Ascending and Long Spinal Pathways: Dorsal Columns, Spinocervical Tract and Spinothalamic Tract

  • A. G. Brown
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 2)

Abstract

The organization of ascending spinal cord pathways concerned with somatosensory mechanisms is not the same for all mammals. In particular there are differences in the development of the spinocervical and spinothalamic tracts, and also subtle variations in the dorsal column system. Furthermore, the types, proportions and axonal conduction velocities of cutaneous afferent units vary according to species (see chapters 2, 3 and 4). It is obvious, therefore, that extreme caution should be exercised in 1) extrapolating results obtained from one species to another, particularly to man, 2) equating the functions of similar anatomical systems in different species, and 3) equating the functions of differently located ascending systems in different species, e. g. the spinocervical tract of carnivores with the spinothalamic tract of primates.

Keywords

Neurol Hunt Stein Sorting Lamination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, F.D., Berry, C.M.: Degeneration studies of long ascending fiber systems in the cat’s brain stem. J. comp. Neurol. 111, 195–231 (1959).PubMedCrossRefGoogle Scholar
  2. Andersson, S.A.: Projection of different spinal pathways to the second somatosensory area in the cat. Acta physiol. scand. 56, Suppl. 194 (1962).CrossRefGoogle Scholar
  3. Armett, C.J., Gray, J. A.B., Hunsperger, R.W., Lal, S.: The transmission of information in primary receptor neurones and second order neurones of a phasic system. J. Physiol. (Lond.) 164, 395–421 (1962).Google Scholar
  4. Armett, C. J., Gray, J. A.B., Palmer, J.F.: A group of neurones in the dorsal horn associated with cutaneous mechanoreceptors. J. Physiol. (Lond.) 156, 611–622 (1961).Google Scholar
  5. Barilari, M.G., Kuypers, H.G.J.M.: Propriospinal fibers interconnecting the spinal enlargements in the cat. Brain Res. 14, 321–330 (1969).CrossRefGoogle Scholar
  6. Boivie, J.: The termination of the cervicothalamic tract in the cat. An experimental study with silver impregnation methods. Brain Res. 19, 333–360 (1970).PubMedCrossRefGoogle Scholar
  7. Boivie, J.: The termination of the spinothalamic tract in the cat. An experimental study with silver impregnation methods. Exp. Brain Res. 12, 331–353 (1971).CrossRefGoogle Scholar
  8. Bowsher, D.: The termination of secondary somatosensory neurones within the thalamus of M. mulatta. An experimental degeneration study. J. comp. Neurol. 117, 213–228 (1961).PubMedCrossRefGoogle Scholar
  9. Brodal, A., Rexed, B.: Spinal afferents to the lateral cervical nucleus in the cat. An experimental study. J. comp. Neurol. 98, 179–213 (1953).PubMedCrossRefGoogle Scholar
  10. Browder, J., Gallagher, J.P.: Dorsal cordotomy for painful phantom limb. Ann. Surg. 128, 456–469 (1948).CrossRefGoogle Scholar
  11. Brown, A.G.: Cutaneous afferent fibre collaterals in the dorsal columns of the cat. Exp. Brain Res. 5, 293–305 (1968).PubMedCrossRefGoogle Scholar
  12. Brown, A.G.: Descending control of the spinocervical tract in decerebrate cats. Brain Res. 17, 152–155 (1970).PubMedCrossRefGoogle Scholar
  13. Brown, A.G.: Effects of descending impulses on transmission through the spinocervical tract. J. Physiol. (Lond.) 219, 103–125 (1971).Google Scholar
  14. Brown, A.G., Franz, D.N.: Responses of spinocervical tract neurones to natural stimulation of identified cutaneous receptors. Exp. Brain Res. 7, 231–249 (1969).PubMedCrossRefGoogle Scholar
