Leukämie pp 161-233 | Cite as

Proliferationskinetik. Cytophotometrie

  • Irene Boll
  • T. M. Fliedner
  • D. Hoelzer
  • E. B. Harriss
  • D. Hoelzer
  • H. Theml
  • P. Schick
  • F. Trepel
  • Be Swan Lee
  • W. Kaboth
  • H. Begemann
  • T. M. Fliedner
  • K. Bremer
  • I. Weissenfels
  • G. Koss
  • B. Herm
  • H. Nitzel
  • Th. Büchner
  • W. Dittrich
  • W. Göhde
  • Aleksandra Krygier-Stojałowska
  • Ignacy Urasiński
  • D. Müller
  • E. Reichert
  • H. D. Lang
  • A. Simon
  • H. Ch. Benohr
  • U. W. Schaefer
  • K. A. Dicke
Conference paper

Zusammenfassung

Die Kinetik der chronis chen lymphatischen Leukämie (CLL), der chronischen myeloischen Leukämie (CML), der akuten Lymphoblastenleukämie (ALL) und der akuten myeloischen Leukamien (AML) unterscheiden sich voneinander. Hier soll nur auf die Kinetik der akuten Leukämien eingegangen werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Astaldi, G., Mauri, C.: Recherches sur L’activite proliferative de 1’hemocytoblaste de la leukemie aigue. Rev. belge Path. XXIII, 69 (1953).Google Scholar
  2. 2.
    Boll, I.: Corresponding experimental results with DNA-labeling and phase-contrastobservation to pathophysiology of acute leukaemia. Proc. 9th Congr. Europ. Soc. Haemat., Lissabon 1963.Google Scholar
  3. 3.
    Boll, I.: Granulocytopoese unter physiologischen and pathologischen Bedingungen. BerlinHeidelberg-New York: Springer 1966.Google Scholar
  4. 4.
    Boll, I., Fuchs, G.: Cell renewal in granulocytopoiesis. Exp. Haemat. 12, 85 (1967).Google Scholar
  5. 5.
    Boll, I.: Some proofs for the existence of sleeping cells in human granulocytopoiesis. Haemat. lat. (Milano) X, 49 (1967).Google Scholar
  6. 6.
    Boll, I., Mersch, G.: Morphologische Untersuchungen zur Proliferationskinetik der normalen and pathologischen Granulocytopoese in vitro. Blut XIX, 257 (1969).Google Scholar
  7. 7.
    Boll, I., Fuchs, G.: A kinetic model of granulocytopoiesis. Exp. Cell Res. 61, 147 (1970).Google Scholar
  8. 8.
    Boll, I., Mersch, G. F. M., Mersch, F.: Morphological aspects of the kinetically inactive neutrophilic granulocytopoiesis. Proc. Soc. exp. Biol. (N.Y.) 135, 188 (1970).Google Scholar
  9. 9.
    Bottura, C., Ferrari, I.: Endoreduplication on acute leukaemia. Blood 21, 207 (1963).Google Scholar
  10. 10.
    Cronkite, E. P., Vincent, P. C.: Granulocytopoiesis. In: STOHLMAN, F., Jr.: Hemopoietic cellular proliferation. New York: Grune and Stratton 1970.Google Scholar
  11. 11.
    Galbraith, P. R., Chikkappa, G., Abu-Zahra, H. T.: Patterns of granulocyte kinetics in acute myelogenous and myelomonocytic leukemia. Blood 36, 371 (1970).Google Scholar
  12. 12.
    Houston, E. W., Levin, W. C., Ritzmann, St. E.: Endoreduplication in untreated early leukaemia. Lancet 1964 V, 496.Google Scholar
  13. 13.
    Keiser, G., Wagner, H. P., Frey-Wettstein, M.: Cytokinetic studies in two acute lymphoblastic leukemias. Helv. med. Acta 34, 155 (1968).Google Scholar
  14. 14.
    Killmann, S. A.: Acute leukemia: The kinetics of leukemic blast cells in man. Ser. Haematol. I, 38, 103 (1968).Google Scholar
  15. 15.
    Boll, I., A hypothesis concerning the relationship between normal and leukemic hemopoiesis in acute myeloid leukemia. In: STOHLMAN, F., Jr.: Hemopoietic cellular proliferation, p 267. New York: Grune and Stratton 1970.Google Scholar
  16. 16.
    Pileri, A., Gabutti, V., Masera, P., Gavosto, F.: Proliferative activity of the cells of acute leukaemia in relapse and in steady state. Acta haemat. (Basel) 38, 193 (1967).Google Scholar
  17. 17.
    Robinson, W., Metcalf, D., Bradley, T. R.: Stimulation by normal and leukemie mouse sera of colony formation in vitro by mouse bone marrow cells. J. Cell Physiol. 69, 83 (1967). 18. RONDANELLI, E. G., MAGLIULO, E., GIRALDI, A., CARCO, F. P.: The chronology of the mitotic cycle of human granulocytopoiesis cells. Phase contrast studies on living cells in vitro. Blood XXX, 557 (1967).Google Scholar
  18. 19.
    Boll, I., Pilla, G., Falchi, F., Barigazzi, G. M.: Chronology of the mitotic cycle of acute leukemia cells. Acta haemat. (Basel) 42, 76 (1969).Google Scholar
  19. 20.
    Schmalzl, F., Lederer, B., Braunsteiner, H.: Atypical myeloblastic leukemia with differentiation into “paraneutrophils”. Blut XX, 337 (1970).Google Scholar
  20. 21.
    Spivak, J. L., Brubaker, L. H., Perry, S.: Intravascular granulocyte kinetics in acute leukemia. Blood 34, 582 (1969).Google Scholar

