Skip to main content

Part of the book series: Handbook of Sensory Physiology ((1536,volume 7 / 3 / 3 A))

Abstract

A constant feature of recordings from neurones of the sensory side of the nervous system is the occurrence of impulses in the absence of the appropriate stimuli. This activity has sometimes been called “spontaneous” (Granit, 1955) but the term while operationally useful becomes gradually less appropriate as more is learned about the causation of the activity. In the visual system, the activity in complete darkness merges gradually with the activity at progressively increasing levels of uniform background illumination and poses the same kind of problem for signalling. One therefore prefers the more generally applicable term, maintained discharge, to unify the description and analysis under a wide variety of conditions. “Ongoing” discharge is usually synonymous, but “background” discharge is frequently employed to describe the low amplitude activity of more distant units accompanying the recording of a single neurone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, E.D.: The basis of sensation. The action of sense organs. London: Christophers 1928.

    Google Scholar 

  • Adrian, E.D. Synchronized reactions in the optic ganglion of Dytiscus. J. Physiol. (Lond.) 91, 66–89 (1937).

    CAS  Google Scholar 

  • Adrian, E.D. Matthews, R.: The action of light on the eye. I. The discharge of impulses in the optic nerve and its relation to the electric changes in the retina. J. Physiol. (Lond.) 63, 378–414 (1927).

    CAS  Google Scholar 

  • Adrian, E.D. Matthews, R. The action of light on the eye. II. The processes involved in retinal excitation. J. Physiol. (Lond.) 64, 279–301 (1928a).

    Google Scholar 

  • Adrian, E.D. Matthews, R. The action of light on the eye. III. The interaction of retinal neurones. J. Physiol. (Lond.) 65, 273–298 (1928b).

    CAS  Google Scholar 

  • Arden, G. B., Soderberg, U.: The transfer of optic information through the lateral geniculate body of the rabbit. In: Sensory Communication, p. 521–544. New York-London: John Wiley and Sons Inc. 1961.

    Google Scholar 

  • Arduini, A., Cavaggioni, A.: Transmission of tonic activity through lateral geniculate body and visual cortex. Arch. ital. Biol. 103, 652–667 (1965).

    CAS  Google Scholar 

  • Arduini, A. Hirao, T.: On the mechanism of the EEG sleep patterns elicited by acute visual deafferentation. Arch. ital. Biol. 94, 140–155 (1959).

    Google Scholar 

  • Pinneo, L.R.: Properties of the retina in response to steady illumination. Arch. ital. Biol. 100, 425–448 (1962)

    Google Scholar 

  • Ascoli, D., Maffei, L.: Slow periodicity in the dark discharge of retinal units. Experientia (Basel) 20, 226–227 (1964).

    CAS  Google Scholar 

  • Ashton, N.: Degeneration of the retina due to 1: 5-di(p-aminophenoxy) pentane dihydro- chloride. J. Path. Bact. 74, 103–112 (1957).

    CAS  Google Scholar 

  • Barlow, H.B.: Action potentials from the frog’s retina. J. Physiol. (Lond.) 119, 58–68 (1953).

    CAS  Google Scholar 

  • Barlow, H.B. Retinal noise and absolute threshold. J. opt. Soc. Amer. 46, 634–639 (1956).

    CAS  Google Scholar 

  • Barlow, H.B. Increment thresholds at low intensities considered as signal/noise discriminations. J. Physiol. (Lond.) 136, 469–488 (1957).

    CAS  Google Scholar 

  • Barlow, H.B. Initial remarks. Gruppendiskussion von: Der Informationswert verschiedener Reaktionstypen der Neurone des visuellen Systems. In: Neurophysiologie und Psychophysik des Visuellen Systems. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Barlow, H.B. The physical limits of visual discrimination. In: Photophysiology, Vol. 2. New York: Academic Press, Inc. 1964.

    Google Scholar 

  • Barlow, H.B. Blakemore, C., Pettigrew, J.D.: The neural mechanism of binocular depth discrimination. J. Physiol. (Lond.) 193, 327–342 (1967).