  15. Brown, A.G., Franz, D.N.: Patterns of response in spinocervical tract neurones to different stimuli of long duration. Brain Res. 17, 156–160 (1970).PubMedCrossRefGoogle Scholar
  16. Brown, A.G., Gordon, G., Kay, R.H.: Cutaneous receptive properties of single fibres in the cat’s medial lemniscus. J. Physiol. (Lond.) 211, 37–39 P (1970).Google Scholar
  17. Brown, A.G., Iggo, A.: A quantitative study of cutaneous receptors and afferent fibres in the cat and rabbit. J. Physiol. (Lond.) 193, 707–733 (1967).Google Scholar
  18. Brown, A.G., Kirk, E.J., Martin III, H.F.: The actions and locations in the spinal cord of descending pathways that inhibit transmission through the spinocervical tract. J. Physiol. (Lond.) 223, 27–28 P (1972).Google Scholar
  19. Brown, A.G., Martin III, H.F.: Effects on transmission through the spinocervical tract evoked from the dorsal columns and the dorsal column nuclei. J. Physiol. (Lond.) 224, 34–35 P (1972).Google Scholar
  20. Burgess, P.R., Clark, F.J.: Dorsal column projection of fibres from the cat knee joint. J. Physiol. (Lond.) 203, 301–315 (1969).Google Scholar
  21. Busch, H.F.M.: An anatomical analysis of the white matter in the brain stem of the cat. Doctoral Thesis, Leiden: van Gorcum 1961.Google Scholar
  22. Cajal, S. Ramón y: Histologie du système nerveux de l’homme et des vertébrés. Vol. I. Madrid: Consejo superior de investigationes cientificas 1952.Google Scholar
  23. Carpenter, M.B., Stein, B.M., Shriver, J.E.: Central projections of spinal dorsal roots in the monkey. II. Lower thoracic, lumbosacral and coccygeal dorsal roots. Amer. J. Anat. 123, 75–118 (1968).PubMedCrossRefGoogle Scholar
  24. Catalano, J. V., Lamarche, G.: Central pathway for cutaneous impulses in the cat. Amer. J. Physiol. 189, 141–144 (1957).PubMedGoogle Scholar
  25. Chang, H.T., Ruch, T.C.: Organization of the dorsal columns of the spinal cord and their nuclei in the spider monkey. J. Anat. (Lond.) 81, 140–149 (1947).Google Scholar
  26. Collier, J., Buzzard, EF: The degeneration resulting from lesions of posterior nerve roots and from transverse lesions of the spinal cord in man. A study of twenty cases. Brain 26, 559–591 (1903).CrossRefGoogle Scholar
  27. Cook, A.W., Browder, E.J.: Function of the posterior columns in man. Arch. Neurol. 12, 72–79 (1965).PubMedGoogle Scholar
  28. Dart, A. M., Gordon, G.: Excitatory and inhibitory afferent inputs to the dorsal column nuclei not involving the dorsal columns. J. Physiol. (Lond.) 211, 36–37 P (1970).Google Scholar
  29. Davidson, N., Smith, C.A.: Second-order neurone inhibition in the rat cuneate nucleus evoked from the contralateral periphery. J. Physiol. (Lond.) 210, 60–61P (1970).Google Scholar
  30. Denavit, M., Korsinski, E.: Somatic afferents to the cat subthalamus. Arch. ital. Biol. 106, 391–411 (1968).PubMedGoogle Scholar
  31. Di Biagio, F., Grund Fest, H.: Afferent relations of inferior olivary nucleus. II. Site of relay from hind limb afferents into dorsal spino-olivary tract in cat. J. Neurophysiol. 18, 299–304 (1954).Google Scholar
  32. Di Biagio, F., Grundfest, H.: Afferent relations of inferior olivary nucleus. IV. Lateral cervical nucleus as site of final relay to inferior olive in cat. J. Neurophysiol. 19, 10–20 (1956).Google Scholar
  33. Dilly, P.N., Wall, P.D., Webster, K.E.: Cells of origin of the spinothalamic tract in the cat and rat. Exp. Neurol. 21, 550–562 (1968).PubMedCrossRefGoogle Scholar
