Somatosensory Cortex: Descending Influences on Ascending Systems

  • Arnold L. Towe
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 2)


In view of its limited interconnections with other than adjacent cerebral tissue, the somatic sensorimotor cortex may be regarded as an almost isolated unit of cerebral tissue — a unit interacting extensively with subcortical structures, but having little direct commerce with other regions of the cerebral mantle. A recent paper by Myers (1967) highlights the almost complete isolation of several cerebral regions, one from the other, and hints that the brain may be organized after the manner of the inflorescence of an umbelliferous plant. However, somatic sensorimotor cortex is a different sort of unit; it straddles two lobes, receives input from adjacent tissue in both lobes, and has a conspicuous one-way internal connection. Part of its output — the pyramidal tract — is the only one known in detail, and hence will occupy a prominent place in this chapter.


Somatosensory Cortex Pyramidal Tract Sensorimotor Cortex Trigeminal Nucleus Spinal Trigeminal Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdelmoumène, M., Besson, J.-M., Aléonard, P.: Cortical areas exerting presynaptic inhibitory action on the spinal cord in cat and monkey. Brain Res. 20, 327–329 (1970).PubMedCrossRefGoogle Scholar
  2. Adkins, R. J., Morse, R. W., Towe, A.L.: Control of somatosensory input by cerebral cortex. Science 153, 1020–1022 (1966).PubMedCrossRefGoogle Scholar
  3. Andersen, P., Eccles, J.C., Oshima, T., Schmidt, R.F., Mechanisms of synaptic transmission in the cuneate nucleus. J. Neurophysiol. 27, 1096–1116 (1964).PubMedGoogle Scholar
  4. Andersen, P., Eccles, J.C., Schmidt, R.F.: Yokota, T.: Identification of relay cells and interneurons in the cuneate nucleus. J. Neurophysiol. 27, 1080–1095 (1964).PubMedGoogle Scholar
  5. Andersen, P., Etholm, B., Gordon, G.: Presynaptic and post-synaptic inhibition elicited in the cat’s dorsal column nuclei by mechanical stimulation of skin. J. Physiol. (Lond.) 210, 433–455 (1970).Google Scholar
  6. Austin, G.M.: Suprabulbar mechanisms of facilitation and inhibition of cord reflexes. Res. Publ. Ass. nerv. ment. Dis. 30, 196–222 (1952).Google Scholar
  7. Baumgarten, R. von, Mollica, A., Moruzzi, G.: Modulierung der Entladungfrequenz einzelner Zellen der Substantia reticularis durch cortico-fugale and cerebelläre Impulse. Pflügers Arch. ges. Physiol. 259, 56–78 (1954).CrossRefGoogle Scholar
  8. Beck, C.H., Chambers, W.W.: Speed, accuracy, and strength of forelimb movement after unilateral pyramidotomy in rhesus monkeys. J. comp, physiol. Psychol. 70, 1–22 (1970).CrossRefGoogle Scholar
  9. Biedenbach, M.A., Jabbur, S. J., Towe, A.L.: Afferent inhibition in the cuneate nucleus of the rhesus monkey. Brain Res. 27, 179–183 (1971).PubMedCrossRefGoogle Scholar
  10. Brodal, A., Szabo, T., Torvik, A.: Corticofugal fibers to sensory trigeminal nuclei and nucleus of solitary tract. An experimental study in the cat. J. comp. Neurol. 106, 527–555 (1956).PubMedCrossRefGoogle Scholar
  11. Brouwer, B.: Certain aspects of the anatomical basis of the phylogeny of encephalization. Proc. Ass. Res. nerv. ment. Dis. 13, 3–25 (1932).Google Scholar
  12. Brouwer, B.: Centrifugal influence on centripetal systems in the brain. Arch. Neurol. Psy-chiat. (Chic.) 30, 456–460 (1933).Google Scholar
  13. Cajal, S.R.: Histologie du Système Nerveux de l’Homme et des Vertébrés. Madrid: Instituto Ramón y Cajal 1952.Google Scholar
  14. Carpenter, M.B., Hanna, G.R.: Fiber projections from the spinal trigeminal nucleus of the cat. J. comp. Neurol. 117, 117–131 (1961).PubMedCrossRefGoogle Scholar
  15. Cesa-Bianchi, M.G., Sotgiu, M.L.: Control by brain stem reticular formation of sensory transmission in Burdach nucleus. Brain Res. 13, 129–139 (1969).PubMedCrossRefGoogle Scholar
