M.: Presynaptic depolarization during activation of tonic mechanoreceptors. Brain Res. 5, 514–516 (1967).PubMedGoogle Scholar
  177. Jänig, W., Schmidt, R.F., Zimmermann, M.: Two specific feedback pathways to the central afferent terminals of phasic and tonic mechanoreceptors. Exp. Brain Res. 6, 116–129 (1968).PubMedGoogle Scholar
  178. Jänig, W., Zimmermann, M.: Presynaptic depolarization of myelinated afferent fibres evoked by stimulation of cutaneous C fibres. J. Physiol. (Lond.) 214, 29–50 (1971).Google Scholar
  179. Jankowska, E., Jukes, M.G.M., Lund, S.: The pattern of presynaptic inhibition of transmission to the dorsal spinocerebellar tract. J. Physiol. (Lond.) 178, 17–18P (1965).Google Scholar
  180. Jankowska, E., Lund, S., Lundberg, A.: The effect of DOPA on the spinal cord. 4. Depolarization evoked in the central terminals of contralateral la afferent terminals by volleys in the flexor reflex afferents. Acta physiol. scand. 68, 337–341 (1966).Google Scholar
  181. Jurna, I.: Depression of the dorsal root potential of the cat spinal cord by amidopyrine. Int. J. Neuropharmacol. 5, 361–365 (1966).PubMedGoogle Scholar
  182. Kahn, N., Magni, F., Pillai, R.V.: Depolarization of optic fibre endings in the lateral geniculate body. Arch. ital. Biol. 105, 573–582 (1967).PubMedGoogle Scholar
  183. Katz, B.: The transmission of impulses from nerve to muscle, and the subcellular unit of synaptic action. Proc. roy. Soc. B. 155, 455–477 (1962).Google Scholar
  184. Katz, B., Miledi, R.: Tetrodotoxin and neuromuscular transmission. Proc. roy. Soc. B. 167, 8–22 (1967a).Google Scholar
  185. Katz, B., Miledi, R.: The release of acetylcholine from nerve endings by graded electric pulses. Proc. roy. Soc. B. 167, 23–28 (1967b).Google Scholar
  186. Katz, B., Miledi, R.: A study of synaptic transmission in the absence of nerve impulses. J. Physiol. (Lond.) 192, 407–436 (1967c).Google Scholar
  187. Kawana, E.: Projections of the anterior ectosylvian gyrus to the thalamus, the dorsal column nuclei, the trigeminal nuclei and the spinal cord in cats. Brain Res. 14, 117–136 (1969).PubMedGoogle Scholar
  188. Kellerth, J.-O.: A strychnine-resistant postsynaptic inhibition in the spinal cord. Acta physiol. scand. 63, 469–471 (1965).PubMedGoogle Scholar
  189. Kellerth, J.-O.: Aspects on the relative significance of pre- and postsynaptic inhibition in the spinal cord. In: Structure and functions of inhibitory neuronal mechanisms, pp. 197–212. Ed. by C. von Euler, S. Skoglund and U. Söderberg. Oxford and New York: Pergamon Press 1968.Google Scholar
  190. Kellerth, J.-O., Szumski, A.J.: Two types of stretch-activated post-synaptic inhibitions in spinal motoneurons as differentiated by strychnine. Acta physiol. scand. 66, 133–145 (1966a).PubMedGoogle Scholar
  191. Kellerth, J.-O., Szumski, A.J.: Effects of picrotoxin on stretch-activated postsynaptic inhibitions in spinal motoneurons. Acta physiol. scand. 66, 146–156 (1966b).PubMedGoogle Scholar
  192. Kerr, F.W.L.: The ultrastructure of the spinal tract of the trigeminal nerve and the substantia gelatinosa. Exp. Neurol. 16, 359–376 (1966).PubMedGoogle Scholar
  193. Kerr, F.W.L.: The organization of primary afferents in the subnucleus caudalis of the trigeminal: A light and electron microscopic study of degeneration. Brain Res. 23, 147–165 (1970).PubMedGoogle Scholar
  194. Khattab, F. J.: A complex synaptic apparatus in spinal cord of cats. Experientia (Basel) 24, 690–691 (1968).Google Scholar