  34. Douglas, A.S., Barr, M.L.: The course of the pyramidal tract in rodents. Rev. canad. Biol. 9, 118–122 (1950).PubMedGoogle Scholar
  35. Drake, C.G., McKenzie, K.G.: Mesencephalic tractotomy for pain. J. Neurosurg. 10, 457–462 (1953).PubMedCrossRefGoogle Scholar
  36. Ecoles, J.C., Eccles, R.M., Lundberg, A.: Types of neurone in and around the intermediate nucleus of the lumbosacral cord. J. Physiol. (Lond.) 154, 89–114 (1960).Google Scholar
  37. Edinger, L.: Vergleichend-entwicklungsgeschichtliche und anatomische Studien im Bereiche des Zentralnervensystems: IL Über die Fortsetzung der hinteren Rückenmarkswurzeln zum Gehirn. Anat. Anz. 4, 121–128 (1889).Google Scholar
  38. Fedina, L., Gordon, G., Lundberg, A.: The source and mechanisms of inhibition in the lateral cervical nucleus of the cat. Brain Res. 11, 694–696 (1968).PubMedCrossRefGoogle Scholar
  39. Ferraro, A., Barrera, S. E.: Posterior column fibers and their termination in Macacus rhesus. J. comp. Neurol. 62, 507–530 (1935).CrossRefGoogle Scholar
  40. Ferraro, A., Barrera, S. E.: Lamination of the medial lemniscus in Macacus rhesus. J. comp. Neurol. 64, 313–324 (1936).CrossRefGoogle Scholar
  41. Fetz, E.E.: Pyramidal tract effects on interneurones in the cat lumbar dorsal horn. J. Neu-rophysiol. 31, 69–80 (1968).Google Scholar
  42. Foerster, O., Gagel, O.: Die Vorderseitenstrangdurchschneidung beim Menschen. Z. ges. Neurol. Psychiat. 138, 1–92 (1932).CrossRefGoogle Scholar
  43. Fuller, D.R.G., Gray, J.A.B.: The relation between mechanical displacements applied to a cat’s pad and the resultant impulse patterns. J. Physiol. (Lond.) 182, 465–483 (1966).Google Scholar
  44. Gaze, R.M., Gordon, G.: Some observations on the central pathways for cutaneous impulses in the cat. Quart. J. exp. Physiol. 40, 187–194 (1955).PubMedGoogle Scholar
  45. Getz, B.: The termination of spinothalamic fibres in the cat as studied by the method of terminal degeneration. Acta anat. (Basel) 16, 271–290 (1952).CrossRefGoogle Scholar
  46. Glees, P., Livingston, R.B., Soler, J.: Der intraspinale Verlauf und die Endigungen der sensorischen Wurzeln in den Nucleus Gracilis und Cuneatus. Arch. Psychiat. Nervenkr. 187, 190–204 (1951).PubMedCrossRefGoogle Scholar
  47. Glees, P., Soler, J.: Fibre content of the posterior column and synaptic connections of nucleus gracilis. Z. Zeilforsch. 36, 381–400 (1951).Google Scholar
  48. Goldstein, K.: Über die aufsteigende Degeneration nach Querschnittsunterbrechung des Rückenmarkes (Tractus spino-cerebellaris posterior, Tractus spino-olivaris, Tractus spino-thalamicus). Neurol. Centralbl. 29, 898–911 (1910).Google Scholar
  49. Gordon, G., Jukes, M.G.M.: An investigation of cells in the lateral cervical nucleus of the cat which respond to stimulation of the skin. J. Physiol. (Lond.) 169, 28–29P (1963).Google Scholar
  50. Grant, G., Oscarsson, O.: Mass discharges evoked in the olivocerebellar tract on stimulation of muscle and skin nerves. Exp. Brain Res. 1, 329–337 (1966).PubMedGoogle Scholar
  51. Grant, G., Oscarsson, O., Rosén, I.: Functional organization of the spino-reticulocerebellar path with identification of its spinal component. Exp. Brain Res. 1, 306–319 (1966).PubMedGoogle Scholar
  52. Grant, G., Westman, J.: The lateral cervical nucleus in the cat. IV. A light and electron microscopical study after midbrain lesions with demonstration of indirect Wallerian degeneration at the ultrastructural level. Exp. Brain Res. 7, 51–67 (1969).PubMedCrossRefGoogle Scholar