    CAS  Google Scholar 

  • Barlow, H.B. Fitzhugh, R., Kuffler, S.W.: Dark adaptation, absolute threshold and Purkinje shift in single units of the cat’s retina. J. Physiol. (Lond.) 137, 327–337 (1957a).

    CAS  Google Scholar 

  • Barlow, H.B. Fitzhugh, R., Kuffler, S.W. Change of organization in the receptive fields of the cat’s retina during dark adaptation. J. Physiol. (Lond.) 137, 338–354 (1957b).

    CAS  Google Scholar 

  • Barlow, H.B. Hill, R. M.: Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science 139, 412–414 (1963).

    PubMed  CAS  Google Scholar 

  • Barlow, H.B. Levick,W.R.: Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. (Lond.) 173, 377–407 (1964).

    CAS  Google Scholar 

  • Barlow, H.B. Levick, W.R.: The Purkinje shift in the cat retina. J. Physiol. (Lond.) 196, 2 - 3P (1968).

    Google Scholar 

  • Barlow, H.B. Levick, W.R. Three factors limiting the reliable detection of light by retinal ganglion cells of the cat. J. Physiol. (Lond.) 200, 1–24 (1969a).

    CAS  Google Scholar 

  • Barlow, H.B. Levick, W.R. Changes in the maintained discharge with adaptation level in the cat retina. J. Physiol. (Lond.) 202, 699–718 (1969b).

    CAS  Google Scholar 

  • Baumgartner, G., Brown, J.L., Schulz, A.: Visual motion detection in the cat. Science 146, 1070–1071 (1964a).

    PubMed  CAS  Google Scholar 

  • Baumgartner, G. Eichin, F., Schulz, A.: Unterschiede neuronaler Aktivierung im zentralen visuellen System bei langdauernder Verdunkelung und Belichtung des Auges. Pflügers Arch. ges. Physiol. 279, R4 (1964b).

    Google Scholar 

  • Bishop, P.O., Levick, W.R., Williams, W.O.: Statistical analysis of the dark discharge of lateral geniculate neurones. J. Physiol. (Lond.) 170, 598–612 (1964).

    CAS  Google Scholar 

  • Blankenship, J.E., Kuno,M.: Analysis of spontaneous subthreshold activity in spinal motoneurones of the cat. J. Neurophysiol. 31, 195–209 (1968).

    PubMed  CAS  Google Scholar 

  • Bornschein, H.: Nachweis einer physiologischen Spontanaktivität in Einzelfasern des N. opticus der Katze. Experientia (Basel) 14, 13–14 (1958a).

    Google Scholar 

  • Bornschein, H. Spontan- und Belichtungsaktivität in Einzelfasern des N. opticus der Katze. I. Der Einfluß kurzdauernder retinaler Ischämie. Z. Biol. 110, 210–222 (1958b).

    PubMed  CAS  Google Scholar 

  • Bornschein, H. Spontan- und Belichtungsaktivität in Einzelfasern des N. opticus der Katze. II. Der Einfluß akuter Jodazetatvergiftung. Z. Biol. 110, 223–231 (1958c).

    PubMed  CAS  Google Scholar 

  • Bridgman, C.S., Smith, K.U.: The absolute threshold of vision in cat and man with observations on its relation to the optic cortex. Amer. J. Physiol. 136, 463–466 (1942).

    Google Scholar 

  • Brown, J. E., Rojas, J.A.: Rat retinal ganglion cells: receptive field organization and maintained activity. J. Neurophysiol. 28, 1073–1090 (1965).

    PubMed  CAS  Google Scholar 

  • Burke, W., Hayhow, W.R.: Disuse in the lateral geniculate nucleus of the cat. J. Physiol. (Lond.) 194, 495–519 (1968).

    CAS  Google Scholar 

  • Burke, W. Sefton, A. J.: Discharge patterns of principal cells and interneurones in lateral geniculate nucleus of rat. J. Physiol. (Lond.) 187, 201–212 (1966).

    CAS  Google Scholar 

  • Cajal, S.R.Y: Histologie du Système nerveux. Vol.11. French edition Madrid: Consejo superior de Investigaciones cientificas, Instituto Ramon y Cajal 1955.

