Advertisement

Maintained Discharge in the Visual System and its Role for Information Processing

  • William R. Levick
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 3 / 3 A)

Abstract

A constant feature of recordings from neurones of the sensory side of the nervous system is the occurrence of impulses in the absence of the appropriate stimuli. This activity has sometimes been called “spontaneous” (Granit, 1955) but the term while operationally useful becomes gradually less appropriate as more is learned about the causation of the activity. In the visual system, the activity in complete darkness merges gradually with the activity at progressively increasing levels of uniform background illumination and poses the same kind of problem for signalling. One therefore prefers the more generally applicable term, maintained discharge, to unify the description and analysis under a wide variety of conditions. “Ongoing” discharge is usually synonymous, but “background” discharge is frequently employed to describe the low amplitude activity of more distant units accompanying the recording of a single neurone.

Keywords

Optic Nerve Ganglion Cell Receptive Field Retinal Ganglion Cell Lateral Geniculate Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, E.D.: The basis of sensation. The action of sense organs. London: Christophers 1928.Google Scholar
  2. Adrian, E.D. Synchronized reactions in the optic ganglion of Dytiscus. J. Physiol. (Lond.) 91, 66–89 (1937).Google Scholar
  3. Adrian, E.D. Matthews, R.: The action of light on the eye. I. The discharge of impulses in the optic nerve and its relation to the electric changes in the retina. J. Physiol. (Lond.) 63, 378–414 (1927).Google Scholar
  4. Adrian, E.D. Matthews, R. The action of light on the eye. II. The processes involved in retinal excitation. J. Physiol. (Lond.) 64, 279–301 (1928a).Google Scholar
  5. Adrian, E.D. Matthews, R. The action of light on the eye. III. The interaction of retinal neurones. J. Physiol. (Lond.) 65, 273–298 (1928b).Google Scholar
  6. Arden, G. B., Soderberg, U.: The transfer of optic information through the lateral geniculate body of the rabbit. In: Sensory Communication, p. 521–544. New York-London: John Wiley and Sons Inc. 1961.Google Scholar
  7. Arduini, A., Cavaggioni, A.: Transmission of tonic activity through lateral geniculate body and visual cortex. Arch. ital. Biol. 103, 652–667 (1965).Google Scholar
  8. Arduini, A. Hirao, T.: On the mechanism of the EEG sleep patterns elicited by acute visual deafferentation. Arch. ital. Biol. 94, 140–155 (1959).Google Scholar
  9. Pinneo, L.R.: Properties of the retina in response to steady illumination. Arch. ital. Biol. 100, 425–448 (1962)Google Scholar
  10. Ascoli, D., Maffei, L.: Slow periodicity in the dark discharge of retinal units. Experientia (Basel) 20, 226–227 (1964).Google Scholar
  11. Ashton, N.: Degeneration of the retina due to 1: 5-di(p-aminophenoxy) pentane dihydro- chloride. J. Path. Bact. 74, 103–112 (1957).Google Scholar
  12. Barlow, H.B.: Action potentials from the frog’s retina. J. Physiol. (Lond.) 119, 58–68 (1953).Google Scholar
  13. Barlow, H.B. Retinal noise and absolute threshold. J. opt. Soc. Amer. 46, 634–639 (1956).Google Scholar
  14. Barlow, H.B. Increment thresholds at low intensities considered as signal/noise discriminations. J. Physiol. (Lond.) 136, 469–488 (1957).Google Scholar