  53. Gray, J.A.B., Lal, S.: Effects of mechanical and thermal stimulation of cat’s pads on the excitability of dorsal horn neurones. J. Physiol. (Lond.) 179, 154–162 (1965).Google Scholar
  54. Grundfest, H., Carter, W.: Afferent relations of inferior olivary nucleus. I. Electrophysiological demonstration of dorsal spino-olivary tract in cat. J. Neurophysiol. 17, 72–91 (1954).PubMedGoogle Scholar
  55. Gwyn, D.G., Waldron, H.A.: A nucleus in the dorsolateral funiculus of the spinal cord of the rat. Brain Res. 10, 342–351 (1968).PubMedCrossRefGoogle Scholar
  56. Gwyn, D.G., Waldron, H.A.: Observations on the morphology of a nucleus in the dorsolateral funiculus of the spinal cord of the Guinea-pig, rabbit, ferret and cat. J. comp. Neurol. 136, 233–236 (1969).PubMedCrossRefGoogle Scholar
  57. Ha, H., Kitai, F., Morin, F.: The lateral cervical nucleus of the racoon. Exp. Neurol. 11, 441–450 (1965).PubMedCrossRefGoogle Scholar
  58. Ha, H., Liu, C.-N.: An anatomical investigation on the lateral cervical nucleus of the cat. Anat. Rec. 139, 234 (1961).Google Scholar
  59. Ha, H., Liu, C.-N.: Spinal afferents to the lateral cervical nucleus and their terminals. Anat. Rec. 142, 237–238 (1962).Google Scholar
  60. Ha, H., Liu, C.-N.: Synaptology of spinal afferents in the lateral cervical nucleus of the cat. Exp. Neurol. 8, 318–327 (1963).CrossRefGoogle Scholar
  61. Ha, H., C.-N., Liu: Organization of the spino-cervico-thalamic system. J. comp. Neurol. 127, 445–470 (1966).PubMedCrossRefGoogle Scholar
  62. Ha, H., Morin, F.: Comparative anatomical observations of the cervical nucleus, N. cervicalis lateralis. Anat. Rec. 148, 374–375 (1964).Google Scholar
  63. Hillman, P., Wall, P.D.: Inhibitory and excitatory factors influencing the receptive fields of lamina 5 spinal cord cells. Exp. Brain Res. 9, 284–306 (1969).PubMedGoogle Scholar
  64. Hongo, T., Jankowska, E., Lundberg, A.: Postsynaptic excitation and inhibition from primary afferents in neurones of the spinocervical tract. J. Physiol. (Lond.) 199, 569–592 (1968).Google Scholar
  65. Horrobin, D.F.: The lateral cervical nucleus of the cat; an electrophysiological study. Quart. J. exp. Physiol. 51, 351–371 (1966).PubMedGoogle Scholar
  66. Hunt, C.C., McIntyre, A.K.: An analysis of fibre diameter and receptor characteristics of myelinated cutaneous afferent fibres in cat. J. Physiol. (Lond.) 153, 99–112 (1960).Google Scholar
  67. Kennard, M.A.: The course of ascending fibers in the spinal cord of the cat essential to the recognition of painful stimuli. J. comp. Neurol. 100, 511–524 (1954).PubMedCrossRefGoogle Scholar
  68. King, J.L.: The corticospinal tract of the rat. Anat. Rec. 4, 245–252 (1910).CrossRefGoogle Scholar
  69. Kitai, S.T., Morin, F., Morin, F.: Lateral cervical nucleus of the dog: anatomical and micro-electrode studies. Amer. J. Physiol. 209, 307–311 (1965).PubMedGoogle Scholar
  70. Kitai, S.T., Weinberg, J.: Tactile discrimination study of the dorsal column-medial lemniscal system and spino-cervico-thalamic tract in cats. Exp. Brain Res. 6, 234–246 (1968).PubMedCrossRefGoogle Scholar
  71. Kohnstamm, O.: Über die gekreuzt-aufsteigende Spinalbahn und ihre Beziehung zum Gowerschen Strang. Neurol. Centralbl. 19, 242–249 (1900).Google Scholar
  72. Krieger, H., Grundfest, H.: Afferent relations of inferior olivary nucleus. III. Electrophysiological demonstration of a second relay in dorsal spino-olivary pathway in cat. J. Neurophysiol. 19, 1–9 (1956).Google Scholar