    Google Scholar 

  • Cavaggioni, A.: The dark-discharge of the eye in the unrestrained cat. Pflügers Arch. ges. Physiol. 304, 75–80 (1968).

    CAS  Google Scholar 

  • Collins, C.C.: Evoked pressure responses in the rabbit eye. Science 155, 106–108 (1967).

    PubMed  CAS  Google Scholar 

  • Cox, D.R.: Renewal Theory. London: Methuen 1962.

    Google Scholar 

  • Daw, N.W., Pearlman, A.L.: Cat colour vision: one cone process or several ? J. Physiol. (Lond.) 201, 745–764 (1969).

    CAS  Google Scholar 

  • De Valois, R.L., Jacobs, G.H., Jones, A. E.: Effects of increments and decrements of light on neural discharge rate. Science 136, 986–988 (1962).

    PubMed  Google Scholar 

  • Doty, R.W., Kimura, D.S.: Oscillatory potentials in the visual system of cats and monkeys. J. Physiol. (Lond.) 168, 205–218 (1963).

    CAS  Google Scholar 

  • Dowling, J.E.: Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frogs and primates. Proc. roy. Soc. B 170, 205–228 (1968).

    CAS  Google Scholar 

  • Edge, N.D., Mason, D.F.J., Wien, R., Ashton, N.: Pharmacological effects of certain diaminodiphenoxy alkanes. Nature (Lond.) 178, 806–807 (1956).

    CAS  Google Scholar 

  • Fatt, P., Katz, B.: Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).

    CAS  Google Scholar 

  • Fechner, G. T.: Elemente der Psychophysik. Leipzig: Breitkopf and Härtel 1860. Translated by H.Adler, edited by E.G. Boring and D.H. Howes: Elements of psychophysics. New York: Holt, Rinehart and Winston 1965. Feller, W.: An introduction to probability theory and its applications, Vol. I. New York: Wiley 1957.

    Google Scholar 

  • Fitzhugh, R.: A statistical analyzer for optic nerve messages. J. gen. Physiol. 41, 675–692 (1958).

    PubMed  CAS  Google Scholar 

  • Fuortes, M.G.F., Hodgkin, A. L.: Changes in time scale and sensitivity in the ommatidia of Limulus. J. Physiol. (Lond.) 172, 239–263 (1964).

    CAS  Google Scholar 

  • Fuster, J.M., Creutzfeldt, O.D., Straschill,M.: Intracellular recording of neuronal activity in the visual system. Z. vergl. Physiol. 49, 605–622 (1965a).

    Google Scholar 

  • Fuster, J.M. Herz, A., Creutzfeldt, O.D.: Interval analysis of cell discharge in spontaneous and optically modulated activity in the visual system. Arch. ital. Biol. 103, 159–177 (1965b).

    CAS  Google Scholar 

  • Geisler, C.D., Goldberg, J. M.: A stochastic model of the repetitive activity of neurons. Biophys. J. 6, 53–69 (1966).

    PubMed  CAS  Google Scholar 

  • Gerstein, G.L., Mandelbrot, B.: Random walk models for the spike activity of a single neuron. Biophys. J. 4, 41–68 (1964).

    PubMed  CAS  Google Scholar 

  • Gouras,P.: Spreading depression of activity in amphibian retina. Amer. J. Physiol. 195, 28–32 (1958).

    PubMed  CAS  Google Scholar 

  • Granit, R.: Isolation of colour-sensitive elements in a mammalian retina. Acta physiol. scand. 2, 93–109 (1941a).

    Google Scholar 

  • Granit, R. Rotation of activity and spontaneous rhythms in the retina. Acta physiol. scand. 1, 370–379 (1941b).

    Google Scholar 

  • Granit, R. Spectral properties of the visual receptor elements of the guinea pig. Acta physiol. scand. 3, 318–328 (1942).

    CAS  Google Scholar 

  • Granit, R. Sensory mechanisms of the retina. London: Oxford University Press 1947.

    Google Scholar 

  • Granit, R. Receptors and sensory perception. New Haven: Yale University Press 1955.