  15. Barlow, H.B. Initial remarks. Gruppendiskussion von: Der Informationswert verschiedener Reaktionstypen der Neurone des visuellen Systems. In: Neurophysiologie und Psychophysik des Visuellen Systems. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  16. Barlow, H.B. The physical limits of visual discrimination. In: Photophysiology, Vol. 2. New York: Academic Press, Inc. 1964.Google Scholar
  17. Barlow, H.B. Blakemore, C., Pettigrew, J.D.: The neural mechanism of binocular depth discrimination. J. Physiol. (Lond.) 193, 327–342 (1967).Google Scholar
  18. Barlow, H.B. Fitzhugh, R., Kuffler, S.W.: Dark adaptation, absolute threshold and Purkinje shift in single units of the cat’s retina. J. Physiol. (Lond.) 137, 327–337 (1957a).Google Scholar
  19. Barlow, H.B. Fitzhugh, R., Kuffler, S.W. Change of organization in the receptive fields of the cat’s retina during dark adaptation. J. Physiol. (Lond.) 137, 338–354 (1957b).Google Scholar
  20. Barlow, H.B. Hill, R. M.: Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science 139, 412–414 (1963).PubMedGoogle Scholar
  21. Barlow, H.B. Levick,W.R.: Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. (Lond.) 173, 377–407 (1964).Google Scholar
  22. Barlow, H.B. Levick, W.R.: The Purkinje shift in the cat retina. J. Physiol. (Lond.) 196, 2 - 3P (1968).Google Scholar
  23. Barlow, H.B. Levick, W.R. Three factors limiting the reliable detection of light by retinal ganglion cells of the cat. J. Physiol. (Lond.) 200, 1–24 (1969a).Google Scholar
  24. Barlow, H.B. Levick, W.R. Changes in the maintained discharge with adaptation level in the cat retina. J. Physiol. (Lond.) 202, 699–718 (1969b).Google Scholar
  25. Baumgartner, G., Brown, J.L., Schulz, A.: Visual motion detection in the cat. Science 146, 1070–1071 (1964a).PubMedGoogle Scholar
  26. Baumgartner, G. Eichin, F., Schulz, A.: Unterschiede neuronaler Aktivierung im zentralen visuellen System bei langdauernder Verdunkelung und Belichtung des Auges. Pflügers Arch. ges. Physiol. 279, R4 (1964b).Google Scholar
  27. Bishop, P.O., Levick, W.R., Williams, W.O.: Statistical analysis of the dark discharge of lateral geniculate neurones. J. Physiol. (Lond.) 170, 598–612 (1964).Google Scholar
  28. Blankenship, J.E., Kuno,M.: Analysis of spontaneous subthreshold activity in spinal motoneurones of the cat. J. Neurophysiol. 31, 195–209 (1968).PubMedGoogle Scholar
  29. Bornschein, H.: Nachweis einer physiologischen Spontanaktivität in Einzelfasern des N. opticus der Katze. Experientia (Basel) 14, 13–14 (1958a).Google Scholar
  30. Bornschein, H. Spontan- und Belichtungsaktivität in Einzelfasern des N. opticus der Katze. I. Der Einfluß kurzdauernder retinaler Ischämie. Z. Biol. 110, 210–222 (1958b).PubMedGoogle Scholar
  31. Bornschein, H. Spontan- und Belichtungsaktivität in Einzelfasern des N. opticus der Katze. II. Der Einfluß akuter Jodazetatvergiftung. Z. Biol. 110, 223–231 (1958c).PubMedGoogle Scholar
  32. Bridgman, C.S., Smith, K.U.: The absolute threshold of vision in cat and man with observations on its relation to the optic cortex. Amer. J. Physiol. 136, 463–466 (1942).Google Scholar
  33. Brown, J. E., Rojas, J.A.: Rat retinal ganglion cells: receptive field organization and maintained activity. J. Neurophysiol. 28, 1073–1090 (1965).PubMedGoogle Scholar