Literatur

  1. 1.
    Virchow, R.: Die Leukamie. In: Gesammelte Abhandlungen zur wissenschaftlichen. Medizin, pp. 190-212. Frankfurt: Meidinger 1856.Google Scholar
  2. 2.
    Virchow, R.: Die Cellularpathologie. Zwanzig Vorlesungen, 1858. Hildesheim: Georg Olms 1966.Google Scholar
  3. 3.
    Skipper, H. E.: Cellular kinetics associated with “curability” of experimental leukaemias_ In: Perspectives in leukemia, p. 187 (DAMESHEK, W., DUTCHER, R. M., Eds.). New York and London: Grune and Stratton 1968.Google Scholar
  4. 4.
    Bierman, H. R.: Some principles underlying the pathological physiology of the leukemias in man. Proc. Second Nat. Cancer Conf. 1953, pp. 516-525.Google Scholar
  5. 5.
    Bierman, H. R.: The leukemas-proliferative or accumulative? Blood 30, 238-250 (1967).Google Scholar
  6. 6.
    Killmann, S. A.: Acute leukaemia: the kinetics of leukaemic blast cells in man. SerHaematol. 1, 38-107 (1968).Google Scholar
  7. 7.
    Laj Tha, L. G., Lewis, C. L., Oliver, R., Gunning, A. J., Sharp, A. A., Callender, S.: Extracorporal irradiation of the blood. A possible therapeutic measure. Lancet 1962 I, 353.Google Scholar
  8. 8.
    Holland, J. F.: Therapy of acute leukemia. XIIIth Intern. Congr. Hemat., Plenary Session Volume, pp. 58-65. Munchen: J. F. Lehmann 1970.Google Scholar
  9. 9.
    Bond, V. P., Fliedner, T. M., Archambeau, J. O.: Mammalian radiation lethality. New York and London: Academic Press 1965.Google Scholar
  10. 10.
    Stryckmans, P., Cronkite, E. P., Fache, I., Fliedner, T. M., Ramos, J.: Deoxyribonucleic acid synthesis time of erythropoietic and granulopoietic cells in human beings_ Nature (Lord.) 211, 717-720 (1966).Google Scholar
  11. 11.
    Fliedner, T. M., Cronkite, E. P., Killmann, S. A., Bond, V. P.: Granulocytopoiesis II_ Emergence and patterns of labeling of neutrophilic granulocytes in humans. Blood 24,, 683-700 (1964).Google Scholar
  12. 12.
    Lajtha, L. G.: Bone marrow stem cell kinetics. Semin. Haematol. 4, 293-303 (1967).Google Scholar
  13. 13.
    Stohlman, F., Ebbe, S., Morse, B., Howard, D., Donovan, J.: Regulation of erythropoiesis. XX. Kinetics of red cell production. Ann. N.Y. Acad. Sci. 149, 156-172 (1968).Google Scholar
  14. 14.
    Fliedner, T. M., Messner, H., Kubanek, B.: Neuere Erkenntnisse zur Physiologie and Pathophysiologie der Erythropoese. Hamatologie u. Bluttransfusion 8, 1-15 (1969).Google Scholar
  15. 15.
    Till, J. E., Mcculloch, E. A.: A direct measurement of the radiation sensitivity of normal. mouse bone marrow cells. Radiat. Res. 14, 213-222 (1961).Google Scholar
  16. 16.
    Pluznik, D. H., Sachs, L.: The cloning of normal “mast” cells in tissue culture. J. cell_ comp. Physiol. 66, 319-324 (1965).Google Scholar
  17. 17.
    Bradley, T. R., Metcalf, D.: The growth of mouse bone marrow cells in vitro. Aust. J exp. Biol. med. Sci. 44, 287-300 (1966).Google Scholar