  195. Koketsu, K.: Intracellular potential changes of primary afferent nerve fibers in spinal cords of cats. J. Neuro Physiol. 19, 375–392 (1956).Google Scholar
  196. Kuno, M.: Mechanism of facilitation and depression of the excitatory synaptic potential in spinal motoneurones. J. Physiol. (Lond.) 175, 100–112 (1964).Google Scholar
  197. Kuypers, H.G.J.M.: An anatomical analysis of the cortico-bulbar connexions to the pons and lower brain stem in the cat. J. Anat. (Lond.) 92, 198–218 (1958a).Google Scholar
  198. Kuypers, H.G.J.M.: Corticobulbar connexions to the pons and lower brain stem in man. An anatomical study. Brain Res. 81, 364–388 (1958b).Google Scholar
  199. Levitt, M., Carreras, M., Chambers, W.W., Liu, C.N.: Pyramidal influences on unit activity in posterior column nuclei of cat. Physiologist 3, 103 (1960).Google Scholar
  200. Levitt, M., Carreras, M., Liu, C.N., Chambers, W.W.: Pyramidal and extrapyramidal modulation of somatosensory activity in gracile and cuneate nuclei. Arch. ital. Biol. 102, 197–229 (1964).PubMedGoogle Scholar
  201. Levy, R.A., Repkin, A.H., Anderson, E.G.: The effect of bicuculline on primary afferent terminal excitability. Brain Res. 32, 261–265 (1971).PubMedGoogle Scholar
  202. Liley, A. W.: The effects of presynaptic polarization on the spontaneous activity at the mammalian neuromuscular junction. J. Physiol. (Lond.) 134, 427–443 (1956).Google Scholar
  203. Llinás, R.: Mechanisms of supraspinal actions upon spinal cord activities. Pharmacological studies on reticular inhibition of alpha extensor motoneurons. J. Neuro Physiol. 27, 1127–1137 (1964).Google Scholar
  204. Lloyd, D.P.C.: Electrotonus in dorsal root nerves. Cold Spr. Harb. Symp. quant. Biol. 17,203–218 (1952).Google Scholar
  205. Lloyd, D.P.C., McIntyre, A.K.: On the origin of dorsal root potentials. J. gen. Physiol. 32, 409–443 (1949).PubMedGoogle Scholar
  206. Lund, S., Lundberg, A., Vyklický, L.: Inhibitory action from the flexor reflex afferents on transmission to la afferents. Acta physiol. scand. 64, 345–355 (1965).PubMedGoogle Scholar
  207. Lundberg, A.: Supraspinal control of transmission in reflex paths to motoneurones and primary afferents. In: Progress in Brain Research, Vol. 12, pp. 197–221. Ed. by J.C. Eccles and J.P. Schadé. Physiology of Spinal Neurons (1964).Google Scholar
  208. Lundberg, A.: Integration in the reflex pathway. In: Nobel Sympos. I: Muscular afferents and motor control, pp. 275–305. Ed. by R. Granit. Stockholm: Almquist & Wiksell; New York-London-Sydney: J. Wiley & Sons 1966.Google Scholar
  209. Lundberg, A.: The supraspinal control of transmission in spinal reflex pathways. Electroenceph. clin. Neuro Physiol. Suppl. 25, 35–46 (1967).Google Scholar
  210. Lundberg, A.: Convergence of excitatory and inhibitory action on interneurones in the spinal cord. In: The interneurone. UCLA Forum Med. Sci. No. 11. Ed. by M.A.B. Brazier. Los Angeles: University of California Press 1969.Google Scholar
  211. Lundberg, A., Vyklický, L.: Inhibitory interaction between spinal reflexes to primary afferents. Experientia (Basel) 19, 247 (1963).Google Scholar
  212. Lundberg, A., Vyklický, L.: Inhibition of transmission to primary afferents by electrical stimulation of the brain stem. Arch. ital. Biol. 104, 86–97 (1966).PubMedGoogle Scholar
  213. Magni, F., Melzack, R., Moruzzi, G., Smith, C.J.: Direct pyramidal influences on the dorsal-column nuclei. Arch. ital. Biol. 97, 357–377 (1959).Google Scholar
  214. Majorossy, K., Réthelyi, M., Szentagothai, J.: The large glomerular synapse of the pulvinar. J. Hirnforsch. 7, 415–432 (1965).PubMedGoogle Scholar