  34. Burke, W., Hayhow, W.R.: Disuse in the lateral geniculate nucleus of the cat. J. Physiol. (Lond.) 194, 495–519 (1968).Google Scholar
  35. Burke, W. Sefton, A. J.: Discharge patterns of principal cells and interneurones in lateral geniculate nucleus of rat. J. Physiol. (Lond.) 187, 201–212 (1966).Google Scholar
  36. Cajal, S.R.Y: Histologie du Système nerveux. Vol.11. French edition Madrid: Consejo superior de Investigaciones cientificas, Instituto Ramon y Cajal 1955.Google Scholar
  37. Cavaggioni, A.: The dark-discharge of the eye in the unrestrained cat. Pflügers Arch. ges. Physiol. 304, 75–80 (1968).Google Scholar
  38. Collins, C.C.: Evoked pressure responses in the rabbit eye. Science 155, 106–108 (1967).PubMedGoogle Scholar
  39. Cox, D.R.: Renewal Theory. London: Methuen 1962.Google Scholar
  40. Daw, N.W., Pearlman, A.L.: Cat colour vision: one cone process or several ? J. Physiol. (Lond.) 201, 745–764 (1969).Google Scholar
  41. De Valois, R.L., Jacobs, G.H., Jones, A. E.: Effects of increments and decrements of light on neural discharge rate. Science 136, 986–988 (1962).PubMedGoogle Scholar
  42. Doty, R.W., Kimura, D.S.: Oscillatory potentials in the visual system of cats and monkeys. J. Physiol. (Lond.) 168, 205–218 (1963).Google Scholar
  43. Dowling, J.E.: Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frogs and primates. Proc. roy. Soc. B 170, 205–228 (1968).Google Scholar
  44. Edge, N.D., Mason, D.F.J., Wien, R., Ashton, N.: Pharmacological effects of certain diaminodiphenoxy alkanes. Nature (Lond.) 178, 806–807 (1956).Google Scholar
  45. Fatt, P., Katz, B.: Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128 (1952).Google Scholar
  46. Fechner, G. T.: Elemente der Psychophysik. Leipzig: Breitkopf and Härtel 1860. Translated by H.Adler, edited by E.G. Boring and D.H. Howes: Elements of psychophysics. New York: Holt, Rinehart and Winston 1965. Feller, W.: An introduction to probability theory and its applications, Vol. I. New York: Wiley 1957.Google Scholar
  47. Fitzhugh, R.: A statistical analyzer for optic nerve messages. J. gen. Physiol. 41, 675–692 (1958).PubMedGoogle Scholar
  48. Fuortes, M.G.F., Hodgkin, A. L.: Changes in time scale and sensitivity in the ommatidia of Limulus. J. Physiol. (Lond.) 172, 239–263 (1964).Google Scholar
  49. Fuster, J.M., Creutzfeldt, O.D., Straschill,M.: Intracellular recording of neuronal activity in the visual system. Z. vergl. Physiol. 49, 605–622 (1965a).Google Scholar
  50. Fuster, J.M. Herz, A., Creutzfeldt, O.D.: Interval analysis of cell discharge in spontaneous and optically modulated activity in the visual system. Arch. ital. Biol. 103, 159–177 (1965b).Google Scholar
  51. Geisler, C.D., Goldberg, J. M.: A stochastic model of the repetitive activity of neurons. Biophys. J. 6, 53–69 (1966).PubMedGoogle Scholar
  52. Gerstein, G.L., Mandelbrot, B.: Random walk models for the spike activity of a single neuron. Biophys. J. 4, 41–68 (1964).PubMedGoogle Scholar
  53. Gouras,P.: Spreading depression of activity in amphibian retina. Amer. J. Physiol. 195, 28–32 (1958).PubMedGoogle Scholar
  54. Granit, R.: Isolation of colour-sensitive elements in a mammalian retina. Acta physiol. scand. 2, 93–109 (1941a).Google Scholar