  18. 18.
    Stephenson, J. R., Anelrad, A. A., Mcleod, D. L., Shreeve, M. M.: Induction of colonies of hemoglobin-synthesising cells by erythropoietin in vitro. Proc. rat. Acad. Sci. (Wash.) 68, 1542-1546 (1971).Google Scholar
  19. 19.
    Mccredie, K. B., Hersh, E. M., Freireich, E. J.: Cells capable of colony formation in the peripheral blood of man. Science 171, 293-294 (1971).Google Scholar
  20. 20.
    Goodman, J. W., Hodgson, G. S.: Evidence of stem cells in the peripheral blood of trice. Blood 19, 702-714 (1962).Google Scholar
  21. 21.
    Hellman, S., Grate, H. E.: Kinetics of circulating haemopoietic colony-forming units in the mouse. In: Effects of radiation on cellular proliferation and differentiation, pp. 187 to 196. Wien: I. A. E. A. 1968.Google Scholar
  22. 22.
    Fliedner, T. M., Herbst, E., Pfile, M. J., Calvo, W., Schnappauf, H.-P.: Pattern of bone marrow regeneration after autologous leukocyte transfusion following whole body irradiation in dogs. Abstract, 8th Meeting Europ. Soc. Radiat., Biol., Basko Polje, Jugoslavia, Sept. 20-23, 1971.Google Scholar
  23. 23.
    Killmann, S. A., Cronkite, E. P., Robertson, J. S., Fliedner, T. M., Bond, V. P.: Estimation of phases of the life cycle of leukaemic cells from labeling in human beings with tritiated thymidine. Lab. Invest. 12, 671-684 (1963).Google Scholar
  24. 24.
    Mauer, A. M., Saunders, E. F., Lampkin, B. C.: Importance of the non-dividing leukemic cell. In: Recent results in cancer research, vol. 17, p. 168 (FRY, R. J. M., GRIEM, M. L., Kirsten, W. H., Eds.). Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  25. 25.
    Gabutti, V., Pileri, A., Tarocco, R. P., Gavosto, F., Cooper, E. H.: Proliferativc potential of out-of-cycle leukaemic cells. Nature (Loud) 224, 375 (1969).Google Scholar
  26. 26.
    Cuttner, J., Cronkite, E. P., Kesse, M., Fliedner, T. M.: Behaviour of autotransfused in vitro 3H-cytidine (3H-CDR)-labeled lymphocytes in chronic lymphocytic leukemia (CLL). J. clin. Invest. 43, 1236 (1964).Google Scholar
  27. 27.
    Hoelzer, D., Harriss, E. B., Fliedner, T. M., Heimpel, H.: Investigations on the nonproliferating blast cells of peripheral blood in human acute leukaemia. Europ. J. clin. Invest. 2, 259-268 (1972).Google Scholar
  28. 28.
    Cartwright, G. E., Athens, H., Wintrobe, M. M.: The kinetics of granulopoiesis in normal man. Blood 24, 780 (1964).Google Scholar
  29. 29.
    Hoelzer, D., Harriss, E. B., Haas, R. J.: The behaviour of resting bone marrow cells in rats with acute leukaemia. Vth Intern. Symp. Comparative Leukaemia Research, Padua/ Venice, Sept. 1971. Bibl. haemat. (Basel) (in press).Google Scholar
  30. 30.
    Vth International Symposium on Comparative Leukaemia Research, Padua/Venice Sept. 1971, Bibl. haemat. (Basel) (in press).Google Scholar