  215. Mallart, A.: Heterosegmentai and heterosensory presynaptic inhibition. Nature (Lond.) 206, 719–720 (1965).Google Scholar
  216. Marchiaeava, P.L., Pompeiano, O.: Excitability changes of the intrageniculate optic tract fibres produced by electrical stimulation of the vestibular system. Pflügers Arch. ges. Physiol. 290, 275–278 (1966a).Google Scholar
  217. Marchiafava, P.L., Pompeiano, O.: Enhanced excitability of intra-geniculate optic tract endings produced by vestibular volleys. Arch. ital. Biol. 104, 459–479 (1966b).PubMedGoogle Scholar
  218. Marshall, W.H.: Observations on subcortical somatic sensory mechanism of cats under Nembutal anaesthesia. J. Neuro Physiol. 4, 25–43 (1941).Google Scholar
  219. McComas, A. J.: Responses of the rat dorsal column system to mechanical stimulation of the hind paw. J. Physiol. (Lond.) 166, 435–448 (1963).Google Scholar
  220. McLennan, H.: Synaptic Transmission. Philadelphia: W.B. Saunders 1970. Megirian, D.: Centrifugal discharges in cutaneous nerve fibers evoked by cutaneous afferent volleys in the acutely spinal phalanger “Trichosurus vulpecula”. Arch. ital. Biol. 106, 343–352 (1968).Google Scholar
  221. Megirian, D.: Centrifugal cutaneous nerve discharges in the decerebrate phalanger “Trichosurus vulpecula”. Arch. ital. Biol. 108, 388–399 (1970).PubMedGoogle Scholar
  222. Megirian, D.; Vestibular and somatosensory, evoked centrifugal cutaneous nerve discharges in the decerebrate-decerebellate phalanger “Trichosurus vulpecula”. Arch. ital. Biol. 109, 152–165 (1971).PubMedGoogle Scholar
  223. Melzack, R., Wall, P.D.: Pain mechanisms: A new theory. Science 150, 971–979 (1965).PubMedGoogle Scholar
  224. Mendell, L.M.: Positive dorsal root potentials produced by stimulation of small diameter muscle afferents. Brain Res. 18, 375–379 (1970).PubMedGoogle Scholar
  225. Mendell, L.M.: Inhibition of the negative DRP during a steady positive DRP. Fed. Proc. 30, 433 (1971).Google Scholar
  226. Mendell, L.M., Wall, P.D.: Presynaptic hyperpolarization: a role for fine afferent fibres. J. Physiol. (Lond.) 172, 274–294 (1964).Google Scholar
  227. Miyahara, J.T., Esplin, D.W., Zablocka, B.: Differential effects of depressant drugs on presynaptic inhibition. J. Pharmacol. exp. Ther. 154, 118–127 (1966).Google Scholar
  228. Morrison, A.R., Pompeiano, O.: Corticospinal influences on primary afferents during sleep and wakefulness. Experientia (Basel) 21, 660–661 (1965a).Google Scholar
  229. Morrison, A.R., Pompeiano, O.: Central depolarization of group la afferent fibers during desynchronized sleep. Arch. ital. Biol. 103, 517–537 (1965b).PubMedGoogle Scholar
  230. Morrison, A.R., Pompeiano, O.: Depolarization of central terminals of group Ia muscle afferent fibres during desynchronized sleep. Nature (Lond.) 210, 201–202 (1966).Google Scholar
  231. Nakamura, Y., Wu, C.Y.: Presynaptic inhibition of jaw-opening reflex by high threshold afferents from the masseter muscle of the cat. Brain Res. 23, 193–211 (1970).PubMedGoogle Scholar
  232. Ngat, S.H., Tseng, D.T.C., Wang, S.C.: Effect of diazepam and other central nervous system depressants on spinal reflexes in cats: A study of site of action. J. Pharmacol. exp. Ther. 153, 344–351 (1966).Google Scholar
  233. Nishi, S., Koketsu, K.: Electrical properties and activities of single sympathetic neurons in frogs. J. cell. comp. Physiol. 55, 15–30 (1960).PubMedGoogle Scholar
  234. Norton, A.C.: The dorsal column system of the spinal cord: Its anatomy, physiology, phylogeny and sensory function. An updated review. Los Angeles: UCLA Brain Information Service 1970.Google Scholar