  16. Clare, M.H., Landau, W.M., Bishop, G.H.: Electrophysiological evidence of a collateral pathway from the pyramidal tract to the thalamus in the cat. Exp. Neurol. 9, 262–267 (1964).PubMedCrossRefGoogle Scholar
  17. Darian-Smith, I., Yokota, T.: Cortically evoked depolarization of trigeminal cutaneous afferent fibers in the cat. J. Neurophysiol. 29, 170–184 (1966a).PubMedGoogle Scholar
  18. Darian-Smith, I., Yokota, T.: Cortifugal effects on different neuron types within the cat’s brain stem activated by tactile stimulation on the face. J. Neurophysiol. 29, 185–206 (1966b).PubMedGoogle Scholar
  19. Dawson, G.D.: The central control of sensory inflow. Proc. roy. Soc. Med. 51, 531–535 (1958).PubMedGoogle Scholar
  20. Dubner, R.: Interaction of peripheral and central input in the main sensory trigeminal nucleus of the cat. Exp. Neurol. 17, 186–202 (1967).PubMedCrossRefGoogle Scholar
  21. Fedina, L., Gordon, G., Lundberg, A.: The source and mechanisms of inhibition in the lateral cervical nucleus of the cat. Brain Res. 11, 694–696 (1968).PubMedCrossRefGoogle Scholar
  22. Felix, D., Wiesendanger, M.: Cortically induced inhibition in the dorsal column nuclei of monkeys. Pflügers Arch. 320, 285–288 (1970).PubMedCrossRefGoogle Scholar
  23. Ferraro, A., Barrera, S.E.: The nuclei of the posterior funiculi in Macacus rhesus. An anatomic and experimental investigation. Arch. Neurol. Psychiat. (Chic.) 33, 262–275 (1935).Google Scholar
  24. Fetz, E.E.: Pyramidal tract effects on interneurons in the cat lumbar dorsal horn. J. Neurophysiol. 31, 69–80 (1968).PubMedGoogle Scholar
  25. Garol, H.W.: The “motor” cortex of the cat. J. Neuropath, exp. Neurol. 1, 139–145 (1942).CrossRefGoogle Scholar
  26. Ghez, C., Lenzi, G.L.: Modulation of afferent transmission in the lemniscal system during voluntary movement in cat. Brain Res. 24, 542 (1970).PubMedGoogle Scholar
  27. Gordon, G., Jukes, M.G.M.: Dual organization of the exteroceptive components of the cat’s gracile nucleus. J. Physiol. (Lond.) 173, 263–290 (1964a).Google Scholar
  28. Gordon, G., Jukes, M.G.M.: Descending influences on the exteroceptive organization of the cat’s gracile nucleus. J. Physiol. (Lond.) 173, 291–319 (1964b).Google Scholar
  29. Gordon, G., Miller, R.: Identification of cortical cells projecting to the dorsal column nuclei of the cat. Quart. J. exp. Physiol. 54, 85–98 (1969).PubMedGoogle Scholar
  30. Gordon, G., Paine, C.H.: Functional organization in nucleus gracilis of the cat. J. Physiol. (Lond.) 153, 331–349 (1960).Google Scholar
  31. Gordon, G., Seed, W. A.: An investigation of nucleus gracilis of the cat by antidromic stimulation. J. Physiol. (Lond.) 155, 589–601 (1961).Google Scholar
  32. Guzman-Flores, C., Buendia, N., Anderson, C., Lindsley, D.B.: Cortical and reticular influences upon evoked responses in dorsal column nuclei. Exp. Neurol. 5, 37–46 (1962).PubMedCrossRefGoogle Scholar
  33. Hagbarth, K.E., Fex, J.: Centrifugal influences on single unit activity in spinal sensory paths. J. Neurophysiol. 22, 321–338 (1959).PubMedGoogle Scholar
  34. Hagbarth, K.E., Kerr, D.I.B.: Central influences on spinal afferent conduction. J. Neurophysiol. 17, 295–307 (1954).PubMedGoogle Scholar
  35. Hammer, B., Tarnecki, R., Vyklický, L., Wiesendanger, M.: Corticofugal control of presynaptic inhibition in the spinal trigeminal complex of the cat. Brain Res. 2, 216–218 (1966).CrossRefGoogle Scholar
  36. Harris, F., Jabbur, S. J., Morse, R. W., Towe, A.L.: The influence of the cerebral cortex on the cuneate nucleus of the monkey. Nature (Lond.) 208, 1215–1216 (1965).CrossRefGoogle Scholar
  37. Hepp-Reymond, M.-C., Wiesendanger, M.: Pyramidal influence on the spinal trigeminal nucleus of the cat. Arch. ital. Biol. 107, 54–66 (1969).PubMedGoogle Scholar