Literatur

  1. Gavosto, F., Pileri, A., Ponzone, A., Masera, P., Tarocco, R. P., Gabutti, V.: Different blast kinetics in acute myeloblastic and lymphoblastic leukaemia. A hypothesis of different stem cell origin. Acta haemat. (Basel) 41, 215 (1969).Google Scholar
  2. Harriss, E. B., Hoelzer, D.: DNA synthesis time in leukaemic cells as measured by the double labelling and the percentage labelled mitoses methods. Cell Tiss. Kinet. 4, 433 (1971).Google Scholar
  3. Killmann, S. A.: Acute leukaemia: the kinetics of leukaemic blast cells in man. Ser. Haematol. 1, 38 (1968).Google Scholar
  4. Stryckmans, P., Cronkite, E. P., Fache, I., Fliedner, T. M., Ramos, J.: Deoxyribonucleic acid synthesis time of erythropoietic and granulocytopoietic cells in human beings. Nature (Lond.) 211, 717 (1966).Google Scholar
  5. Todo, A.: Proliferation and differentiation of hematopoietic cells in hematologic disorders. Report III. In vivo radioautographic study of leukemia including erythroleukemia. Acta haemat. j ap. 31, 947 (1968).Google Scholar

Literatur

  1. 1.
    Osgood, E. E., Tivey, H., Davidson, K. B., Seaman, A. J., Jonah, G. L.: Relative rates of formation of new leukocytes in patients with acute and chronic leukemias. Cancer 5, 331-335 (1952).Google Scholar
  2. 2.
    Chistensen, B. C., Ottesen, J.: The age of leukocytes in the blood stream of patients with chronic lymphatic leukemia. Acta haemat. (Basel) 13, 289-298 (1955).Google Scholar
  3. 3.
    Hamilton, L. D.: Nucleic acid turnover studies in human leukaemic cells and the function of lymphocytes. Nature (Lond.) 178, 597-599 (1956).Google Scholar
  4. 4.
    Hamilton, L. D.: Control and functions of the lymphocyte. Ann. N.Y. Acad. Sci. 73, 39 (1958).Google Scholar
  5. 5.
    Zimmerman, T. S., Godwin, H. A., Perry, S.: Studies of leukocyte kinetics in chronic lymphocytic leukemia. Blood 31, 277-291 (1968).Google Scholar
  6. 6.
    Cleaver, J. E.: Thymidine metabolism and cell kinetics. Amsterdam: North-Holland Publishing Company 1967.Google Scholar
  7. 7.
    Trepel, F., Rastetter, J., Theml, H., Stockhusen, G.: Nucleinsauresynthese and Zytostatikawirkung in pathologischen Lymphknotenzellen. Med. Klin. 61, 618-622 (1966).Google Scholar
  8. 8.
    Theml, H., Trepel, F., Rastetter, J., Begemann, H.: DNS-and RNS-Synthese in benignen and malignen Lymphomen. Klin. Wschr. 45, 608-618 (1967).Google Scholar
  9. 9.
    Cronkite, E. P., Bond, V. P., Fliedner, T. M., Killmann, S. A.: The use of tritiated thymidine in the study of haemopoietic cell proliferation. Ciba Foundation Symposion on Haemopoiesis, pp. 70-98. London: Churchill 1960.Google Scholar
  10. 10.
    Robinson, S. H., Brecher, G., Lourie, I. S., Haley, I. E.: Leukocyte labeling in rats during and after continuous infusion of tritiated thymidine: implications for lymphocyte longevity and DNA reutilisation. Blood 26, 281-295 (1965).Google Scholar
  11. 11.
    Everett, N. B., Caffrey, R. W.: Radioautographic studies of bone marrow small lymphocytes. In: YOFFEY, J. M. (Ed.): The lymphocyte in immunology and haemopoiesis, pp. 108-119. London: Arnold 1967.Google Scholar
  12. 12.
    Trepel, F., Begemann, H.: On the origin of the skin window macrophages. Acta haemat. (Basel) 36, 386—398 (1966).Google Scholar
  13. 13.
    Schiffer, L. M.: Kinetics of chronic lymphocytic leukemia. Ser. Haematol. I, 3-23 (1968).Google Scholar
  14. 14.
    Wagner, H. P., Cottier, H., Cronkite, E. P., Cunningham, L.: JANSEN, C. R., RAI, K. R.: Studies on lymphocytes. V. Short in vivo DNA synthesis and generation time of lymphoid cells in the calf thoracic duct after simulated or effective extracorporal irradiation of circulation blood. Exp. Cell Res. 46, 441-451 (1967).Google Scholar
  15. 15.
    Trepel, F., Rastetter, J.: Untersuchungen zur funktionellen Differenzierung der mononuklearen Leukozyten. Blut 15, 76-82 (1967).Google Scholar
  16. 16.
    Clarkson, B., Fried, J., Strife, A., Sakai, Y., Ota, K., Ohkita, T.: Studies of cellular proliferation in human leukemia. III. Behavior of leukemic cells in three adults with acute leukemia given continuous infusion of 3H-thymidine for 8 or 10 days. Cancer 25, 1237-1260 (1970).Google Scholar
  17. 17.
    Fliedner, T. M., Drteke, B.: Unver6ffentlichte Befunde.Google Scholar

Literatur

  1. Rieke, W. O., Caffrey, R. W., Everett, N. B.: Rates of proliferation and interrelationships of cells in the mesenteric lymph node of the rat. Blood 22, 647-689 (1963).Google Scholar
  2. Schiffer, L. M.: Kinetics of chronic lymphocytic leukemia. Ser. Haematol. I, 3, 3-23 (1968).Google Scholar
  3. Stheml, H., Schick, P., Trepel, F., Be Swan Lee, Kaboth, W., Begemann, H., Fliedner, T. M.: Kontinuierliche 3H-Thymidininfusion bei CLL. I. Neubildung and Umsatz von Lymphocyten. 15. Deutscher HamatologenkongreB, Koln 1971.Google Scholar
  4. Trepel, F.: Zur Kinetik der mononuclearen Blutzellen. Acta histochem. Suppl. IX, 153-168 (1971).Google Scholar
  5. Tsirimbas, A. D., Wittmann, K., Dormer, P.: Zellkinetik in Lymphdrusen. I. Bestimmung der Desoxyribonucleinsaure-Synthesedauer bei Patienten mit chronischer lymphatischer Leukamie durch Doppelmarkierung mit 3H-Thymidin and 14-C-Thymidin in vivo. Klin. Wschr. 48, 923-929 (1970).Google Scholar
  6. Wagner, H. P., Eckmann, L.: Proliferative Eigenschaften normaler lymphoider Zellen des Menschen in vivo. Schweizerische Krebstagung, Bern 1971 (Abstract).Google Scholar