  235. Pappas, G.D., Cohen, E.B., Purpura, D.P.: Electron microscope study of synaptic and other neuronal interrelation in the feline thalamus. 8th International Congress of Anatomists, Wiesbaden, 8–13 August 1965. Georg Thieme-Verlag: Stuttgart.Google Scholar
  236. Perl, E.R., Whitlock, D.G., Gentry, J.R.: Cutaneous projection to second-order neurons of the dorsal column system. J. Neuro Physiol. 25, 337–358 (1962).Google Scholar
  237. Peters, A., Palay, S.L.: The morphology of laminae A and A1 of the dorsal nucleus of the lateral geniculate body of the cat. J. Anat. (Lond.) 100, 451–486 (1966).Google Scholar
  238. Phillis, J.W.: Assay methods for transmitter substances of the central nervous system. Ph. D. Thesis, Australian National University, Canberra (1960).Google Scholar
  239. Phillis, J.W., Tebēcis, A.K.: The effects of topically applied cholinomimetic drugs on the isolated spinal cord of the toad. Comp. Biochem. Physiol. 23, 541–552 (1967).PubMedGoogle Scholar
  240. Phillis, J.W., Tebēcis, A.K.: Prostaglandins and toad spinal cord responses. Nature (Lond.) 217, 1076–1077 (1968).Google Scholar
  241. Pixner, D.B.: The effect of some drugs upon synaptic transmission in the isolated spinal cord of the frog. J. Physiol. (Lond.) 189, 15P (1966).Google Scholar
  242. Ralston III, H.J.: The organization of the substantia gelatinosa Rolandi in the cat lumbosacral cord. Z. Zeilforsch. 57, 1–23 (1965).Google Scholar
  243. Ralston III, H.J.: The fine structure of neurons in the dorsal horn of the cat spinal cord. J. comp. Neurol. 132, 275–302 1968a).PubMedGoogle Scholar
  244. Ralston III, H.J.: Dorsal root projections to dorsal horn neurons in the cat spinal cord. J. comp. Neurol. 132, 303–330 (1968b).PubMedGoogle Scholar
  245. Réthelyi, M.: Ultrastructural synaptology of Clarke’s column. Exp. Brain Res. 11, 159–174 (1970).PubMedGoogle Scholar
  246. Réthelyi, M., Szentágothai, J.: The large synaptic complexes of the substantia gelatinosa. Exp. Brain Res. 7, 258–274 (1969).PubMedGoogle Scholar
  247. Richens, A.: The action of general anaesthetic agents on root responses of the frog isolated spinal cord. Brit. J. Pharmacol. 36, 294–311 (1969).Google Scholar
  248. Rowe, M. J.: Reduction of response variability in the somatic sensory system by conditioning inputs. Brain Res. 22, 417–420 (1970).PubMedGoogle Scholar
  249. Rowe, M. J., Carmody, J.J.: Afferent inhibition over the response range of secondary trigeminal neurones. Brain Res. 18, 371–374 (1970).PubMedGoogle Scholar
  250. Rudomin, P.: Pharmacological evidence for the existence of interneurons mediating primary afferent depolarization in the solitary tract nucleus of the cat. Brain Res. 2, 181–183 (1966).PubMedGoogle Scholar
  251. Rudomin, P.: Some presynaptic mechanisms controlling impulse transmission in monosynaptic pathways. In: The Somato-sensory System. Ed. by H.H. Kornhuber and J. Aschoff. Stuttgart: Georg Thieme Verlag 1972 (in press).Google Scholar
  252. Rudomin, P., Dutton, H.: The effects of primary afferent depolarization on excitability fluctuations of la terminals within the motor nucleus. Experientia (Basel) 24, 48–50 (1968).Google Scholar
  253. Rudomin, P., Dutton, H.: Effects of conditioning afferent volleys on variability of monosynaptic responses of extensor motoneurons. J. Neuro Physiol. 32, 140–157 (1969a).Google Scholar
  254. Rudomin, P., Dutton, H.: Effects of muscle and cutaneous afferent nerve volleys on excitability fluctuations of la terminals. J. Neuro Physiol. 32, 158–169 (1969b).Google Scholar