  38. Hernández-Peón, R.: Central mechanisms controlling conduction along central sensory pathways. Acta neurol. lat.-amer. 1, 256–264 (1955).Google Scholar
  39. Hernández-Peón, R., Hagbarth, K.E.: Interaction between afferent and cortically induced reticular responses. J. Neurophysiol. 18, 44–55 (1955).PubMedGoogle Scholar
  40. Hernández-Peón, R., O’Flaherty, J. J., Mazzuchelli-O’Flaherty, A.L.: Modifications of tactile evoked potentials at the spinal trigeminal sensory nucleus during wakefulness and sleep. Exp. Neurol. 13, 40–57 (1965).CrossRefGoogle Scholar
  41. Hernández-Peón, R., Scherrer, H., Velasco, M.: Central influences of afferent conduction in the somatic and visual pathways. Acta neurol. lat.-amer. 2, 8–22 (1956).Google Scholar
  42. Jabbur, S.J., Banna, N.R.: Presynaptic inhibition of cuneate transmission by widespread cutaneous inputs. Brain Res. 10, 273–276 (1968).PubMedCrossRefGoogle Scholar
  43. Jabbur, S. J., Towe, A.L.: Blocking and excitation of cuneate neurons by sensori-motor cortical stimulation in the cat. Fed. Proc. 18, 73 (1959).Google Scholar
  44. Jabbur, S. J., Towe, A.L.: Cortical excitation of neurons in dorsal column nuclei of cat, including an analysis of pathways. J. Neurophysiol. 24, 499–509 (1961).PubMedGoogle Scholar
  45. Kawana, E.: Projections of the anterior ectosylvian gyrus to the thalamus, the dorsal column nuclei, the trigeminal nuclei and the spinal cord in cats. Brain Res. 14, 117–136 (1969).PubMedCrossRefGoogle Scholar
  46. Kawana, E., Kusama, T.: Projection of the sensory motor cortex to the thalamus, the dorsal column nucleus, the trigeminal nucleus and the spinal cord in the cat. Folia psychiat. neurol. jap. 18, 337–380 (1964).Google Scholar
  47. Kuypers, H.G.J.M.: An anatomical analysis of cortico-bulbar connexions to the pons and lower brain stem in the cat. J. Anat. (Lond.) 92, 198–218 (1958a).Google Scholar
  48. Kuypers, H.G.J.M.: Some projections from the peri-central cortex to the pons and lower brain stem in monkey and chimpanzee. J. comp. Neurol. 110, 221–255 (1958b).PubMedCrossRefGoogle Scholar
  49. Kuypers, H.G.J.M.: Central cortical projection to motor and somato-sensory cell groups. Brain 83, 161–184 (1960).PubMedCrossRefGoogle Scholar
  50. Kuypers, H.G.J.M., Brinkman, J.: Precentral projections to different parts of the spinal intermediate zone in the rhesus monkey. Brain Res. 24, 29–48 (1970).PubMedCrossRefGoogle Scholar
  51. Kuypers, H.G.J.M., Fleming, W.R., Farinholt, J.W.: Subcorticospinal projections in the rhesus monkey. J. comp. Neurol. 118, 107–137 (1962).PubMedCrossRefGoogle Scholar
  52. Kuypers, H.G.J.M., Tuerk, J.D.: The distribution of the cortical fibres within the nuclei cuneatus and gracilis in the cat. J. Anat. (Lond.) 98, 143–162 (1964).Google Scholar
  53. Laursen, A.M.: Selective increase in choice latency after transection of a pyramidal tract in monkeys. Brain Res. 24, 541–559 (1970).Google Scholar
  54. Laursen, A.M., Wiesendanger, M.: The effect of pyramidal lesions on response latency in cats. Brain Res. 5, 207–220 (1967).PubMedCrossRefGoogle Scholar
  55. Lende, R.A.: Sensory representation in the cerebral cortex of the opossum (Didelphis virgi-niana). J. comp. Neurol. 121, 395–403 (1963a).PubMedCrossRefGoogle Scholar
  56. Lende, R. A.: Motor representation in the cerebral cortex of the opossum (Didelphis virgi-niana). J. comp. Neurol. 121, 405–415 (1963b).PubMedCrossRefGoogle Scholar
  57. Lende, R.A.: Representation in the cerebral cortex of a primitive animal: Sensorimotor, visual, and auditory fields in the echidna (Tachyglossus aculeata). J. Neurophysiol. 27, 37–48 (1964).PubMedGoogle Scholar
  58. Levitt, M., Carreras, M., Liu, C.N., Chambers, W.W.: Pyramidal and extrapyramidal modulation of somatosensory activity in gracile and cuneate nuclei. Arch. ital. Biol. 102, 197–229 (1964).PubMedGoogle Scholar