Literatur

  1. Astaldi, G., Sauli, S., Airo, R., Ratto, L., Costa, G.: Effect of phytohemagglutinin on lymphocytes from different leukemias. Texas Rep. Biol. Med. 23, 569 (1956).Google Scholar
  2. Boll, I. T. M.: Hamocytoblasten in der Knochenmark-Kurzkultur. Ein Beitrag zur Pathogenese akuter Leukamien. Proc. 10th Congr. europ. Soc. Haemat., Strasbourg 1965, S. 591. Basel-New York: Karger 1967.Google Scholar
  3. Brooke, J. H., Mcneese, J., Osgood, E. E.: The gradient tissue culture method as an aid in classification of acute leukemias. Proc. VI. Int. Congr. Int. Soc. Hemat. 1957, p. 238.Google Scholar
  4. Clarkson, B., Strife, A., De Harven, E.: Continuous culture of seven new cell lines (SK-L1 to 7) from patients with acute leukemia. Cancer 20, 926 (1967).Google Scholar
  5. Elves, M. W., Wilkinson, J. F.: The effects of phytohaemagglutinin on normal and leukaemic leukocytes when cultured in vitro. Exp. Cell Res. 30, 200 (1963).Google Scholar
  6. Epstein, L. B., Stohlman, F., Jr.: RNA synthesis in cultures of normal human peripheral blood. Blood 24, 69 (1964).Google Scholar
  7. Farnes, P., Trobaugh, F. E.: Observations on leukemic marrow explants in well cultures. J. Lab. clin. Med. 57, 568 (1961).Google Scholar
  8. Foadi, M. D., Cooper, E. H., Hardisty, R. M.: Proliferative activity of leucaemic cells at various stages of acute leukaemia of childhood. Brit. J. Haemat. 15, 269 (1968).Google Scholar
  9. Gavosto, F., Pileri, A., Gabutti, V., Masera, P.: Non-self-maintaining kinetics of proliferating blasts in human acute leukaemia. Nature (Lond.) 216, 188 (1967).Google Scholar
  10. Lin, M. Sh., Bouroncle, B. A.: The size and transit time of nondividing subpool of precursor cells in acute leukemia. Blood 29, 63 (1967).Google Scholar
  11. Mackinney, A. A., Jr.: Division of leukocytes already in DNA-synthesis from patients with acute leukaemia and infectious mononucleosis. Acta haemat. (Basel) 38, 163 (1967).Google Scholar
  12. Metcalf, D., Moore, M. A. S.: Factors modifying stem cell proliferation of myelomonocytic leukemic cells in vitro and in vivo. J. nat. Cancer Inst. 44, 801 (1970).Google Scholar
  13. Moore, G. E., Grace, J. T., Jr., Citron, P., Gerner, R., Bruns, A.: Leukocytes cultures of patients with leukemia and lymphomas. N.Y. St. J. Med. 66, 2757 (1966).Google Scholar
  14. Necheles, T. F., Silverman, E., Allen, D. M.: Differences in the in vitro induction of thymidine-3H uptake into leukemic lymphoblasts by phytohemagglutinin and heterologous antithymocyte sera. Proc. Soc. exp. Biol. (N.Y.) 134, 738 (1970).Google Scholar
  15. Nowell, P. C.: Differentiation of human leukemic leukocytes in tissue culture. Exp. Cell Res. 19, 267 (1960).Google Scholar
  16. Parrish, W., Kleinfeld, R. G.: Maturation of transplantable leukemic cells cultivated in vivo in diffusion chambers. Cancer Res. 23, 1164 (1963).Google Scholar
  17. Possnerovi, V., Hermansky, F., Smetana, K.: On the behaviour of leukocytes in immature leukaemias in short-term cultures. Folia biol. (Praha) 13, 479 (1967).Google Scholar
  18. Rosenfeld, C., Macieira-Coelho, A., Venuat, A. M., Jasmin, C., Tuan, T. Q.: Kinetics of the establishment of human peripheral blood cultures. J. nat. Cancer Inst. 43, 581 (1969).Google Scholar
  19. Schmalzl, E., Lederer, B., Braunsteiner, H.: Atypical myeloblastic leukemia with differentiation into “paraneutrophils”. Blut XX, 337 (1970).Google Scholar
  20. Stryckmans, P., Delalieux, G., Manaster, J., Socquet, M.: The potentiality of out-ofcycle acute leukemic cells to synthesize DNA. Blood 36, 697 (1970).Google Scholar

Literatur

  1. 1.
    Ambrose, E. J., Forrester, J. A.: Mammalian cell movements and the role of cell surface charge. Europ. Tissue Culture Soc., London 1968.Google Scholar
  2. 2.
    Boll, I.: Morphologische Veranderungen einer Plasmocytomzelle wahrend 4 Tagen in vitro. Blut 14, 351 (1967).Google Scholar
  3. 3.
    Boll, I.: Granulocytopoese unter physiologischen and pathologischen Bedingungen. BerlinHeidelberg-New York: Springer 1966.Google Scholar
  4. 4.
    Boll, I., V. Wachter, R., Meyer-Burg, J.: Akute Erythroblastose des Erwachsenen (Morbus Di Guglielmo). Klin. Wschr. 50, 517 (1972).Google Scholar
  5. 5.
    Philipsborn, E. von: Die lebenden wei8en Blutzellen. Fortschr. Med. 82, 449 (1964).Google Scholar
  6. 6.
    Schrek, R.: Motility of normal and leukemic human lymphocytes. J. Lab. clin. Med. 61, 34 (1963).Google Scholar
  7. 7.
    Senda, N., Takabayashi, H., Ueda, Y., Tamura, H., Yoshitake, J., Inui, Y., Kishigami, Y.: The differentiation of leukemic cells on the basis of their movement. In: IMAMURA, A.: Annual report of the center for adult diseases, Vol. 1, p. 191. Osaka: Hamaya and Co. 1961.Google Scholar
  8. 8.
    Wendt, F.: Reife neutrophile Granulocyten. In: HEILMEYER, L., HITTMAIR, A.: Handbuch der gesamten Hamatologie, Bd. I, S. 246. Miinchen-Berlin: Urban u. Schwarzenberg 1957.Google Scholar