  55. Granit, R. Rotation of activity and spontaneous rhythms in the retina. Acta physiol. scand. 1, 370–379 (1941b).Google Scholar
  56. Granit, R. Spectral properties of the visual receptor elements of the guinea pig. Acta physiol. scand. 3, 318–328 (1942).Google Scholar
  57. Granit, R. Sensory mechanisms of the retina. London: Oxford University Press 1947.Google Scholar
  58. Granit, R. Receptors and sensory perception. New Haven: Yale University Press 1955.Google Scholar
  59. Granit, R. Svaetichin, G.: Principles and technique of the electrophysiological analysis of colour reception with the aid of microelectrodes. Upsala Läk. Foren. För. 45, 1–4, 161–177 (1939).Google Scholar
  60. Granit, R. Therman,P.O.: Excitation and inhibition in the retina and in the optic nerve. J. Physiol. (Lond.) 83, 359–381 (1935).Google Scholar
  61. Grüsser, O.-J., Grüsser-Cornehls,U., Saur,G.: Reaktionen einzelner Neurone im optischen Cortex der Katze nach elektrischer Polarisation des Labyrinths. Pflügers Arch. ges. Physiol. 269, 593–612 (1959).Google Scholar
  62. Gunter, R.: The absolute threshold for vision in the cat. J. Physiol. (Lond.) 114, 8–15 (1951).Google Scholar
  63. Hagiwara, S.: Analysis of interval fluctuation of the sensory nerve impulse. Jap. J. Physiol. 4, 234–240 (1954).Google Scholar
  64. Hartline, H. K.: Intensity and duration in the excitation of single photoreceptor units. J. cell, comp. Physiol. 5, 229–247 (1934).Google Scholar
  65. Hartline, H. K. The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Amer. J. Physiol. 121, 400–415 (1938).Google Scholar
  66. Hartline, H. K. Graham, C.H.: Nerve impulses from single receptors in the eye. J. comp. cell. Physiol. 1, 277–295 (1932).Google Scholar
  67. Heiss, W.-D., Bornschein, H.: Die Impulsverteilung der Daueraktivität von Einzelfasern des N. opticus. Einflüsse von Licht, Ischämie, Strychnin und Barbiturat. Pflügers Arch. ges. Physiol. 286, 1–18 (1965).Google Scholar
  68. Heiss, W.-D., Bornschein, H. Multimodale Intervallhistogramme der Daueraktivität von retinalen Neuronen der Katze. Kybernetik 3, 187–191 (1966).PubMedGoogle Scholar
  69. Helmholtz, H. von: Handbuch der Physiologischen Optik. II. Bd. Hamburg: Leopold Voss 1911. Translation from 3rd German edition, ed. J.C.P. Southall 1924. Republished New York: Dover 1962.Google Scholar
  70. Hering, E.: Zur Lehre vom Lichtsinne. Vienna: Carl Gerold’s Sohn 1878. Translated by L.M.Hurvich and D. Jameson: Outlines of a theory of the light sense. Cambridge, Mass.: Harvard University Press 1964.Google Scholar
  71. Herz, A., Creutzfeldt, 0., Fuster,J.: Statistische Eigenschaften der Neuronaktivität im ascendierenden visuellen System. Kybernetik 2, 61–71 (1964).PubMedGoogle Scholar
  72. Hodgkin, A.L.: The local electric changes associated with repetitive action in a non- medullated axon. J. Physiol. (Lond.) 107, 165–181 (1948).Google Scholar
  73. Horn, G.: The response of single units in the striate cortex of unrestrained cats to photic and somaesthetic stimuli. J. Physiol. (Lond.) 165, 80–81P (1963).Google Scholar
  74. Hubel, D.H.: Single unit activity in lateral geniculate body and optic tract of unrestrained cats. J. Physiol. (Lond.) 150, 91–104 (1960).Google Scholar
  75. Hubel, D.H. Wiesel,T.N.: Receptive fields of optic nerve fibres in the spider monkey. J. Physiol. (Lond.) 154, 572–580 (1960).Google Scholar