  59. Lindblom, U.F., Ottosson, J.O.: Influence of pyramidal stimulation upon the relay of coarse cutaneous afferents in the dorsal horn. Acta physiol. scand. 38, 309–318 (1956/1957).PubMedCrossRefGoogle Scholar
  60. Magni, F., Melzack, R., Moruzzi, G., Smith, C.J.: Direct pyramidal influences on the dorsal-column nuclei. Arch. ital. Biol. 97, 357–377 (1959).Google Scholar
  61. Myers, R.E.: Cerebral connectionism and brain function. In: Brain Mechanisms Underlying Speech and Language. New York: Grune & Stratton 1967.Google Scholar
  62. Niimi, K., Kishi, S., Miki, M., Fujita, S.: An experimental study of the course and termination of the projection fibers from cortical areas 4 and 6 in the cat. Folia psychiat. neurol. jap. 17, 167–216 (1963).PubMedGoogle Scholar
  63. Perl, E.R., Whitlock, D.G., Gentry, J.R.: Cutaneous projection to second-order neurons of the dorsal column system. J. Neurophysiol. 25, 337–358 (1962).PubMedGoogle Scholar
  64. Probst, M.: Ueber die anatomischen und physiologischen Folgen der Halbseitendurchschnei-dung des Mittelhirns. Jb. Psychiat. Neurol. 24, 219–325, 3 pl. (1903).Google Scholar
  65. Redlich, E.: Über die anatomische Folgeerscheinungen ausgedehnter Exstirpationen der motorischen Rindencentern bei der Katze. Neurol. Centralbl. 16, 818–883 (1897).Google Scholar
  66. Rexed, B.: The cytoarchitectonic organization of the spinal cord in the cat. J. comp. Neurol. 96, 415–496 (1952).CrossRefGoogle Scholar
  67. Romer, A.S.: Vertebrate Paleontology. Chicago: Univ. of Chicago Press 1966.Google Scholar
  68. Scherrer, H., Hernández-Peón, R.: Hemmung postsynaptischer Potentiale im Nucleus Gracilis. Pflügers Arch. ges. Physiol. 267, 434–445 (1958).CrossRefGoogle Scholar
  69. Shimazu, H., Yanagisawa, N., Garoutte, B.: Cortico-pyramidal influences on thalamic somatosensory transmission in the cat. Jap. J. Physiol. 15, 101–124 (1965).CrossRefGoogle Scholar
  70. Stewart, D.H., Jr., Scibetta, D.J., King, R.B.: Presynaptic inhibition in the trigeminal relay nuclei. J. Neurophysiol. 30, 135–153 (1967).Google Scholar
  71. Taub, A.: Local, segmental and supraspinal interaction with a dorsolateral spinal cutaneous afferent system. Exp. Neurol. 10, 357–374 (1964).PubMedCrossRefGoogle Scholar
  72. Towe, A.L.: Neuronal population behavior in the somatosensory systems. In: The Skin Senses. Springfield: CC Thomas 1968.Google Scholar
  73. Towe, A.L.: Motor cortex and the pyramidal system. In: Efferent Organization and Motor Behavior. New York: Academic Press 1973 (in press).Google Scholar
  74. Towe, A.L., Jabbur, S. J.: Cortical inhibition of neurons in dorsal column nuclei of cat. J. Neurophysiol. 24, 488–498 (1961).PubMedGoogle Scholar
  75. Walberg, F.: Corticofugal fibers to the nuclei of the dorsal columns. An experimental study in the cat. Brain 80, 273–287 (1957).PubMedCrossRefGoogle Scholar
  76. Wiesendanger, M.: The pyramidal tract. Recent investigations on its morphology and function. Ergebn. Physiol. 61, 72–136 (1969).PubMedGoogle Scholar
  77. Wiesendanger, M., Felix, D.: Pyramidal excitation of lemniscal neurons and facilitation of sensory transmission in the spinal trigeminal nucleus of the cat. Exp. Neurol. 25, 1–17 (1969).PubMedCrossRefGoogle Scholar
  78. Wiesendanger, M., Hammer, B., Tarnecki, R.: Corticofugal control of presynaptic inhibition in the spinal trigeminal nucleus of the cat. The effect of pyramidotomy and barbiturates. Schweiz. Arch. Neurol. Neurochir. Psychiat. 100, 255–276 (1967).Google Scholar
  79. Woolsey, C.N.: Organization of somatic sensory and motor areas of the cerebral cortex. In: Biological and Biochemical Bases of Behavior. Madison: Univ. of Wisconsin Press 1958.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • Arnold L. Towe
    • 1
  1. 1.SeattleUSA

Personalised recommendations