  73. Kroll, F.W.: Schwellenuntersuchungen bei Läsionen der afferenten Leitungsbahnen. Z. ges. Neurol. Psychiat. 128, 751–776 (1930).CrossRefGoogle Scholar
  74. Landgren, S., Nordwall, A., Wengström, C.: The location of the thalamic relay in the spino-cervical-lemniscal pathway. Acta physiol. scand. 65, 164–175 (1965).CrossRefGoogle Scholar
  75. Landgren, S., Silfvenius, H., Wolsk, D.: Somato-sensory paths to the second cortical projection areas of the group I muscle afferents. J. Physiol. (Lond.) 191, 543–559 (1967).Google Scholar
  76. Lloyd, D. P. C., McIntyre, A.K.: Dorsal column conduction of Group I muscle afferent impulses and their relay through Clarke’s column. J. Neurophysiol. 13, 39–54 (1950).PubMedGoogle Scholar
  77. Lundberg, A.: Ascending spinal hindlimb pathways in the cat. In: Progress in Brain Research, Vol. 12. Ed. by J.C. Eccles and J.P. Schadé. Amsterdam-London-New York: Elsevier 1964.Google Scholar
  78. Lundberg, A., Norrsell, U., Voorhoeve, P.: Effects from the sensorimotor cortex on ascending spinal pathways. Acta physiol. scand. 59, 462–473 (1963).PubMedCrossRefGoogle Scholar
  79. Lundberg, A., Oscarsson, O.: Three ascending spinal pathways in the dorsal part of the lateral funiculus. Acta physiol. scand. 51, 1–16 (1961).PubMedCrossRefGoogle Scholar
  80. Lundberg, A., Oscarsson, O.: Two ascending spinal pathways in the ventral part of the cord. Acta physiol. scand. 54, 270–286 (1962).PubMedCrossRefGoogle Scholar
  81. Magni, P., Oscarsson, O.: Principal organization of coarse-fibred ascending spinal tracts in phalanger, rabbit and cat. Acta physiol. scand. 54, 53–64 (1962).PubMedCrossRefGoogle Scholar
  82. Mendell, L.M.: Physiological properties of unmyelinated fiber projection to the spinal cord Exp. Neurol. 16, 316–332 (1966).PubMedCrossRefGoogle Scholar
  83. Mendell, L.M., Wall, P.D.: Responses of single dorsal cord cells to peripheral cutaneous unmyelinated fibres. Nature (Lond.) 206, 97–99 (1965).CrossRefGoogle Scholar
  84. Mizuno, N.: An experimental study of the spino-olivary fibers in the rabbit and cat. J. comp. Neurol. 127, 267–292 (1966).PubMedCrossRefGoogle Scholar
  85. Mizuno, N., Nakano, K., Imaizumi, M., Okamoto, M.: The lateral cervical nucleus of the Japanese monkey (Macaca fuscata). J. comp. Neurol. 129, 375–381 (1967).PubMedCrossRefGoogle Scholar
  86. Morin, F.: A new spinal pathway for cutaneous impulses. Amer. J. Physiol. 183, 245–252 (1955).PubMedGoogle Scholar
  87. Morin, F., Catalano, J.V.: Central connections of a cervical nucleus (Nucleus cervicalis lateralis of the cat). J. comp. Neurol. 103, 37–32 (1955).CrossRefGoogle Scholar
  88. Morin, F., Kitai, S.T., Portnov, H., Demirijan, C.: Afferent projections to the lateral cervical nucleus: A microelectrode study. Amer. J. Physiol. 204, 667–672 (1963).Google Scholar
  89. Morin, F., Thomas, L.M.: Spinothalamic fibers and tactile pathways in the cat. Anat. Rec. 121, 344 (1955).Google Scholar
  90. Mott, F. W.: Experimental enquiry upon the afferent tracts of the central nervous system of the monkey. Brain 18, 1–20 (1895).CrossRefGoogle Scholar
  91. Naquet, R., Denavit, M., Albe-Fessard, D.: Comparaison entre le rôle du subthalamus et celui des afferentes structures bulbomésencephaliques dans le maintien de la vigilance. Electroenceph. clin. Neurophysiol. 20, 149–164 (1966).Google Scholar
  92. Nilsson, B.Y., Skoglund, C. R.: The tactile hairs on the cat’s foreleg. Acta physiol. scand. 65, 364–369 (1965).PubMedCrossRefGoogle Scholar