Literatur

  1. 1.
    Dittrich, W., G6Hde, W.: Impulsfluorometrie bei Einzelzellen in Suspension. Z. Naturforsch. 24 b, 360—361 (1969).Google Scholar
  2. 2.
    Buchner, Th., Dittrich, W., G6Hde, W.: Impulscytophotometrie von Blut-and Knochenmarkszellen. Verh. dtsch. Ges. inn. Med. 77, (1971).Google Scholar
  3. 3.
    Buchner, Th. Die Impulscytophotometrie von Blut-and Knochenmarkszellen bei verschiedenen Leukamien im Vergleich mit der DNS-Autoradiographie and dem Mitoseindex. 4th Intern. Cong. Cytol., London 1971.Google Scholar
  4. 4.
    Buchner, Th. Die Impulscytophotometrie in der hamatologischen Cytologie. Klin. Wschr. 49, 1090—1092 (1971).Google Scholar
  5. 5.
    G6Hde, W., Dittrich, W.: Simultane Impulsfluorimetrie des DNS-and Proteingehaltes von Tumorzellen. Z. anal. Chem. 252, 328—330 (1970).Google Scholar

Literatur

  1. 1.
    Alfert, M., Geschwind, J.: A selective staining method for the basic proteins of cell nuclei. Proc. nat. Acad. Sci. (Wash.) 39, 991 (1953).Google Scholar
  2. 2.
    Gahrton, G., Foley, G. E.: Cytochemical population of the DNA, RNA and protein content of human leukemic cells. Acta med. scand. 180, 4, 485 (1966).Google Scholar
  3. 3.
    Gross, R.: Cytophotometrische and UV-mikrospektrophotometrische Untersuchungen an leukamischen Zellen. Cyto-and Histochemie in der Hamatologie. 9. Freiburger Symposion. Berlin-G6ttingen-Heidelberg: Springer 1963.Google Scholar
  4. 4.
    Harbers, E.: Zur Rolle der Histone and der sauren Proteine in den Desoxyriboproteinen (Nucleohistonen) des Zellkerns. Dtsch. med. Wschr. 90, 2074 (1965).Google Scholar
  5. 5.
    Klyszfjko, L.: Histony. Warszawa: P.W.N. 1967.Google Scholar
  6. 6.
    Miller, D.: DesoxyribonucleinsAurebestimmungen in den Leukocyten der normalen and leukamischen Granulopoese. Min. Wschr. 42, 6, 224 (1964).Google Scholar
  7. 7.
    Miller, D.: Der DNS-Gehalt leukamischer Zellen and seine Beziehungen zur Zellmorphologie and zum Krankheitsverlauf. Acta histochem. (Jena) Suppl. IX, 201 (1971).Google Scholar
  8. 8.
    Perugini, S.: The DNA and histones contents of human leukaemic cells. Cytophotometric study. Cancro 15, 172 (1962).Google Scholar
  9. 9.
    Queisser, W., Noeske, K., Sandritter, W., Lennert, K.: Zytophotometrische Bestimmung des Histon and Gesamtproteingehaltes von Zellen des lymphatischen Gewebes. Z. Zellforsch. 85, 47 (1968).Google Scholar
  10. 10.
    Queisser, W., Cytophotometrische Untersuchungen des DNS-, Histon-, and Gesamtproteingehalts von Epitheloidzellen, Gewebsmastzellen and von Zellen der Plasmocytopoiese bei kasiger Lymphknotentuberkulose. Min. Wschr. 45, 22, 1135 (1967).Google Scholar
  11. 11.
    Sandritter, W., Kleinhans, D.: tYber das Trockengewicht, den DNS-and Histonproteingehalt von menschlichen Tumoren. Z. Krebsforsch. 66, 333 (1964).Google Scholar
  12. 12.
    Urasi14Ski, I.: Cytophotometric studies on desoxyribonucleic acid in acute leukemia cells. Acta med. pol. V, 3, 337 (1964).Google Scholar
  13. 13.
    Urasi14Ski, I.: Cytophotometric measurements of nucleic acids in stem-cell leukemias; a trial of assesing intensity of proliferation of leukemic cells. Acta med. pol. X, 3, 273 (1969).Google Scholar
  14. 14.
    Vendrely, R., Vendrely, C.: Biochemistry of histones and protamines. Protoplasmologia.-V. Kardioplasma (Nucleus). 3. Chemistry and cytochemistry of nucleic acid and nuclear proteins, p. 38, (1966).Google Scholar