    Google Scholar 

  • Granit, R. Svaetichin, G.: Principles and technique of the electrophysiological analysis of colour reception with the aid of microelectrodes. Upsala Läk. Foren. För. 45, 1–4, 161–177 (1939).

    Google Scholar 

  • Granit, R. Therman,P.O.: Excitation and inhibition in the retina and in the optic nerve. J. Physiol. (Lond.) 83, 359–381 (1935).

    CAS  Google Scholar 

  • Grüsser, O.-J., Grüsser-Cornehls,U., Saur,G.: Reaktionen einzelner Neurone im optischen Cortex der Katze nach elektrischer Polarisation des Labyrinths. Pflügers Arch. ges. Physiol. 269, 593–612 (1959).

    Google Scholar 

  • Gunter, R.: The absolute threshold for vision in the cat. J. Physiol. (Lond.) 114, 8–15 (1951).

    CAS  Google Scholar 

  • Hagiwara, S.: Analysis of interval fluctuation of the sensory nerve impulse. Jap. J. Physiol. 4, 234–240 (1954).

    CAS  Google Scholar 

  • Hartline, H. K.: Intensity and duration in the excitation of single photoreceptor units. J. cell, comp. Physiol. 5, 229–247 (1934).

    Google Scholar 

  • Hartline, H. K. The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Amer. J. Physiol. 121, 400–415 (1938).

    Google Scholar 

  • Hartline, H. K. Graham, C.H.: Nerve impulses from single receptors in the eye. J. comp. cell. Physiol. 1, 277–295 (1932).

    Google Scholar 

  • Heiss, W.-D., Bornschein, H.: Die Impulsverteilung der Daueraktivität von Einzelfasern des N. opticus. Einflüsse von Licht, Ischämie, Strychnin und Barbiturat. Pflügers Arch. ges. Physiol. 286, 1–18 (1965).

    CAS  Google Scholar 

  • Heiss, W.-D., Bornschein, H. Multimodale Intervallhistogramme der Daueraktivität von retinalen Neuronen der Katze. Kybernetik 3, 187–191 (1966).

    PubMed  CAS  Google Scholar 

  • Helmholtz, H. von: Handbuch der Physiologischen Optik. II. Bd. Hamburg: Leopold Voss 1911. Translation from 3rd German edition, ed. J.C.P. Southall 1924. Republished New York: Dover 1962.

    Google Scholar 

  • Hering, E.: Zur Lehre vom Lichtsinne. Vienna: Carl Gerold’s Sohn 1878. Translated by L.M.Hurvich and D. Jameson: Outlines of a theory of the light sense. Cambridge, Mass.: Harvard University Press 1964.

    Google Scholar 

  • Herz, A., Creutzfeldt, 0., Fuster,J.: Statistische Eigenschaften der Neuronaktivität im ascendierenden visuellen System. Kybernetik 2, 61–71 (1964).

    PubMed  CAS  Google Scholar 

  • Hodgkin, A.L.: The local electric changes associated with repetitive action in a non- medullated axon. J. Physiol. (Lond.) 107, 165–181 (1948).

    CAS  Google Scholar 

  • Horn, G.: The response of single units in the striate cortex of unrestrained cats to photic and somaesthetic stimuli. J. Physiol. (Lond.) 165, 80–81P (1963).

    Google Scholar 

  • Hubel, D.H.: Single unit activity in lateral geniculate body and optic tract of unrestrained cats. J. Physiol. (Lond.) 150, 91–104 (1960).

    CAS  Google Scholar 

  • Hubel, D.H. Wiesel,T.N.: Receptive fields of optic nerve fibres in the spider monkey. J. Physiol. (Lond.) 154, 572–580 (1960).

    CAS  Google Scholar 

  • Hubel, D.H. Wiesel,T. N. Integrative action in the cat’s lateral geniculate body. J. Physiol. (Lond.) 155, 385–398 (1961).

    CAS  Google Scholar 

  • Hubel, D.H. Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    CAS  Google Scholar 

  • Hubel, D.H. Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

    CAS  Google Scholar 

  • Hughes, G.W., Maffei,L.: On the origin of the dark discharge of retinal ganglion cells. Arch, ital. Biol. 108, 45–59 (1965).