  76. Hubel, D.H. Wiesel,T. N. Integrative action in the cat’s lateral geniculate body. J. Physiol. (Lond.) 155, 385–398 (1961).Google Scholar
  77. Hubel, D.H. Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).Google Scholar
  78. Hubel, D.H. Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).Google Scholar
  79. Hughes, G.W., Maffei,L.: On the origin of the dark discharge of retinal ganglion cells. Arch, ital. Biol. 108, 45–59 (1965).Google Scholar
  80. Hubel, D.H. Wiesel,T. N. Retinal ganglion cell response to sinusoidal light stimulation. J. Neurophysiol. 29, 333–352 (1966).Google Scholar
  81. Jouvet, M.: Neurophysiology of the states of sleep. In: The Neurosciences: A study program. New York: The Rockefeller University Press 1967.Google Scholar
  82. Jung, R.: Neuronal discharge. EEG. clin. Neurophysiol. Suppl. 4, 57–71 (1953).Google Scholar
  83. Jung, R.: Neuronal integration in the visual cortex and its significance for visual information. In: Sensory Communication. New York-London: The M.I.T. Press and John Wiley and Sons Inc. 1961a.Google Scholar
  84. Jung, R. Korrelationen von Neuronentätigkeit und Sehen. In: Neurophysiologie und Psychophysik des visuellen Systems. Berlin-Göttingen-Heidelberg: Springer 1961b.Google Scholar
  85. Jung, R. Neuronale Grundlagen des Hell-Dunkelsehens und der Farbwahrnehmung. Bericht über die 66. Zusammenkunft der Deutschen Ophthalmologischen Gesellschaft in Heidelberg,70–111 (1964). München: J. F. Bergmann 1964.Google Scholar
  86. Kappauf, W.E.: Variation in the size of the cat’s pupil as a function of stimulus brightness. J. comp. Psychol. 36, 125–131 (1943).Google Scholar
  87. Katz, B.: Nerve, muscle and synapse. New York: McGraw Hill 1966.Google Scholar
  88. Katz, B. Miledi,R.: A study of spontaneous miniature potentials in spinal motoneurones. J. Physiol. (Lond.) 108, 389–422 (1963).Google Scholar
  89. Kornhfber, H.H., Da Fonseca, J.S.: Convergence of vestibular, visual and auditory afferents at single neurons of the cat’s cortex. Intern. Congr. E.E.G. and Clin. Neurophysiol., 5 th, Rome, 1961. Excerpta Medica, Intern. Congr. Ser. 1961.Google Scholar
  90. Kuffler, S. W.: Neurons in the retina: organization, inhibition and excitation problems. Cold Spr. Harb. Symp. quant. Biol. 17, 281–292 (1952).Google Scholar
  91. Kuffler, S. W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).PubMedGoogle Scholar
  92. Kuffler,S. W. Fitzhugh, R., Barlow, H.B.: Maintained activity in the cat’s retina in light and darkness. J. gen. Physiol. 40, 683–702 (1957).PubMedGoogle Scholar
  93. Latjfer, M., Verzeano, M.: Periodic activity in the visual system of the cat. Vision Res. 7, 215–229 (1967).Google Scholar
  94. Leão, A.A.P.: Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7, 359–390 (1944a).Google Scholar
  95. Leão,A.A.P. Pial circulation and spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7, 391–396 (1944b).Google Scholar
  96. Legrand, Y.: Light, colour and vision. London: Chapman amp; Hall 1957.Google Scholar
  97. Levick, W.R.: An interpretation of multimodal interval histograms. J. Physiol. (Lond.) 169, 110–111P (1963).Google Scholar
  98. Levick, W.R. Pattern abstraction in the rabbit’s retina. In: Symposium on Information Processing in Sight Sensory Systems. Pasadena: California Institute of Technology 1965.Google Scholar