Literatur

  1. 1.
    Muller, D.: Erfahrungen mit der Feulgen-Farbung fur quantitative cytochemische DNS-Untersuchungen. Histochemie 7, 96 (1966).Google Scholar
  2. 2.
    Hartje, J., Muller, D.: Autoradiographische and feulgen-photometrische Untersuchungen der DNS-Synthese in Leukamiezellen. Klin. Wschr. 49, 273 (1971).Google Scholar
  3. 3.
    Williams, W., Hartje, J.: Autoradiographische and enzymchemische Untersuchungen der DNS-Synthese in Leukamiezellen. II. Thymidin-Kinase and 3H-Thymidin-Markierungsindex unter cytostatischer Therapie. Klin. Wschr. 48, 788 (1970).Google Scholar
  4. 4.
    Krogh-Jensen, M.: Chromosome studies in acute leukemia. Kopenhagen: Munkdsgaard 1969.Google Scholar
  5. 5.
    Feulgen, R., Rossenbeck, H.: Mikroskopisch-chemischer Nachweis einer Nukleinsaure vom Typus der Thymonukleinsaure and die darauf beruhende elektive Farbung. Z. phys. Chem. 135, 203 (1924).Google Scholar
  6. 6.
    Reismann, L. E., Mitani, M., Zuelzer, W. W.: Chromosome studies in leukeamia. I. Evidence for the origin of leukaemic stem lines from aneuploid mutants. New Engl. J. Med. 270, 591 (1964).Google Scholar
  7. 7.
    Lennartz, K. J., Schtmmelfeder, N., Maurer, W.: Dauer der Synthesephase bei Ascitestumoren der Maus unterschiedlicher Ploidie. Naturwissenschaften 53, 21 (1966).Google Scholar
  8. 8.
    Lampert, F.: Zellularer DNS-Gehalt and Chromosomenzahl bei der akuten Leukamie im Kindesalter and ihre Bedeutung fur Chemotherapie and Prognose. Klin. Wschr. 45, 763 (1967).Google Scholar
  9. 9.
    Leuchtenberger, C.: Quantitative determination of DNA in cells by Feulgen-microspectrophotometry. In: DANIELLI, J. F.: General cytochemical methods, Vol. I, p. 219. New York: Academic Press 1958.Google Scholar
  10. 10.
    Sandritter, W., Bohm, N.: Atypische Hydrolysekurve bei der Feulgen-Reaktion von Mauseascitestumorzellen. Naturwissenschaften 51, 273 (1964).Google Scholar
  11. 11.
    Sandritter, W., Jobst, K., Rakow, L., Bosselmann, K.: Zur Kinetik der Feulgen-Reaktion bei verlangerter Hydrolysezeit. Histochemie 4, 420 (1965).Google Scholar
  12. 12.
    Muller, D., Orywall, D., Htbner, N.: Vergleichende zytogenetische and quantitative zytochemische DNS-Untersuchungen bei akuten Leukamien. Blut 23, 287 (1971).Google Scholar

Literatur

  1. 1.
    Sprenger, E., Bohm, N.: Qualitative and quantitative Fluoreszenzmikrospektrographie mit dem Leitz-Mikrospektrographen. Histochemie 25, 163 (1971).Google Scholar
  2. 2.
    Sprenger, E., Der Einfluß von Metachromasie and Photodekomposition auf die quantitative Feulgen-DNS-Fluoreszenzcytophotometrie. Histochemie 25, 177 (1971).Google Scholar
  3. 3.
    Sprenger, E., Sandritter, W.: DurchfluBfluoreszenzcytophotometrie fur ultraschnelle DNSMessungen an groBen Zellpopulationen. Histochemie 26, 238 (1971).Google Scholar
  4. 4.
    Le Pecq, S. B., Paoletti, C.: A fluorescent complex between ethidium bromide and nucleic acids. J. Mol. Biol. 27, 87 (1967).Google Scholar
  5. 5.
    Moller, D.: Erfahrungen mit der Feulgen-Farbung fur quantitative cytochemische DNSUntersuchungen. Histochemie 7, 96 (1966).Google Scholar
  6. 6.
    Moller, D.: Der Ablauf der DNS-Synthesephase in Leukamiezellen and seine Bedeutung fur die cytostatische Therapie. Fortschritte der Krebsforschung. Molekularbiologie, Wachstum, Klinik. Ber. 10. Wiss. Tag. d. dtsch. Zentralaussch. f. Krebsbekampfg. u. Krebsforsch. 1968, p. 375. Stuttgart-New York: Schattauer Verlag 1969.Google Scholar
  7. 7.
    Dittrich, W., G6Hde, W.: Impulsfluorometrie bei Einzelzellen in Suspensionen. Z. Naturf orsch. 24b, 360 (1969).Google Scholar