  255. Rudomin, P., Dutton, H., Muñoz-Martinez, J.: Changes in correlation between monosynaptic reflexes produced by conditioning afferent volleys. J. Neuro Physiol. 32, 759–772 (1969).Google Scholar
  256. Rtjdomin, P., Muñoz-Martinez, J.: A tetrodotoxin-resistant primary afferent depolarization. Exp. Neurol. 25, 106–115 (1969).Google Scholar
  257. Sauerland, E.K., Mizuno, N.: Cortically induced presynaptic inhibition of trigeminal proprioceptive afferents. Brain Res. 13, 556–568 (1969a).PubMedGoogle Scholar
  258. Sauerland, E.K., Mizuno, N.: Effect of trigeminal proprioceptive input on the lingual-hypoglossal reflex. Anat. Rec. 163, 322–323 (1969b).Google Scholar
  259. Sauerland, E.K., Mizuno, N., Harper, R.M.: Presynaptic depolarization of trigeminal cutaneous afferent fibers induced by ethanol. Exp. Neurol. 27, 476–489 (1970).PubMedGoogle Scholar
  260. Sauerland, E.K., Thiele, H.: Presynaptic depolarization of lingual and glossopharyngeal nerve afferents induced by stimulation of trigeminal proprioceptive fibers. Exp. Neurol. 28, 344–355 (1970).PubMedGoogle Scholar
  261. Scheibel, M.E., Scheibel, A.B.: Terminal axonal patterns in cat spinal cord. II. The dorsal horn. Brain Res. 9, 32–58 (1968).PubMedGoogle Scholar
  262. Scherrer, H., Hernández-Peón, R.: Inhibitory influence of reticular formation upon synaptic transmission in gracilis nucleus. Fed. Proc. 14, 132 (1955).Google Scholar
  263. Scherrer, H., Hernández-Peón, R.: Hemmung postsynaptischer Potentiale im Nucleus gracilis. Pflügers Arch. ges. Physiol. 267, 434–445 (1958).Google Scholar
  264. Schmidt, R.F.: Pharmacological studies on the primary afferent depolarization of the toad spinal cord. Pflügers Arch. ges. Physiol. 277, 325–346 (1963).Google Scholar
  265. Schmidt, R.F.: Die Wirkung von Diazepam (Valium “Roche”) auf synaptische Funktionen des Rückenmarks. Communicationes, VI. Internat. Congr. Electroenceph. Clin. Neuro Physiol., Wien 1965, pp. 627–630 (1965).Google Scholar
  266. Schmidt, R.F.: Presynaptic inhibition in the vertebrate central nervous system. Ergebn. Physiol. 63, 20–101 (1971).PubMedGoogle Scholar
  267. Schmidt, R.F., Senges, J., Zimmermann, M.: Excitability measurements at the central terminals of single mechano-receptor afferents during slow potential changes. Exp. Brain Res. 3, 220–233 (1967a).PubMedGoogle Scholar
  268. ASchmidt, R.F., Senges, J., Zimmermann, M.: Presynaptic depolarization of cutaneous me-chanoreceptor afferents after mechanical skin stimulation. Exp. Brain Res. 3, 234–247 (1967b).PubMedGoogle Scholar
  269. Schmidt, R.F., Trautwein, W., Zimmermann, M.: Dorsal root potentials evoked by natural stimulation of cutaneous afferents. Nature (Lond.) 212, 522–523 (1966).Google Scholar
  270. Schmidt, R.F., Vogel, M.E., Zimmermann, M.: Die Wirkung von Diazepam auf die präsynaptische Hemmung und andere Rückenmarksreflexe. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 258, 69–82 (1967).Google Scholar
  271. Schmidt, R.F., Willis, W.D.: Intracellular recording from motoneurones of the cervical spinal cord of the cat. J. Neuro Physiol. 26, 28–43 (1963a).Google Scholar
  272. Schmidt, R.F., Willis, W.D.: Depolarization of central terminals of afferent fibers in the cervical spinal cord of the cat. J. Neuro Physiol. 26, 44–60 (1963b).Google Scholar
  273. Scibetta, C.J., King, R.B.: Hyperpolarizing influence of trigeminal nucleus caudalis on primary afferent preterminals in trigeminal nucleus oralis. J. Neuro Physiol. 32, 229–238 (1969).Google Scholar