  99. Levick, W.R. Williams, W.O.: Maintained activity of lateral geniculate neurones in darkness. J. Physiol. (Lond.) 170, 582–597 (1964).Google Scholar
  100. Levick, W.R. Zacks, J.L.: Responses of cat retinal ganglion cells to brief flashes of light. J. Physiol. (Lond.) 206, 677–700 (1970).Google Scholar
  101. Martins-Ferreira, H., De Oliveira Castro, G.: Light-scattering changes accompanying spreading depression in isolated retina. J. Neurophysiol. 29, 715–726 (1966).Google Scholar
  102. Maturana, H.R., Lettvin, J.Y., McCulloch, W.S., Pitts, W.H.: Anatomy and physiology of vision in the frog (Rana pipiens). J. gen. Physiol. 43, Suppl. 2, 129–175 (1960).Google Scholar
  103. McIlwain, J.T., Creutzfeldt, O.D.: Microelectrode study of synaptic excitation and inhibition in the lateral geniculate nucleus of the cat. J. Neurophysiol. 30, 1–21 (1967).Google Scholar
  104. Michael, C.R.: Receptive fields of opponent color units in the optic nerve of the ground squirrel. Science 152, 1095–1097 (1966).PubMedGoogle Scholar
  105. Michael, C.R. Receptive fields of single optic nerve fibers in a mammal with an all-cone retina. II: Directional selective units. J. Neurophysiol. 31, 257–267 (1968).PubMedGoogle Scholar
  106. Moore, G.P., Perkel, D.H., Segundo, J.P.: Statistical analysis and functional interpretation of neuronal spike data. Ann. Rev. Physiol. 28, 493–522 (1966).Google Scholar
  107. Moruzzi, G., Magoun, H. W.: Brain stem reticular formation and activation of the EEG. EEG. clin. Neurophysiol. 1, 455–473 (1949).Google Scholar
  108. Murata, K., Cramer, H., Bach-Y-Rita, P.: Neuronal convergence of noxious, acoustic and visual stimuli in the visual cortex of the cat. J. Neurophysiol. 28, 1223–1239 (1965).PubMedGoogle Scholar
  109. Nikara, T., Bishop, P.O., Pettigrew, J.D.: Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exp. Brain Res. 6, 353–372 (1968).PubMedGoogle Scholar
  110. Noda, H., Iwama, K.: Unitary analysis of retino-geniculate response time in rats. Vision Res. 7, 205–213 (1967).PubMedGoogle Scholar
  111. Noell, W.K.: The effect of iodoacetate on the vertebrate retina. J. cell. comp. Physiol. 37, 283–307 (1951).Google Scholar
  112. Noell, W.K. The impairment of visual cell structure by iodoacetate. J. cell. comp. Physiol. 40, 25–55 (1952).Google Scholar
  113. Perkel, D.H., Gerstein, G.L., Moore, G.P.: Neuronal spike trains and stochastic point processes. Biophys. J. 7, 391–418 (1967).PubMedGoogle Scholar
  114. Ricciardi, L.M., Esposito, F.: On some distribution functions for non-linear switching elements with finite dead time. Kybernetik 3, 148–152 (1966).PubMedGoogle Scholar
  115. Riggs, L.A., Graham, C.H.: Some aspects of light adaptation in a single photoreceptor unit. J. cell. comp. Physiol. 16, 15–23 (1940).Google Scholar
  116. Rodieck, R.W.: Maintained activity of cat retinal ganglion cells. J. Neurophysiol. 30, 1043–1071 (1967).PubMedGoogle Scholar
  117. Rodieck, R.W. Smith, P. S.: Slow dark discharge rhythms of cat retinal ganglion cells. J. Neurophysiol. 29, 942–953 (1966).PubMedGoogle Scholar
  118. Rushton, W.A.H.: The structure responsible for action potential spikes in the cat’s retina. Nature (Lond.) 164, 743–744 (1949).Google Scholar
  119. Rushton, W.A.H. The difference spectrum and the photosensitivity of rhodopsin in the living human eye. J. Physiol. (Lond.) 134, 11–29 (1956).Google Scholar