    Google Scholar 

  • Hubel, D.H. Wiesel,T. N. Retinal ganglion cell response to sinusoidal light stimulation. J. Neurophysiol. 29, 333–352 (1966).

    Google Scholar 

  • Jouvet, M.: Neurophysiology of the states of sleep. In: The Neurosciences: A study program. New York: The Rockefeller University Press 1967.

    Google Scholar 

  • Jung, R.: Neuronal discharge. EEG. clin. Neurophysiol. Suppl. 4, 57–71 (1953).

    Google Scholar 

  • Jung, R.: Neuronal integration in the visual cortex and its significance for visual information. In: Sensory Communication. New York-London: The M.I.T. Press and John Wiley and Sons Inc. 1961a.

    Google Scholar 

  • Jung, R. Korrelationen von Neuronentätigkeit und Sehen. In: Neurophysiologie und Psychophysik des visuellen Systems. Berlin-Göttingen-Heidelberg: Springer 1961b.

    Google Scholar 

  • Jung, R. Neuronale Grundlagen des Hell-Dunkelsehens und der Farbwahrnehmung. Bericht über die 66. Zusammenkunft der Deutschen Ophthalmologischen Gesellschaft in Heidelberg,70–111 (1964). München: J. F. Bergmann 1964.

    Google Scholar 

  • Kappauf, W.E.: Variation in the size of the cat’s pupil as a function of stimulus brightness. J. comp. Psychol. 36, 125–131 (1943).

    Google Scholar 

  • Katz, B.: Nerve, muscle and synapse. New York: McGraw Hill 1966.

    Google Scholar 

  • Katz, B. Miledi,R.: A study of spontaneous miniature potentials in spinal motoneurones. J. Physiol. (Lond.) 108, 389–422 (1963).

    Google Scholar 

  • Kornhfber, H.H., Da Fonseca, J.S.: Convergence of vestibular, visual and auditory afferents at single neurons of the cat’s cortex. Intern. Congr. E.E.G. and Clin. Neurophysiol., 5 th, Rome, 1961. Excerpta Medica, Intern. Congr. Ser. 1961.

    Google Scholar 

  • Kuffler, S. W.: Neurons in the retina: organization, inhibition and excitation problems. Cold Spr. Harb. Symp. quant. Biol. 17, 281–292 (1952).

    CAS  Google Scholar 

  • Kuffler, S. W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).

    PubMed  CAS  Google Scholar 

  • Kuffler,S. W. Fitzhugh, R., Barlow, H.B.: Maintained activity in the cat’s retina in light and darkness. J. gen. Physiol. 40, 683–702 (1957).

    PubMed  CAS  Google Scholar 

  • Latjfer, M., Verzeano, M.: Periodic activity in the visual system of the cat. Vision Res. 7, 215–229 (1967).

    Google Scholar 

  • Leão, A.A.P.: Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7, 359–390 (1944a).

    Google Scholar 

  • Leão,A.A.P. Pial circulation and spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7, 391–396 (1944b).

    Google Scholar 

  • Legrand, Y.: Light, colour and vision. London: Chapman amp; Hall 1957.

    Google Scholar 

  • Levick, W.R.: An interpretation of multimodal interval histograms. J. Physiol. (Lond.) 169, 110–111P (1963).

    Google Scholar 

  • Levick, W.R. Pattern abstraction in the rabbit’s retina. In: Symposium on Information Processing in Sight Sensory Systems. Pasadena: California Institute of Technology 1965.

    Google Scholar 

  • Levick, W.R. Williams, W.O.: Maintained activity of lateral geniculate neurones in darkness. J. Physiol. (Lond.) 170, 582–597 (1964).

    CAS  Google Scholar 

  • Levick, W.R. Zacks, J.L.: Responses of cat retinal ganglion cells to brief flashes of light. J. Physiol. (Lond.) 206, 677–700 (1970).

    CAS  Google Scholar 

  • Martins-Ferreira, H., De Oliveira Castro, G.: Light-scattering changes accompanying spreading depression in isolated retina. J. Neurophysiol. 29, 715–726 (1966).