  274. Selzer, M., Spencer, W.A.: Interactions between visceral and cutaneous afferents in the spinal cord: Reciprocal primary afferent fiber depolarization. Brain Res. 14, 349–366 (1969).PubMedGoogle Scholar
  275. Sessle, B.J., Dubner, R.: Presynaptic hyperpolarization of fibers projecting to trigeminal brain stem and thalamic nuclei. Brain Res. 22, 121–125 (1970).PubMedGoogle Scholar
  276. Sessle, B.J., Dubner, R.: Presynaptic excitability changes of trigeminothalamic and corticothalamic affErents. Exp. Neurol. 30, 239–250 (1971).PubMedGoogle Scholar
  277. Shende, M.C., King, R.B.: Excitability changes of trigeminal primary afferent preterminals in brain-stem nuclear complex of squirrel monkey (Saimiri sciureus). J. Neuro Physiol. 30, 949–963 (1967).Google Scholar
  278. Shimamura, M., Aoki, M.: Effects of spino-bulbo-spinal reflex volleys on flexor motoneurons of hindlimb in the cat. Brain Res. 16, 333–349 (1969).PubMedGoogle Scholar
  279. Shimamura, M., Mori, S., Yamauchi, T.: Effects of spino-bulbo-spinal reflex volleys on extensor motoneurons of hindlimb in cats. J. Neuro Physiol. 30, 319–332 (1967).Google Scholar
  280. Sotgiu, M.L., Cesa-Bianchi, M.G.: Primary afferent depolarization in the cuneate nucleus induced by stimulation of cerebellar and thalamic non-specific nuclei. Electroenceph. clin. Neuro Physiol. 29, 156–165 (1970).Google Scholar
  281. Stewart, D.H., Scibetta, C.J., King, R.B.: Presynaptic inhibition in the trigeminal relay nuclei. J. Neuro Physiol. 30, 135–153 (1967).Google Scholar
  282. Stratten, W.P., Barnes, C.D.: Spinal effect of diazepam. Fed. Proc. 27, 571 (1968).Google Scholar
  283. Szentágothai, J.: Anatomical aspects of junctional transformation. In: Information Processing in the Nervous System. Ed. by R.W. Gerad and J.W. Duyff. Proc. Internat. Union Physiol. Sciences, Vol. 3, pp. 119–136. Amsterdam: Excerpta Medica Foundation1962.Google Scholar
  284. Szentágothai, J.: The structure of the synapse in the lateral geniculate body. Acta anat. (Basel) 55, 166–185 (1963).Google Scholar
  285. Tebēcis, A.K., Phillis, J.W.: The effects of topically applied biogenic monoamines on the isolated spinal cord of the toad. Aust. J. exp. Biol. med. Sci. 45, 23–24P (1967).Google Scholar
  286. Tebēcis, A.K., Phillis, J.W.: Reflex response changes of the toad spinal cord to variations in temperature and pH. Comp. Biochem. Physiol. 25, 1035–1047 (1968).PubMedGoogle Scholar
  287. Tebēcis, A.K., Phillis, J.W.: The use of convulsants in studying possible functions of amino acids in the toad spinal cord. Comp. Biochem. Physiol. 28, 1303–1315 (1969a).PubMedGoogle Scholar
  288. Tebēcis, A. K., Phillis, J.W.: The pharmacology of the isolated toad spinal cord. Experiments in Physiology and Biochemistry 2, 361–395 (1969b).Google Scholar
  289. Therman, P. O.: Transmission of impulses through the Burdach nucleus. J. Neuro Physiol. 4, 153–166 (1941).Google Scholar
  290. Tömböl, T.: Short neurons and their synaptic relations in the specific thalamic nuclei. Brain Res. 3, 307–326 (1967).PubMedGoogle Scholar
  291. Toennies, J.F.: Reflex discharge from the spinal cord over the dorsal roots. J. Neuro Physiol. 1, 378–390 (1938).Google Scholar
  292. Toennies, J.F.: Conditioning of afferent impulses by reflex discharge over the dorsal roots. J. Neuro Physiol. 2, 515–525 (1939).Google Scholar
  293. Towe, A.L., Jabbur, S. J.: Cortical inhibition of neurons in dorsal column nuclei of cat. J. Neuro Physiol. 24, 488–498 (1961).Google Scholar