  93. Norrsell, U.: The spinal afferent pathways of conditioned reflexes to cutaneous stimuli in the dog. Exp. Brain Res. 2, 269–282 (1966).PubMedCrossRefGoogle Scholar
  94. Norrsell, U.: A conditioned reflex study of sensory defects caused by cortical somatosensory ablations. Physiol. Behav. 2, 75–81 (1967).Google Scholar
  95. Norrsell, U., Voorhoeve, P.: Tactile pathways from the hindlimb to the cerebral cortex in cat. Acta physiol. scand. 54, 9–17 (1962).PubMedCrossRefGoogle Scholar
  96. Norrsell, U., Wolpow, E.R.: An evoked potential study of different pathways from the hindlimb to the somatosensory areas in the cat. Acta physiol. scand. 66, 19–33 (1966).PubMedCrossRefGoogle Scholar
  97. Oscarsson, O., Rosén, I.: Projection to cerebral cortex of large muscle-spindle afferents in foielimb nerves of the cat. J. Physiol. (Lond.) 169, 924–945 (1963).Google Scholar
  98. Perl, E.R., Whitlock, D.G.: Somatic stimuli exciting spinothalamic projections to thalamic neurons in cat and monkey. Exp. Neurol. 3, 256–296 (1961).PubMedCrossRefGoogle Scholar
  99. Petit, D., Burgess, P.R.: Dorsal column projection of receptors in cat hairy skin supplied by myelinated fibers. J. Neurophysiol. 31, 849–855 (1968).PubMedGoogle Scholar
  100. Ranson, S.W.: The fasciculus cerebro-spinalis in the albino rat. Amer. J. Anat. 14, 411–424 (1913).CrossRefGoogle Scholar
  101. Ranson, S.W.: A note on the degeneration of the fasciculus cerebro-spinalis in the albino rat. J. comp. Neurol. 24, 503–507 (1914).CrossRefGoogle Scholar
  102. Reveley, I.L.: The pyramidal tract of the Guinea-pig (Cavia aperea). Anat. Rec. 9, 297–305 (1915).CrossRefGoogle Scholar
  103. Rexed, B.: Personal communication in: J. Jansen and A. Brodal: Handbuch der mikroskopischen Anatomie des Menschen, IV/8. Das Kleinhirn, p. 241. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  104. Rexed, B., Ström, G.: Afferent nervous connection of the lateral cervical nucleus. Acta physiol. scand. 25, 219–229 (1952).PubMedCrossRefGoogle Scholar
  105. Rosen, I.: Afferent connexions of Group I activated cells in the main cuneate nucleus of the cat. J. Physiol. (Lond.) 205, 209–236 (1969).Google Scholar
  106. Shriver, J.E., Stein, B.M., Carpenter, M.B.: Central projection of spinal dorsal roots in the monkey. I. Cervical and upper thoracic dorsal roots. Amer. J. Anat. 123, 27–74 (1968).PubMedCrossRefGoogle Scholar
  107. Simpson, S.: The pyramidal tract in the red squirrel (Sciurus hudsonius) and chipmunk (Tamius striatus lipteris). J. comp. Neurol. 24, 137–160 (1914).CrossRefGoogle Scholar
  108. Simpson, S.: The motor areas and pyramidal tract in the Canadian porcupine (Erethrizon dorsatus Linn.). Quart. J. exp. Physiol. 8, 79–102 (1915a).Google Scholar
  109. Simpson, S.: The pyramidal tract in the striped gopher. Quart. J. exp. Physiol. 8, 383–390 (1915b).Google Scholar
  110. Tapper, D.N.: Behavioural evaluation of the tactile pad receptor system in hairy skin of the cat. Exp. Neurol. 26, 447–459 (1970).PubMedCrossRefGoogle Scholar
  111. Tapper, D.N., Mann, M.D.: Single presynaptic impulse evokes postsynaptic discharge. Brain Res. 11, 688–690 (1968).PubMedCrossRefGoogle Scholar
  112. Taub, A.: Local, segmental and supraspinal interactions with a dorsolateral spinal cutaneous afferent system. Exp. Neurol. 10, 357–374 (1964).PubMedCrossRefGoogle Scholar
  113. Taub, A., Bishop, P.O.: The spinocervical tract: Dorsal column linkage, conduction velocity, primary afferent spectrum. Exp. Neurol. 13, 1–21 (1965).PubMedCrossRefGoogle Scholar