    Google Scholar 

  • Maturana, H.R., Lettvin, J.Y., McCulloch, W.S., Pitts, W.H.: Anatomy and physiology of vision in the frog (Rana pipiens). J. gen. Physiol. 43, Suppl. 2, 129–175 (1960).

    Google Scholar 

  • McIlwain, J.T., Creutzfeldt, O.D.: Microelectrode study of synaptic excitation and inhibition in the lateral geniculate nucleus of the cat. J. Neurophysiol. 30, 1–21 (1967).

    Google Scholar 

  • Michael, C.R.: Receptive fields of opponent color units in the optic nerve of the ground squirrel. Science 152, 1095–1097 (1966).

    PubMed  CAS  Google Scholar 

  • Michael, C.R. Receptive fields of single optic nerve fibers in a mammal with an all-cone retina. II: Directional selective units. J. Neurophysiol. 31, 257–267 (1968).

    PubMed  CAS  Google Scholar 

  • Moore, G.P., Perkel, D.H., Segundo, J.P.: Statistical analysis and functional interpretation of neuronal spike data. Ann. Rev. Physiol. 28, 493–522 (1966).

    CAS  Google Scholar 

  • Moruzzi, G., Magoun, H. W.: Brain stem reticular formation and activation of the EEG. EEG. clin. Neurophysiol. 1, 455–473 (1949).

    CAS  Google Scholar 

  • Murata, K., Cramer, H., Bach-Y-Rita, P.: Neuronal convergence of noxious, acoustic and visual stimuli in the visual cortex of the cat. J. Neurophysiol. 28, 1223–1239 (1965).

    PubMed  CAS  Google Scholar 

  • Nikara, T., Bishop, P.O., Pettigrew, J.D.: Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exp. Brain Res. 6, 353–372 (1968).

    PubMed  CAS  Google Scholar 

  • Noda, H., Iwama, K.: Unitary analysis of retino-geniculate response time in rats. Vision Res. 7, 205–213 (1967).

    PubMed  CAS  Google Scholar 

  • Noell, W.K.: The effect of iodoacetate on the vertebrate retina. J. cell. comp. Physiol. 37, 283–307 (1951).

    CAS  Google Scholar 

  • Noell, W.K. The impairment of visual cell structure by iodoacetate. J. cell. comp. Physiol. 40, 25–55 (1952).

    CAS  Google Scholar 

  • Perkel, D.H., Gerstein, G.L., Moore, G.P.: Neuronal spike trains and stochastic point processes. Biophys. J. 7, 391–418 (1967).

    PubMed  CAS  Google Scholar 

  • Ricciardi, L.M., Esposito, F.: On some distribution functions for non-linear switching elements with finite dead time. Kybernetik 3, 148–152 (1966).

    PubMed  CAS  Google Scholar 

  • Riggs, L.A., Graham, C.H.: Some aspects of light adaptation in a single photoreceptor unit. J. cell. comp. Physiol. 16, 15–23 (1940).

    Google Scholar 

  • Rodieck, R.W.: Maintained activity of cat retinal ganglion cells. J. Neurophysiol. 30, 1043–1071 (1967).

    PubMed  CAS  Google Scholar 

  • Rodieck, R.W. Smith, P. S.: Slow dark discharge rhythms of cat retinal ganglion cells. J. Neurophysiol. 29, 942–953 (1966).

    PubMed  CAS  Google Scholar 

  • Rushton, W.A.H.: The structure responsible for action potential spikes in the cat’s retina. Nature (Lond.) 164, 743–744 (1949).

    CAS  Google Scholar 

  • Rushton, W.A.H. The difference spectrum and the photosensitivity of rhodopsin in the living human eye. J. Physiol. (Lond.) 134, 11–29 (1956).

    CAS  Google Scholar 

  • Rushton, W.A.H. A theoretical treatment of FUORTES’S observations upon eccentric cell activity in Limulus. J. Physiol. (Lond.) 148, 29–38 (1959).

    CAS  Google Scholar 

  • Sakakura, H.: Spontaneous and evoked unitary activities of cat lateral geniculate neurons in sleep and wakefulness. Jap. J. Physiol. 18, 23–42 (1968).