  294. Towe, A.L., Zimmermann, I.D.: Peripherally evoked cortical reflex in the cuneate nucleus. Nature (Lond.) 194, 1250–1251 (1962).Google Scholar
  295. Verhey, B.A., van Keulen, L.C.M., Voorhoeve, P.E.: An extreme form of presynaptic inhibition by Ia afferents. Acta physiol. pharmacol. neerl. 14, 1 (1966).Google Scholar
  296. Voorhoeve, P.E., Verhey, B.A.: Pre- and postsynaptic effects on fusimotor- and alpha motoneurones of the cat upon activation of muscle spindle afferents by succinylcholine. Acta physiol. pharmacol. neerl. 12, 12–22 (1963).PubMedGoogle Scholar
  297. Vyklický, L., Maksimová, E.V., Jirousek, J.: Neurones in the reflex pathway between trigeminal sensory fibres in the cat. Physiol. bohemoslov. 16, 285–296 (1967).PubMedGoogle Scholar
  298. Vyklický, L., Rudomin, P., Zajac III, F.E., Burke, R.E.: Primary afferent depolarization evoked by a painful stimulus. Science 165, 184–186 (1969).PubMedGoogle Scholar
  299. Vyklický, L., Tabin, V.: Primary afferent depolarization evoked by adequate stimulation of skin receptors. Physiol. bohemoslov. 15, 89–97 (1966).PubMedGoogle Scholar
  300. Walberg, F.: Cortifugal fibres to the nuclei of the dorsal columns. An experimental study in the cat. Brain 80, 273–287 (1957).PubMedGoogle Scholar
  301. Walberg, F.: Axoaconic contacts in the cuneate nucleus, probable basis for presynaptic depolarization. Exp. Neurol. 13, 218–231 (1965).PubMedGoogle Scholar
  302. Wall, P.D.: Excitability changes in afferent fibre terminations and their relation to slow potentials. J. Physiol. (Lond.) 142, 1–21 (1958).Google Scholar
  303. Wall, P. D.: The origin of a spinal cord slow potential. J. Physiol. (Lond.) 164, 508–526 (1962).Google Scholar
  304. Wall, P. D.: Presynaptic control of impulses at the first central synapse in the cutaneous pathway. In: Progress in Brain Research, Vol. 12, pp. 92–118. Physiology of Spinal Neurons. Ed. by J.C. Eccles and J.P. Schadé. Amsterdam: Elsevier Publ. Comp. 1964.Google Scholar
  305. Wall, P.D., McCulloch, W.S., Lettvin, J. Y., Pitts, W.H.: Factors limiting the maximum impulse transmitting ability of an afferent system of nerve fibres. 3rd. London Symp. on Information Theory, pp. 329–344. London: Butterworth 1955.Google Scholar
  306. Wiesendanger, M.: The pyramidal tract. Recent investigations on its morphology and function. Ergebn. Physiol. 61, 72–136 (1969).PubMedGoogle Scholar
  307. Wiesendanger, M., Felix, D.: Pyramidal excitation of lemniscal neurons and facilitation of sensory transmission in the spinal trigeminal nucleus of the cat. Exp. Neurol. 25, 1–17 (1969).PubMedGoogle Scholar
  308. Wiesendanger, M., Hammer, B., Tarnecki, R.: Cortifugal control of presynaptic inhibition in the spinal trigeminal nucleus of the cat. The effect of pyramidotomy and barbiturates. Schweiz. Arch. Neurol. Neurochir. Psychiat. 100, 255–276 (1967a).Google Scholar
  309. Wiesendanger, M., Hammer, B., Tarnecki, R.: Corticale Beeinflussung der synaptischen Übertragung im Trigeminuskern der Katze. Helv. Physiol. Acta 25, CR 237–239 (1967b).Google Scholar
  310. Winter, D. L.: N. gracilis of cat. Functional organization and cortifugal effects. J. Neuro-physiol. 28, 48–70 (1965).Google Scholar
  311. Zimmermann, M.: Selective activation of C-fibers. Pflügers Arch. ges. Physiol. 301, 329–333 (1968a).Google Scholar
  312. Zimmermann, M.: Dorsal root potentials after C-fiber stimulation. Science 160, 896–898 (1968b).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • Robert F. Schmidt
    • 1
  1. 1.KielGermany

Personalised recommendations