  114. Tomasulo, K.C., Emmers, R.: Spinal afferents to SI and SII of the rat thalamus. Exp. Neurol. 26, 482–497 (1970).PubMedCrossRefGoogle Scholar
  115. Trevino, D.L., Maunz, R.A., Bryan, R.N., Willis, W.D.: Location of cells of origin of the spinothalamic tract in the lumbar enlargement of cat. Exp. Neurol. 34, 64–77 (1972).PubMedCrossRefGoogle Scholar
  116. Truex, R.C., Taylor, M.J., Smythe, M.Q., Gildenberg, P.L.: The lateral cervical nucleus of cat, dog and man. J. comp. Neurol. 139, 93–104 (1970).PubMedCrossRefGoogle Scholar
  117. Uddenberg, N.: Differential organization in dorsal funiculi of fibres originating from different receptors. Exp. Brain Res. 4, 367–376 (1968a).PubMedGoogle Scholar
  118. Uddenberg, N.: Functional organization of long, second-order afferents in the dorsal funiculi. Exp. Brain Res. 4, 377–382 (1968b).PubMedGoogle Scholar
  119. Van Beusekom, G.T.: Fibre analysis of the anterior and lateral funiculi of the cord in the cat. Doctoral Thesis, Leiden: E. Ijdo, N.V. 1955.Google Scholar
  120. Waldron, H.A.: The morphology of the lateral cervical nucleus in the hedgehog. Brain Res. 16, 301–306 (1969).PubMedCrossRefGoogle Scholar
  121. Walker, A.E.: The spinothalamic tract in man. Arch. Neurol. Psychiat. (Chic.) 43, 284–298 (1940).Google Scholar
  122. Walker, A.E.: Somatotopic localization of spinothalamic and sensory trigeminal tracts in mesencephalon. Arch. Neurol. Psychiat. (Chic.) 48, 885–889 (1942).Google Scholar
  123. Walker, A.E., Weaver, T.A.: The topical organization of the fibers of the posterior columns in M. mulatta. J. comp. Neurol. 76, 145–158 (1942).CrossRefGoogle Scholar
  124. Wall, P.D.: Cord cells responding to touch, damage and temperature of skin. J. Neurophysiol. 23, 197–210 (1960a).PubMedGoogle Scholar
  125. Wall, P.D.: Two transmission systems for the skin senses. In: Sensory Communication. Ed. by W.A. Rosenblith. New York: Wiley 1960b.Google Scholar
  126. Wall, P.D.: The laminar organization of dorsal horn and effects of descending impulses. J. Physiol. (Lond.) 188, 403–424 (1967).Google Scholar
  127. Wallenberg, A.: Die sekundäre Bahn des sensiblen Trigeminus. Anat. Anz. 12, 95–110 (1896).Google Scholar
  128. Wallenberg, A.: Secundäre sensible Bahnen im Gehirnstamm des Kaninchens. Anat. Anz. 18, 81–105 (1900).Google Scholar
  129. Weaver, T.A., Walker, A.E.: Topical arrangement within the spinothalamic tract of the monkey. Arch. Neurol. Psychiat. (Chic.) 46, 877–887 (1941).Google Scholar
  130. Werner, G., Whitsel, B.L.: The topology of dermatomal projections in the medial lemniscal system. J. Physiol. (Lond.) 192, 123–144 (1967).Google Scholar
  131. Whitehorn, D., Morse, R.W., Towe, A.L.: Role of the spinocervical tract in production of the primary cortical response evoked by forepaw stimulation. Exp. Neurol. 25, 349–364 (1969).PubMedCrossRefGoogle Scholar
  132. Whitlock, D.G., Perl, E.R.: Afferent projections through ventrolateral funiculi to thalamus of cat. J. Neurophysiol. 22, 133–148 (1959).PubMedGoogle Scholar
  133. Whitsel, B.L., Petrucelli, L.M., Sapiro, G.: Modality representation in the lumbar and cervical fasciculus gracilis of squirrel monkey. Brain Res. 15, 67–78 (1969).PubMedCrossRefGoogle Scholar
  134. Whitsel, B.L., Petrucelli,L. M., Sapiro, G., Ha, H.: Fiber sorting in the fasciculus gracilis of squirrel monkey. Exp. Neurol. 29, 227–242 (1970).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1973

Authors and Affiliations

  • A. G. Brown
    • 1
  1. 1.EdinburghGreat Britain

Personalised recommendations