  120. Rushton, W.A.H. A theoretical treatment of FUORTES’S observations upon eccentric cell activity in Limulus. J. Physiol. (Lond.) 148, 29–38 (1959).Google Scholar
  121. Sakakura, H.: Spontaneous and evoked unitary activities of cat lateral geniculate neurons in sleep and wakefulness. Jap. J. Physiol. 18, 23–42 (1968).Google Scholar
  122. Sakakura, H. Iwama, K.: Effects of bilateral eye enucleation upon single unit activity of the lateral geniculate body in free behaving cats. Brain Res. 6, 667–678 (1967).PubMedGoogle Scholar
  123. Scheibner, H., Baumgardt, E.: Sur l’emploi en optique physiologique des grandeurs scotopiques. Vision Res. 7, 59–63 (1967).PubMedGoogle Scholar
  124. Stein, R.B.: A theoretical analysis of neuronal variability. Biophys. J. 5, 173–194 (1965).PubMedGoogle Scholar
  125. Stein, R.B. Some models of neuronal variability. Biophys. J. 7, 37–68 (1967 a).PubMedGoogle Scholar
  126. Stein, R.B. The frequency of nerve action potentials generated by applied currents. Proc. roy. Soc. B 167, 64–86 (1967b).Google Scholar
  127. Stevens, J.C., Stevens,S.S.: Brightness function: Effects of adaptation. J. opt. Soc. Amer. 58, 375–385 (1963).Google Scholar
  128. Straschill, M.: Aktivität von Neuronen im Tractus opticus und Corpus geniculatum laterale bei langdauernden Lichtreizen verschiedener Intensität. Kybernetik 3, 1–8 (1966).PubMedGoogle Scholar
  129. Suzuki, H., Kato, E.: Binocular interaction at cat’s lateral geniculate body. J. Neurophysiol. 29, 909–920 (1966).PubMedGoogle Scholar
  130. Suzuki, H. Taira, N.: Effect of reticular stimulation upon synaptic transmission in cat’s lateral geniculate body. Jap. J. Physiol. 11, 641–655 (1961).Google Scholar
  131. Swets, J.A., Tanner, W.P., Jr., Birdsall, T.G.: Decision processes in perception. Psychol. Rev. 68, 301–340 (1961).PubMedGoogle Scholar
  132. Taira,N., Okuda, J.: Sensory transmission in visual pathway in various arousal states of cat. Tohoku J. exp. Med. 78, 76–96 (1962).Google Scholar
  133. Talbot, S.A., Kuffler, S.W.: A multibeam ophthalmoscope for the study of retinal physiology. J. opt. Soc. Amer. 42, 931–936 (1952).Google Scholar
  134. Tanner, W. P., Jr., Swets, J.A.: A decision-making theory of visual detection. Psychol. Rev. 61, 401–409 (1954).PubMedGoogle Scholar
  135. Ten Hoopen, M.: Multimodal interval distributions. Kybernetik 3, 17–24 (1965).Google Scholar
  136. Ten Hoopen, M. Probabilistic firing of neurons considered as a first passage problem. Biophys. J. 6, 435–451 (1966).PubMedGoogle Scholar
  137. Vakkur, G.J., Bishop, P.O., Kozak, W.: Visual optics in the cat, including posterior nodal distance and retinal landmarks. Vis. Res. 3, 289–314 (1963).Google Scholar
  138. Wagner, H.G., MacNichol, E.F., JR., Wolbarsht, M.L.: The response properties of single ganglion cells in the goldfish retina. J. gen. Physiol. 43, Suppl. 2, 45–62 (1960).Google Scholar
  139. Weinstein, G.W., Hobson, R.R., Baker, F.H.: Extracellular recordings from human retinal ganglion cells. Science 171, 1021–1022 (1971).PubMedGoogle Scholar
  140. Westheimer, G.: The Maxwellian view. Vision Res. 6, 669–682 (1966).PubMedGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1973

Authors and Affiliations

  • William R. Levick
    • 1
  1. 1.CanberraAustralia

Personalised recommendations