Literatur

  1. 1.
    Ashwood-Smith, M. J.: Preservation of mouse bone marrow at-79 °C with dimethyl sulf oxide. Nature (Lond.) 190,.1204 (1961).Google Scholar
  2. 2.
    Bekkum, D. W. Van, Balner, H., Dicke, K. A., Van Putten, L. M.: Experimental aspects of bone marrow transplantation in primates. Transplant. Proc. 1, 25 (1969).Google Scholar
  3. 3.
    Bradley, T. R., Metcalf, D.: The growth of mouse bone marrow cells in vitro. Aust. J. exp. Biol. med. Sci. 44, 287 (1966).Google Scholar
  4. 4.
    Buckner, C. D., Storb, R., Dillingham, L. A., Thomas, E. D.: Low temperature preservation of monkey marrow in dimethyl sulfoxide. Cryobiology 7, 136 (1970).Google Scholar
  5. 5.
    Cavins, J. A., Kasakura, S., Thomas, E. D., Ferrebee, J. W.: Recovery of lethally irradiated dogs following infusion of autologous marrow stored at low temperature in dimethyl sulfoxide. Blood 20, 730 (1962).Google Scholar
  6. 6.
    Dicke, K. A.: Bone marrow transplantation after separation by discontinuous albumin density gradient centrifugation. Thesis, Leiden 1970.Google Scholar
  7. 7.
    Dicke, K. A., Platenburg, M. G. C., Van Bekkum, D. W.: Colony formation in agar: in vitro assay for haemopoietic stem cells. Cell Tiss. Kinet. 4, 463 (1971).Google Scholar
  8. 8.
    Dicke, K. A., Schaefer, U. W.: Monkey bone marrow cultures. Proceedings of a workshop/sym-posium on in vitro culture of hemopoietic cells, p. 221. Rij swij k 1971.Google Scholar
  9. 9.
    Lewis, J. P., Trobaugh, F. E., Jr.: The assay of the transplantation potential of fresh and stored bone marrow by two in vivo systems. Ann. N.Y. Acad. Sci. 114, 677 (1964).Google Scholar
  10. 10.
    Pluznik, D. H., Sachs, L.: The cloning of normal mast cells in tissue culture. J. cell. comp.. Physiol. 66, 319 (1965).Google Scholar
  11. 11.
    Putten, L. M. Van: Quantitative aspects of the storage of bone marrow cells for transplantation. Europ. J. Cancer 1, 15 (1965).Google Scholar
  12. 12.
    Putten, L. M. Van Van Bekkum, D. W., Dicke, K. A.: The storage of primate bone marrow for homologous transplantation. Annual Report Radiobiological.Institute, p. 62. Rijswijk 1968.Google Scholar
  13. 13.
    Storb, R., Epstein, R. B., Le Blond, R. F., Rudolph, R. H., Thomas, E. D.: Transplantation of allogeneic canine bone marrow stored at −80 °C in dimethyl sulfoxide. Blood 33, 918 (1969).Google Scholar
  14. 14.
    Till, J. E., Mcculloch, E. A.: A direct measurement of the radiation sensitivity of’ normal mouse bone marrow cells. Radiat. Res. 14, 213 (1961).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

  • Irene Boll
  • T. M. Fliedner
    • 1
  • D. Hoelzer
    • 1
  • E. B. Harriss
    • 1
  • D. Hoelzer
    • 1
  • H. Theml
    • 2
  • P. Schick
    • 2
  • F. Trepel
    • 1
  • Be Swan Lee
    • 2
  • W. Kaboth
    • 2
  • H. Begemann
    • 2
  • T. M. Fliedner
    • 1
  • K. Bremer
    • 1
  • I. Weissenfels
    • 4
  • G. Koss
    • 4
  • B. Herm
    • 4
  • H. Nitzel
    • 3
  • Th. Büchner
    • 5
  • W. Dittrich
    • 6
  • W. Göhde
    • 6
  • Aleksandra Krygier-Stojałowska
    • 7
  • Ignacy Urasiński
  • D. Müller
  • E. Reichert
  • H. D. Lang
  • A. Simon
  • H. Ch. Benohr
  • U. W. Schaefer
    • 8
    • 9
  • K. A. Dicke
    • 8
  1. 1.Abteilung für Klinische PhysiologieZentrum für Klinische Grundlagenforschung Universität UlmUlm)Deutschland
  2. 2.Städtisches Krankenhaus München-SchwabingDeutschland
  3. 3.1. Inneren Abteilung des Städtischen Krankenhauses Berlin-NeukällnDeutschland
  4. 4.Institut für Hamatologie der GSF, Assoziation mit EURATOMMünchenDeutschland
  5. 5.Medizinische Univ.-Klinik MünsterDeutschland
  6. 6.Institut für StrahlenbiologieUniversitüt MünsterDeutschland
  7. 7.Pathologisches InstitutMedizinischen Akademie in SzczecinDeutschland
  8. 8.Radiobiologisches Institut (TNO)Rijswijk (Z. H.)Niederlande
  9. 9.Innere Klinik und Poliklinik (Tumorforschung)Klinikum Essen Ruhr-Universität BochumDeutschland

Personalised recommendations