    CAS  Google Scholar 

  • Sakakura, H. Iwama, K.: Effects of bilateral eye enucleation upon single unit activity of the lateral geniculate body in free behaving cats. Brain Res. 6, 667–678 (1967).

    PubMed  CAS  Google Scholar 

  • Scheibner, H., Baumgardt, E.: Sur l’emploi en optique physiologique des grandeurs scotopiques. Vision Res. 7, 59–63 (1967).

    PubMed  CAS  Google Scholar 

  • Stein, R.B.: A theoretical analysis of neuronal variability. Biophys. J. 5, 173–194 (1965).

    PubMed  CAS  Google Scholar 

  • Stein, R.B. Some models of neuronal variability. Biophys. J. 7, 37–68 (1967 a).

    PubMed  CAS  Google Scholar 

  • Stein, R.B. The frequency of nerve action potentials generated by applied currents. Proc. roy. Soc. B 167, 64–86 (1967b).

    CAS  Google Scholar 

  • Stevens, J.C., Stevens,S.S.: Brightness function: Effects of adaptation. J. opt. Soc. Amer. 58, 375–385 (1963).

    Google Scholar 

  • Straschill, M.: Aktivität von Neuronen im Tractus opticus und Corpus geniculatum laterale bei langdauernden Lichtreizen verschiedener Intensität. Kybernetik 3, 1–8 (1966).

    PubMed  CAS  Google Scholar 

  • Suzuki, H., Kato, E.: Binocular interaction at cat’s lateral geniculate body. J. Neurophysiol. 29, 909–920 (1966).

    PubMed  CAS  Google Scholar 

  • Suzuki, H. Taira, N.: Effect of reticular stimulation upon synaptic transmission in cat’s lateral geniculate body. Jap. J. Physiol. 11, 641–655 (1961).

    CAS  Google Scholar 

  • Swets, J.A., Tanner, W.P., Jr., Birdsall, T.G.: Decision processes in perception. Psychol. Rev. 68, 301–340 (1961).

    PubMed  CAS  Google Scholar 

  • Taira,N., Okuda, J.: Sensory transmission in visual pathway in various arousal states of cat. Tohoku J. exp. Med. 78, 76–96 (1962).

    CAS  Google Scholar 

  • Talbot, S.A., Kuffler, S.W.: A multibeam ophthalmoscope for the study of retinal physiology. J. opt. Soc. Amer. 42, 931–936 (1952).

    CAS  Google Scholar 

  • Tanner, W. P., Jr., Swets, J.A.: A decision-making theory of visual detection. Psychol. Rev. 61, 401–409 (1954).

    PubMed  Google Scholar 

  • Ten Hoopen, M.: Multimodal interval distributions. Kybernetik 3, 17–24 (1965).

    Google Scholar 

  • Ten Hoopen, M. Probabilistic firing of neurons considered as a first passage problem. Biophys. J. 6, 435–451 (1966).

    PubMed  CAS  Google Scholar 

  • Vakkur, G.J., Bishop, P.O., Kozak, W.: Visual optics in the cat, including posterior nodal distance and retinal landmarks. Vis. Res. 3, 289–314 (1963).

    Google Scholar 

  • Wagner, H.G., MacNichol, E.F., JR., Wolbarsht, M.L.: The response properties of single ganglion cells in the goldfish retina. J. gen. Physiol. 43, Suppl. 2, 45–62 (1960).

    Google Scholar 

  • Weinstein, G.W., Hobson, R.R., Baker, F.H.: Extracellular recordings from human retinal ganglion cells. Science 171, 1021–1022 (1971).

    PubMed  CAS  Google Scholar 

  • Westheimer, G.: The Maxwellian view. Vision Res. 6, 669–682 (1966).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Richard Jung

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Levick, W.R. (1973). Maintained Discharge in the Visual System and its Role for Information Processing. In: Jung, R. (eds) Central Processing of Visual Information A: Integrative Functions and Comparative Data. Handbook of Sensory Physiology, vol 7 / 3 / 3 A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65352-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65352-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65354-4

  • Online ISBN: 978-3-642-65352-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics