Skip to main content

Neuronal Mechanisms of Visual Movement Perception and Some Psychophysical and Behavioral Correlations

  • Chapter

Part of the book series: Handbook of Sensory Physiology ((1536,volume 7 / 3 / 3 A))

Abstract

Visual movement perception has to be considered a special perceptual quality of the visual modality as color, brightness, size etc. are sensory qualities for the perception of the visual world (Exner, 1875). Movement detecting neuronal systems are probably present in the nervous system of all animals which respond to visual signals more complicated than simple light-dark stimuli.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarons, L.: Visual apparent movement research. Review 1935–1955, and bibliography 1955–1963. Percept. Motor Skills 18, 239–279 (1964).

    PubMed  CAS  Google Scholar 

  • Adams, A.: Nystagmographische Untersuchungen über den Lidnystagmus und die physiologische Koordination von Lidschlag und rascher Nystagmusphase. Arch. Ohr.-, Nas.-u. Kehlk.-Heilk. 170, 543–558 (1957).

    Google Scholar 

  • Adrian, E.D.: The basis of sensation. The action of the sense organs. London: Christophers Ltd. 1928.

    Google Scholar 

  • Adrian, E.D., Cattell, M., Hoagland, H.: Sensory discharges in single cutaneous nerve fibers. J. Physiol. (Lond.) 72, 377–391 (1931).

    CAS  Google Scholar 

  • Akert, K.: Der visuelle Greifreflex. Helv. physiol. pharmacol. Acta 7, 112–134 (1949).

    PubMed  CAS  Google Scholar 

  • Akimoto, H., Creutzfeldt, O.: Reaktionen von Neuronen des optischen Cortex nach elektrischer Reizung unspezifischer Thalamuskerne. Arch. Psychiat. Nervenkr. 196, 494–519 (1958).

    PubMed  CAS  Google Scholar 

  • Altman, J.: Some fiber projections to the superior colliculus in the cat. J. Comp. Neurol. 119, 77–95 (1962).

    Google Scholar 

  • Altman, J., Carpenter, M.B.: Fiber projections of the superior colliculus in the cat. J. Comp. Neurol. 116, 157–178 (1961).

    PubMed  CAS  Google Scholar 

  • Altman, J., Carpenter, M.B., Malis, L.J.: An electrophysiological study of the superior colliculus and visual cortex. Exp. Neurol. 5, 233–249 (1962).

    PubMed  CAS  Google Scholar 

  • Andrew, A.M.: Action potentials from the frog colliculus. J. Physiol. (Lond.) 130, 25 P (1955).

    Google Scholar 

  • Apter, J.T.: Projection of the retina on superior colliculus in cats. J. Neurophysiol. 8, 123–134 (1945).

    Google Scholar 

  • Apter, J.T., Eye Movements Following Strychninization Of The Superior Colliculus Of The Cat. J. Neuro¬Physiol. 9, 73–86 (1946).

    CAS  Google Scholar 

  • Arden, G.B.: Types of response and organization of simple receptive fields in cells of the rabbit’s lateral geniculate body. J. Physiol. (Lond.) 166, 449–467 (1963a).

    CAS  Google Scholar 

  • Arden, G.B.: Complex receptive fields and responses to moving objects in cells of the rabbit’s lateral geniculate body. J. Physiol. (Lond.) 166, 468–488 (1963b).

    CAS  Google Scholar 

  • Arden, G.B., Hill, R.M., Ikeda, H.: Receptive fields of rabbit visual cortex. J. Physiol. (Lond.) 189. 73 P (1967).

    Google Scholar 

  • Arden, G.B., Hill, R.M., Ikeda, H., Ikeda, H., Hill, R.M.: Rabbit visual cortex: Reaction of cells to movement and contrast. Nature (Lond.) 214, 909–912 (1967).

    CAS  Google Scholar 

  • Armstrong, C.M.: Monosynaptic activation of pyramidal cells in area 18 by optic radiation fibers. Exp. Neurol. 21, 413–428 (1968).

    PubMed  CAS  Google Scholar 

  • Aubert, H.: Die Bewegungsempfindung. Pflügers Arch. ges. Physiol. 39, 347–370 (1886).

    Google Scholar 

  • Aubert, H.: Die Bewegungsempfindung. Pflügers Arch. ges. Physiol. 40, 459–480 (1887).

    Google Scholar 

  • Barlow, H.B.: Action potentials from the frog’s retina. J. Physiol. (Lond.) 119, 58–68 (1953a).

    CAS  Google Scholar 

  • Barlow, H.B.: Summation and inhibition in the frog’s retina. J. Physiol. (Lond.) 119, 69–88 (1953b).

    CAS  Google Scholar 

  • Barlow, H.B., Blakemore, C., Pettigrew, J. D.: The neural mechanism of binocular depth discrimination. J. Physiol. (Lond.) 193, 327–342 (1967).

    CAS  Google Scholar 

  • Barlow, H.B., Blakemore, C., Pettigrew, J. D., Ill, R.M.: Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science 139, 412–414 (1963).

    PubMed  CAS  Google Scholar 

  • Barlow, H.B., Blakemore, C., Pettigrew, J. D., Ill, R.M., Levick, R. W.: Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. (Lond.) 173, 377–407 (1964).

    CAS  Google Scholar 

  • Barlow, H.B., Blakemore, C., Pettigrew, J. D., Ill, R.M., Levick, R. W., Levick, W.R.: The mechanism of directionally selective units in rabbit’s retina. J. Physiol. (Lond.) 178, 477–504 (1965).

    CAS  Google Scholar 

  • Basler, A.: Über das Sehen von Bewegungen. I. Die Wahrnehmung kleinster Bewegungen. Pflügers Arch. ges. Physiol. 115, 582–601 (1906).

    Google Scholar 

  • Baumann, Ch.: Receptorpotentiale der Wirbeltiernetzhaut. Pflügers Arch. ges. Physiol. 282, 92–101 (1965).

    Google Scholar 

  • Baumgartner, G.: Reaktionen einzelner Neurone im optischen Cortex der Katze nach Lichtblitzen. Pflügers Arch. ges. Physiol. 261, 457–469 (1955).

    CAS  Google Scholar 

  • Baumgartner, G.: Die Reaktionen der Neurone des zentralen visuellen Systems der Katze im simultanen Helligkeitskontrast. In: Neurophysiologie und Psychophysik des visuellen Systems, S. 296–311. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Baumgartner, G.: Neuronale Mechanismen des Kontrast-und Bewegungssehens. Ber. dtsch. Ophthal. Ges. 66, 111–125 (1964).

    Google Scholar 

  • Baumgartner, G., Brown, J.L., Schulz, A.: Visual motion detection in the cat. Science 146, 1070–1071 (1964).

    PubMed  CAS  Google Scholar 

  • Baumgartner, G., Brown, J.L., Schulz, A.:Responses of single units of the cat visual system to rectangular stimulus patterns. J. Neurophysiol. 28, 1–18 (1965).

    PubMed  CAS  Google Scholar 

  • Baumgartner, G., Brown, J.L., Schulz, A., Hakas, P.: Reaktionen einzelner Opticusneurone und corticaler Nervenzellen der Katze im Hell-Dunkel-Grenzfeld (Simultankontrast). Pflügers Arch. ges. Physiol. 270, 29 (1959).

    Google Scholar 

  • Baumgartner, G., Brown, J.L., Schulz, A., Hakas, P.: Neurophysiologie des simultanen Helligkeitskontrastes. Pflügers Arch. ges. Physiol. 274, 489–510 (1962).

    CAS  Google Scholar 

  • Baumgartner, G., Brown, J.L., Schulz, A., Hakas, P., Schulz, A., Brown, J.L.: Unterschiedliche Reaktionen auf bewegte Reizmuster bei corticalen und Geniculatumneuronen. Pflügers Arch. ges. Physiol. 278, 69–70 (1963).

    Google Scholar 

  • Bender, M.M. (Ed.): The oculomotor system. New York: Harper & Row 1964.

    Google Scholar 

  • Bischof, N., Kramer, E.: Untersuchungen und Überlegungen zur Richtungswahrnehmung bei willkürlichen sakkadischen Augenbewegungen. Psychol. Forsch. 32, 185–218 (1968).

    PubMed  CAS  Google Scholar 

  • Bishop, G.H.: Fibre groups in the optic nerve. Amer. J. Physiol. 106, 461 (1933).

    Google Scholar 

  • Bishop, P.O., Kozak, W., Levick, W.R., Vakkur, G.J.: The determination of the pro¬jection of the visual field on the lateral geniculate nucleus in the cat. J. Physiol. (Lond.) 163, 503–539 (1962).

    CAS  Google Scholar 

  • Bizzi, E.: Changes in the orthodromic and antidromic response of optic tract during the eye movements of sleep. J. Neurophysiol. 29, 861–870 (1966).

    PubMed  CAS  Google Scholar 

  • Bizzi, E.: Discharge of frontal eye field neurons during eye movements in unanesthetized monkeys, Science 157, 1588–1590 (1967).

    PubMed  CAS  Google Scholar 

  • Bizzi, E.: Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys. Exp. Brain Res. 6, 69–70 (1968).

    PubMed  CAS  Google Scholar 

  • Bizzi, E., Schiller, P. H.: Single unit activity in the frontal eye fields of unanesthetized monkeys during eye and head movement. Exp. Brain Res. 10, 151–159 (1970).

    Google Scholar 

  • Blake, L.: The effect of lesions of the superior colliculus on brightness and pattern discrimination in the cat. J. comp. Physiol. 57, 272–278 (1959).

    Google Scholar 

  • Brown, J.E., Rojas, J.A.: Rat retinal ganglion cells: receptive field organization and maintained activity. J. Neurophysiol. 28, 1073–1090 (1965).

    PubMed  CAS  Google Scholar 

  • Brown, J.F.: The visual perception of velocity. Psychol. Forsch. 14, 199–232 (1931).

    Google Scholar 

  • Büttner, U., Grüsser, O.-J.: Quantitative Untersuchungen der räumlichen Erregungs-summation im rezeptiven Feld retinaler Neurone der Katze. I. Reizung mit 2 synchronen Lichtpunkten. Kybernetik 4, 81–94 (1968).

    PubMed  Google Scholar 

  • Bürgi, S.: Das Tectum opticum. Seine Verbindungen bei der Katze und seine Bedeutung beim Menschen. Dtsch. Z. Nervenheilk. 176, 701–729 (1957).

    Google Scholar 

  • Burns, B.D., Heron, W., Pritchard, R.: Physiological excitation of visual cortex in cat’s unanesthetized isolated forebrain. J. Neurophysiol. 25, 165–181 (1962).

    PubMed  CAS  Google Scholar 

  • Burns, B.D., Heron, W., Pritchard, R., Pritchard, R.: Contrast discrimination by neurons in the cat’s visual cerebral cortex. J. Physiol. (Lond.) 175, 445–463 (1964).

    CAS  Google Scholar 

  • Burns, B.D., Heron, W., Pritchard, R., Pritchard, R., Smith, G. K.: Transmission of information in the unanesthetized cat’s isolated forebrain. J. Physiol. (Lond.) 164, 238–251 (1962).

    CAS  Google Scholar 

  • Buser, P., Dussardier, M.: Organisation des projections de la rétine sur le lobe optique, étudiée chez quelques téléostéens. J. Physiol. (Paris) 45, 57–60 (1953).

    CAS  Google Scholar 

  • Butenandt, E.: Diss., Zool. Institut, Freiburg 1969.

    Google Scholar 

  • Butenandt, E., Grüsser, O.-J.: The effect of stimulus area on the response of movement detecting neurons in the frog’s retina. Pflügers. Arch. ges. Physiol. 300, 283–293 (1968).

    Google Scholar 

  • Byzow, A. L.: Die Dynamik der Labilität einzelner funktioneller Einheiten der Netzhaut des Frosches bei Intensitätsveränderungen von Flimmerlicht (Russ.). Arbeiten aus der Akademie der Wissenschaften UdSSR 105, 852–855 (1955).

    Google Scholar 

  • Byzow, A. L.: Lability of single retinal units in some mammals. J. Physiol. USSR 42, 1011–1020 (1956).

    Google Scholar 

  • Byzow, A. L.: Analysis of the distribution of potentials and current arising in the retinal response to light stimulation. On the activity of the two types of bipolarse. Biofizika 6, 689–701 (1959).

    Google Scholar 

  • Byzow, A. L.: Functional properties of different cells in the retina of cold-blooded vertebrates. Cold Spr. Harb. Symp. quant. Biol. 80, 547–558 (1965).

    Google Scholar 

  • Byzow, A. L., Hanitzsch, R.: Intrazellulär abgeleitete Reaktionen verschiedener Netzhautzellen des Frosches und Axolotl (Russ.). Fiziol. Zh. 52, 3 (1966).

    Google Scholar 

  • Cajal, S. Ramon Y: Die Retina der Wirbelthiere. Übers, von Greeff, Wiesbaden: J. F. Bergmann 1894. Campbell, F. W., Cleland, B.G., Cooper, G.F., Enroth-Cugell, C.: The angular selectivity of visual cortical cells to moving gratings. J. Physiol. (Lond.) 198, 237–250 (1968).

    Google Scholar 

  • Cajal, S. Ramon Y, Cooper, G. F., Enroth-Cugell, C.: The spatial selectivity of the visual cells of the cat. J. Physiol. (Lond.) 203, 223–235 (1969).

    Google Scholar 

  • Robson, J.G., Sachs, M.B.: The spatial selectivity of visual cells of the cat and the squirrel monkey. Proc. Physiol. Soc. (1969), J. Physiol. (Lond.) 204, 120–121 (1969).

    Google Scholar 

  • Robson, J.G., Sachs, M.B., Kulikowski, J. J.: Orientational selectivity of the human visual system. J. Physiol. (Lond.) 187, 437–445 (1966).

    Google Scholar 

  • Chang, H.T., Chiang, C., Wu, C.: Sci. Sinica (Peking) 8, 1131 (1959), Zit. nach MKRTYCHEVA, 1965.

    Google Scholar 

  • Christensen, J. L., Hill, R.M.: A review of the anatomy and neurophysiology of the opossum (Didelphis virginiana) visual system. Amer. J. Ophthal. 46, 440–446 (1969)

    CAS  Google Scholar 

  • Cohen, B., Feldman, M.: Relationship of electrical activity in pontine reticular formation and lateral geniculate body to rapid eye movements. J. Neurophysiol. 31, 806–817 (1968).

    PubMed  CAS  Google Scholar 

  • Collewijn, H.: Changes in visual evoked responses during the first phase of optokinetic nystagmus in the rabbit. Vision Res. 9, 803–814 (1969).

    PubMed  CAS  Google Scholar 

  • Cooper, G. F., Robson, J.G.: Directionally selective movement detectors in the retina of the grey squirrel. J. Physiol. (Lond.) 186, 116–117 P (1966).

    Google Scholar 

  • Creutzfeldt, O.D., Ito, M.: Functional synaptic organization of primary visual cortex neurones in the cat. Exp. Brain Res. 6, 324–352 (1968).

    PubMed  CAS  Google Scholar 

  • Cronly-Dillon, J.R.: Units sensitive to direction of movement in goldfish optic tectum. Nature (Lond.) 203, 214–215 (1964).

    CAS  Google Scholar 

  • Cronly-Dillon, J.R.: Pattern of retinotectal connections after retinal regeneration. J. Neurophysiol. 31, 410–418 (1968).

    PubMed  CAS  Google Scholar 

  • Cronly-Dillon, J.R., Galand, G.: Analyse des responses visuelles unitaires dans le nerf optique et le tectum du triton, Triturus vulgaris. J. Physiol. (Paris) 58, 502–513 (1966).

    Google Scholar 

  • Crosby, E.C., Henderson, J. W.: The mammalian midbrain and isthmus regions. Part II: Fiber connections of the superior colliculus. J. comp. Neurol. 88, 53–91 (1948).

    PubMed  CAS  Google Scholar 

  • Daniel, P.M., Kerr, O.I.B., Senevirtane, K.N., Whitteridge, D.: The topographical re-presentation of the visual field on the lateral geniculate nucleus in the cat and monkey. J. Physiol. (Lond.) 159, 87–88 (1961).

    Google Scholar 

  • Daw, N.W.: Goldfish retina: Organization for simultaneous color contrast. Science 158, 942–944 (1967).

    PubMed  CAS  Google Scholar 

  • Denney, D., Baumgartner, G., Adorjani, C.: Responses of cortical neurones to stimulation of the visual afferent radiation. Exp. Brain Res. 6, 265–272 (1968).

    PubMed  CAS  Google Scholar 

  • Devalois, R.: Behavioral and electrophysiological studies in primate vision. In: Neff, W.L. (Ed.): Contributions to Sensory Physiology. New York: Academic Press 1965.

    Google Scholar 

  • Dichgans, J., Körner, F., Voigt, K.: Vergleichende Skalierung des afferenten und efferenten Bewegungssehens beim Menschen: Lineare Funktionen mit verschiedener Anstiegssteil¬heit. Psychol. Forsch. 32, 277–295 (1969).

    PubMed  CAS  Google Scholar 

  • Ditchburn, R.W., Fender, D.H.: The stabilized retinal image. Optica Acta 2, 128–133 (1955).

    Google Scholar 

  • Mayne, S.: Vision with controlled movements of the retinal image. J. Physiol. (Lond.) 145, 98–107 (1959).

    Google Scholar 

  • Mayne, S., Foley-Fisher, J.A.: Assembled data in eye movements. Optica Acta 14, 113–118 (1967).

    Google Scholar 

  • Mayne, S., Foley-Fisher, J.A., Ginsborg, B. L.: Vision with a stabilized retinal image. Nature (Lond.) 170, 36–37 (1952).

    Google Scholar 

  • Mayne, S., Foley-Fisher, J.A., Ginsborg, B. L.: Involuntary eye movements during fixation. J. Physiol. (Lond.) 119, 1–17 (1953).

    Google Scholar 

  • Donner, K.O., Reuter, T.: Visual adaptation of the rhodopsin rods in the frog’s retina. J. Physiol. (Lond.) 199, 59–87 (1968).

    CAS  Google Scholar 

  • Donner, K.O., Reuter, T., Rushton, W. A. H.: Rod-cone interaction in the frog’s retina analyzed by the Stiles-Craw¬ford-effect and by dark adaptation. J. Physiol. (Lond.) 149, 303–317 (1959).

    CAS  Google Scholar 

  • Dow, B.M., Dubner, R.: Visual receptive fields and responses to movement in an association area of cat cerebral cortex. J. Neurophysiol. 32, 773–783 (1969).

    PubMed  CAS  Google Scholar 

  • Dow, B.M., Dubner, R.: Single-unit responses to moving visual stimuli in middle suprasylvian gyrus of the cat. J. Neurophysiol. 34, 47–55 (1971).

    PubMed  CAS  Google Scholar 

  • Dowling, J.E.: Organization of vertebrate retina. Invest. Ophthalm. 9, 655–680 (1970).

    CAS  Google Scholar 

  • Dowling, J.E.: Synaptic organization of the frog retina: An electron microscopic analysis comparing the retinas of frogs and primates. Proc. roy. Soc. B 170, 205–228 (1968).

    CAS  Google Scholar 

  • Dowling, J.E., Werblin, F.S.: Organization of the retina of the mudpuppy, Necturus maculosus. I. Synaptic structure. J. Neurophysiol. 32, 315–338 (1969).

    PubMed  CAS  Google Scholar 

  • Dubner, R., Brown, F. J.: Response of cells to restricted visual stimuli in an association area of cat cerebral cortex. Exp. Neurol. 20, 70–86 (1968).

    PubMed  CAS  Google Scholar 

  • Dtjensing, F.: Die Erregungskonstellation im Rautenhirn des Kaninchens bei den Labyrinth¬stellreflexen (Magnus). Naturwissenschaften 48, 681–690 (1961).

    Google Scholar 

  • Dtjensing, F., Schaefer, K.-P.: Die Neuronenaktivität in der Formatio reticularis des Rhombencephalon beim vestibulären Nystagmus. Arch. Psychiat. Nervenkr. 196, 265–290 (1957).

    Google Scholar 

  • Dttensing, F., Schaefer, K.-P.: Die Aktivität einzelner Neurone der Formatio reticularis des nicht gefesselten Kaninchens bei Kopfbewegungen und vestibulären Reizen. Arch. Psychiatr. Nervenkr. 201, 97–122 (1960).

    Google Scholar 

  • Eibl-Eibesfeldt, I.: Nahrungserwerb und Beuteschema der Erdkröte. Behavior 4, 1–35 (1951).

    Google Scholar 

  • Enroth-Cugell, Ch, Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. (Lond.) 187, 517–552 (1966).

    Google Scholar 

  • Erickson, R.A.: Visual search performance in a moving structured field. J. Opt. Soc. Amer. 54, 355–405 (1964).

    Google Scholar 

  • Ewert, J.-P.: Elektrische Reizung des retinalen Projektionsfeldes im Mittelhirn der Erdkröte (Bufo bufo L.). Pflügers Arch. ges. Physiol. 295, 90–98 (1967).

    CAS  Google Scholar 

  • Ewert, J.-P.: Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo L.) durch elektrische Mittelhirnreizung. Z. vergl. Physiol. 54, 455–481 (1967).

    Google Scholar 

  • Ewert, J.-P.: Verhaltensphysiologische Untersuchungen zum „stroboskopischen Sehen” der Erdkröte (Bufo bufo L.). Pflügers Arch. ges. Physiol. 299, 158–166 (1968).

    CAS  Google Scholar 

  • Ewert, J.-P.: Quantitative Analyse von Reiz-Reaktionsbeziehungen bei visuellem Auslösen der Beute¬fang-Wendereaktion der Erdkröte (Bufo bufo L.). Pflügers Arch. ges. Physiol. 308, 225–243 (1969).

    CAS  Google Scholar 

  • Exner, S.: Über das Sehen von Bewegung und die Theorie des zusammengesetzten Auges. S.-B. Akad. Wiss. Wien, mat.-nat. Kl., Abt. III 72, 156–190 (1875).

    Google Scholar 

  • Eysel, U.T., Grüsser, O.-J.: Neurophysiological basis of pattern recognition in the cat’s visual system. In: Grüsser, O.-J., Klinke, R. (Hrsg.): Zeichenerkennung in technischen und biologischen Systemen. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Fender, D.H.: Control mechanisms of the eye. Sci. Amer. 187, 1–11 (1964).

    Google Scholar 

  • Fender, D.H., Gilbert, D.S.: Temporal and spatial filtering in the human visual system. Sei. Progr. 54, 41–59 (1966).

    CAS  Google Scholar 

  • Filehne, W.: Über das optische Wahrnehmen von Bewegungen. Z. Sinnesphysiol. 53, 134–145 (1922).

    Google Scholar 

  • Finkelstein, D., Grüsser, O.-J.: Frog retina: detection of movement. Science 150, 1050–1051 (1965).

    PubMed  CAS  Google Scholar 

  • Finkelstein, D., Grüsser, O.-J., Reich-Motel, H.: Reaktionen einzelner Retinaneurone des Frosches (Rana esculenta) auf bewegte Reize verschiedener Winkelgeschwindigkeit. Pflügers Arch. ges. Physiol. 283, R 48–49 (1965).

    Google Scholar 

  • Fischer, M.H., Kornmüller, A.E.: Optokinetisch ausgelöste Bewegungswahrnehmungen und optokinetischer Nystagmus. J. Psychol. Neurol. (Lpz.) 41, 273–308 (1930).

    Google Scholar 

  • Fite, K. V.: Single unit analysis of binocular neurons in the frog optic tectum. Exp. Neurol. 24, 475–488 (1969).

    PubMed  CAS  Google Scholar 

  • Foerster, M.H., Grüsser, O.-J.: unpublished results (1969).

    Google Scholar 

  • Foster, D. H.: The responses of the human visual system to moving spatially-periodic patterns. Vision Res. 9, 577–590 (1969).

    PubMed  CAS  Google Scholar 

  • Fröhlich, F. W.: Grundzüge einer Lehre vom Licht-und Farbsinn. Jena: Gustav Fischer 1921.

    Google Scholar 

  • Fröhlich, F. W.: Die Empfindungszeit, S. 365. Jena: Gustav Fischer 1929.

    Google Scholar 

  • Fusterjj.M., Creutzfeldt, O., Straschill, M.: Intracellular recording of neuronal activity in the visual system. Z. vergl. Physiol. 49, 605–622 (1965).

    Google Scholar 

  • Gaedt, Ch., Grüsser, O.-J.: The dependence of simultaneous contrast activation of retinal neurons on the temporal frequency of the stimuli. Unpubl. Study 1968.

    Google Scholar 

  • Garey, L. Y.: Interrelationship of the visual cortex and superior colliculus in the cat. Nature (Lond.) 207, 1410–1411 (1965).

    CAS  Google Scholar 

  • Gaze, R.M.: Binocular vision in frogs. J. Physiol. (Lond.) 148, 20 P (1958a).

    Google Scholar 

  • Gaze, R.M.: The representation of the retina on the optic lobe of the frog. Quart. J. exp. Physiol. 48, 209 (1958b).

    Google Scholar 

  • Gaze, R.M., Jacobson, M.: Convexity detectors in the frogs visual system. J. Physiol. (Lond.) 169, 1–3 (1963a).

    Google Scholar 

  • Gaze, R.M., Jacobson, M.: Types of single unit visual responses from different depths in the optic tectum of the goldfish. J. Physiol. (Lond.) 169, 92–93 P (1963b).

    Google Scholar 

  • Gaze, R.M., Jacobson, M.: A study of the retinotectal projection during regeneration of the optic nerve in the frog. Proc. roy. Soc. B 157, 420–448 (1963c).

    Google Scholar 

  • Gaze, R.M., Keating, M.J.: Receptive field properties of single units from the visual pro-jection to the ipsilateral tectum in the frog. Quart. J. exp. Physiol. 55, 143–152 (1970).

    PubMed  CAS  Google Scholar 

  • Gesteland, R.C., Howland, B., Lettvin, J. Y., Pitts, H.: Comments on microelectrodes. Proc. I.R.E. 47, 1856–1862 (1959).

    Google Scholar 

  • Godfraind, J.M., Meulders, M.: Effects de la stimulation sensorielle somatique sur le champs visuels de neurones de la région génuille chez le chat anaestesié au chloralose. Exp. Brain Res. 9, 183–201 (1969).

    PubMed  CAS  Google Scholar 

  • Godfraind, J.M., Meulders, M., Veraart, C.: Visual receptive fields of neurons in pulvinar, nucleus lateralis posterior and nucleus suprageniculatus thalami of the cat. Brain Res. 15, 552–555 (1969).

    PubMed  CAS  Google Scholar 

  • Goodwin, H.E., Hill, R.M.: Receptive fields of marsupial visual system. I. The superior colliculus. Amer. J. Optom. 45, 358–363 (1968).

    PubMed  CAS  Google Scholar 

  • Graham, C.H.: Perception of movement. In: Graham, C.H. (Ed.): Vision and visual perception, pp. 575–588. New York: John Wiley & Sons 1965.

    Google Scholar 

  • Grauer, C.: Mikroelektrodenableitungen aus dem Tectum opticum vom Goldfisch während des optokinetischen Nystagmus. Unpublished Study 1967.

    Google Scholar 

  • Grauer, C.: Neuronale Adaptation in der Froschnetzhaut. Unpublished Study 1969.

    Google Scholar 

  • Gross, O.G.: Visual functions of inferotemporal cortex. Handbook of Sensory Physiol. 7 (1970).

    Google Scholar 

  • Gross, O.G., Bender, B.D., Rocha-Miranda, C.E.: Visual receptive fields of neurons in the infero-temporal cortex of the monkey. Science 166, 1303–1306 (1969).

    PubMed  CAS  Google Scholar 

  • Grüsser, O.-J.: Reaktionen einzelner corticaler und retinaler Neurone der Katze auf Flimmer-licht und ihre Beziehungen zur subjektiven Sinnesphysiologie. Med. Diss. Freiburg i. Br. 1956.

    Google Scholar 

  • Grüsser, O.-J.: A quantitative analysis of spatial summation of excitation and inhibition within the receptive field of retinal ganglion cells of cats. Vision Res. Suppl. 3 (1971)(in press).

    Google Scholar 

  • Grüsser, O.-J., Creutzfeldt, O.: Eine neurophysiologische Grundlage des Brücke-Bartley-Effekts: Maxima der Impulsfrequenz retinaler und corticaler Neurone bei Flimmerlicht mittlerer Frequenzen. Pflügers Arch. ges. Physiol. 268, 668–681 (1957).

    Google Scholar 

  • Grüsser, O.-J., Creutzfeldt, O., Dannenberg, H.: Eine Perimeter-Apparatur zur Reizung mit bewegten visuellen Mustern. Pflügers Arch. ges. Physiol. 285, 373–378 (1965).

    Google Scholar 

  • Grüsser, O.-J., Creutzfeldt, O., Dannenberg, H., Finkelstein, D.: Analyse eines auf „Bewegungswahrnehmung” spezialisierten Neuronen-systems in der Froschnetzhaut. In: Kroebel, W. (Hrsg.): Fortschritte der Kybernetik, S. 83–95. München: R. Oldenbourg 1967.

    Google Scholar 

  • Grüsser-Cornehls, U.: The effect of stimulus velocity on the response of movement-sensitive neurons of the frog’s retina. Pflügers Arch. ges. Physiol. 300, 49–66 (1968).

    Google Scholar 

  • Grüsser-Cornehls, U.: Mikroelektrodenuntersuchungen zur Konvergenz vestibulärer und retinaler Afferenzen an einzelnen Neuronen des optischen Cortex der Katze. Pflügers Arch. ges. Physiol. 270, 227–238 (1960).

    Google Scholar 

  • Grüsser-Cornehls, U., Grüsser-Cornehls, U.: Reaktionsmuster einzelner Neurone im Geniculatum laterale und visuellem Cortex der Katze bei Reizung mit optokinetischen Streifenmustern. In: JUNG, R., KORNHUBER, H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems, S. 313–324. Berlin-Göttingen-Heidelberg: Springer 1961. Demonstration des inhibitorischen Umfeldeffektes bei bewegungsspezifischen Neu-ronen der Froschnetzhaut (Rana pipiens, Rana esculenta). Pflügers Arch. ges. Physiol. 291, 86 R (1966).

    Google Scholar 

  • Grüsser-Cornehls, U.: Neurophysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Z. vergi. Physiol. 59, 1–24 (1968a).

    Google Scholar 

  • Grüsser-Cornehls, U.: Die Informationsverarbeitung im visuellen System des Frosches. In: Marko, H., Färber, G. (Hrsg.): Kybernetik 1968, S. 331–360.

    Google Scholar 

  • München: R. Oldenbourg 1968b. Die Neurophysiologie visuell gesteuerter Verhaltensweisen bei Anuren. Verh. Zool. Gesell. 64, 201–218 (1970).

    Google Scholar 

  • München, Bullock, Th.: Functional organization of receptive fields of movement detecting neurons in the frog’s retina. Pflügers Arch. ges. Physiol. 279, 88–93 (1964).

    Google Scholar 

  • München, Bullock, Th., Finkelstein, D., Henn, V., Patutschnick, M., Butenandt, E.: A quantitative analysis of movement-detecting neurons in the frog’s retina. Pflügers Arch. ges. Physiol. 292, 100–106 (1967).

    Google Scholar 

  • Grüsser, O.-J., Grüsser-Cornehls, U., Hamasakt, D.: Responses of neurons of the retina and the geniculate body of cats to moving visual stimuli. (1970; publication in preparation). The effect of different stimulus parameters on the response of movement and direction sensitive neurons in the visual association areas of the cat’s brain. (1970; publication in preparation). LICKER, M.: Further studies on the velocity function of movement-detecting class–2 neurons in the frog retina. Vision Res. 8, 1173–1185 (1968).

    PubMed  Google Scholar 

  • Grüsser, O.-J., Patutschnick, M.: The contrast sensitivity of movement-detecting neurons in the frog’s retina. Pflügers Arch. ges. Physiol. (1971, in preparation). SAUR, G.: Reaktionen einzelner Neurone im optischen Cortex der Katze nach elek¬trischer Polarisation des Labyrinths. Pflügers Arch. ges. Physiol. 269, 593–612 (1959).

    Google Scholar 

  • Grüsser, O.-J., Patutschnick, M., Henn, V.: Unpubl. Study 1968.

    Google Scholar 

  • Grüsser, O.-J., Patutschnick, M., Henn, V., Reich-Motel, H.: Neuronale Adaptation bewegungsspezifischer Neurone der Frosch¬netzhaut. Unpubl. Study 1965.

    Google Scholar 

  • Grüsser, O.-J., Patutschnick, M., Henn, V., Reich-Motel, H., Reidemeister, Ch.: Flimmerlichtuntersuchungen an der Katzenretina. II. Off-Neurone und Besprechung der Ergebnisse. Z. Biol. 111, 254–270 (1959).

    Google Scholar 

  • Grüsser, O.-J., Patutschnick, M., Henn, V., Reich-Motel, H., Reidemeister, Ch., Satjr, G.: Monokulare und binokulare Lichtreizung einzelner Neurone im Geniculatum laterale der Katze. Pflügers Arch. ges. Physiol. 271, 595–612 (1960).

    Google Scholar 

  • Grüsser-Cornehls, U.: Reaktionen bewegungsempfindlicher Neurone der Froschnetzhaut bei stroboskopischer Belichtung des Reizmusters. Pflügers Arch. ges. Physiol. 294, 65 (1967).

    Google Scholar 

  • Grüsser-Cornehls, U.: Response of movement-detecting neurons of the frog’s retina to moving patterns under stroboscopic illumination. Pflügers Arch. 303, 1–13 (1968 a).

    PubMed  Google Scholar 

  • Grüsser-Cornehls, U., Grüsser, O.-J.: Reaktionsmuster der Neurone im zentralen visuellen System von Fischen, Kaninchen und Katzen auf monokulare und binokulare Lichtreize. IN: JUNG, R., KORN-HUBER, H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems, S. 275–286. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Grüsser-Cornehls, U., Grüsser, O.-J., Bullock, Th.: Reaktionen einzelner Retinaneurone des Frosches (Rana pipiens) bei Reizung mit bewegten optischen Mustern. Pflügers Arch. ges. Physiol. 278, 60–61 R (1963).

    Google Scholar 

  • Grüsser-Cornehls, U., Grüsser, O.-J., Bullock, Th.:Unit response in the frog’s tectum to moving and non-moving visual stimuli. Science 141, 820–822 (1963).

    Google Scholar 

  • Grüsser-Cornehls, U., Grüsser, O.-J., Bullock, Th., Himstedt, W.: Responses of retinal and tectal neurons of the salamander (Salamandra salamandra) to moving stimuli. (Brain Behav.Evol. in press 1972)

    Google Scholar 

  • Grüsser-Cornehls, U., Grüsser, O.-J., Bullock, Th., Himstedt, W., Lüdcke, M.: Vergleichende neurophysiologische Untersuchungen zur Signalverarbeitung in der Netzhaut von Anuren. Pflügers Arch. ges. Physiol. 319, R 148 (1970).

    Google Scholar 

  • Grüsser-Cornehls, U., Grüsser, O.-J., Bullock, Th., Himstedt, W., Lüdcke, M.: A quantitative study of signal processing in the retina of the cuban tree-frog (Hyla septentrionalis). Z. vergl. Physiol, (in preparation, 1971 ).

    Google Scholar 

  • Guselnikov, V. J., Vodolazskij, A.N.: Einige Angaben über den Sehanalysator der Taube (Detektoreigenschaften der Retina) (russ.). Nauc, dokl. vyss. skoly. biol. nauki 9, 45–52 (1968).

    Google Scholar 

  • Haberich, F. J., Fischer, M.H.: Die Bedeutung des Lidschlags für das Sehen beim Umher¬blicken. Pflügers Arch. ges. Physiol. 267, 626–635 (1958).

    CAS  Google Scholar 

  • Hamdi, F.A., Whitteridge, D.: The representation of the retina on the optic tectum of the pigeon. Quart. J. exp. Physiol. 39, 111–119 (1954).

    Google Scholar 

  • Hamilton, CH., Lund, J. S.: Visual discrimination of movement midbrain or forebrain. Science 170, 1428–1430 (1970).

    Google Scholar 

  • Hartline, H. K.: The response of single optic nerve fibres of the vertebrate eye to illumination of the retina. Amer. J. Physiol. 121, 400–415 (1938).

    Google Scholar 

  • Hartline, H. K.: The receptive fields of the optic nerve fibres. Amer. J. Physiol. 130, 690–699 (1940a).

    Google Scholar 

  • Hartline, H. K.: The effects of spatial summation on the retina on the excitation of the fibres of the optic nerve. Amer. J. Physiol. 130, 700–711 (1940b).

    Google Scholar 

  • Harutiunian-Kozak, B., Kozak, W., Dec, K.: Single unit activity in the pretectal region of the cat. Acta Biol. Exp. (Warzawa) 28, 333–343 (1968).

    CAS  Google Scholar 

  • Harutiunian-Kozak, B., Kozak, W., Dec, K., Balcer, E.: Responses of single cells in the superior colliculus of the cat to diffuse light and moving stimuli. Acta Biol. Exp. (Warzawa) 28, 317–331 (1968).

    CAS  Google Scholar 

  • Hebbard, F.W., Marg, E.: Physiological nystagmus in the cat. J. Opt. Soc. Amer. 50, 151–155 (1960).

    CAS  Google Scholar 

  • Helmholtz, H.: Handbuch der physiologischen Optik. 1. Aufl. Leipzig: Voss 1867.

    Google Scholar 

  • Henn, V., Grüsser, O.-J.: The summation of excitation in the receptive field of movement-sensitive neurons of the frog’s retina. Vision Res. 9, 57–69 (1969).

    PubMed  CAS  Google Scholar 

  • Henn, V., Grüsser, O.-J., Reiter, H.: Die Erregungsintegration im excitatorischen rezeptiven Feld bewegungs¬spezifischer Retinaneurone des Frosches (Rana esculenta). Pflügers Arch. ges. Physiol. 289, R 86–87 (1966).

    Google Scholar 

  • Heusser, H.: Die Lebensweise der Erdkröte Bufo bufo (L.); das Orientierungsproblem. Rev. Suisse de Zool. 76, 443–518 (1969).

    CAS  Google Scholar 

  • Hill, R.M.: Unit response of the rabbit lateral geniculate nucleus to monochromatic light on the retina. Science 135, 98–99 (1962).

    PubMed  CAS  Google Scholar 

  • Hill, R.M., Receptive Field Properties Of The Superior Colliculus Of The Rabbit. Nature (Lond.) 211, 1401–1409 (1966).

    Google Scholar 

  • Himstedt, W.: Experimentelle Analyse der optischen Sinnesleistungen im Beutefangver¬halten der einheimischen Urodelen. Zool. Jb. Physiol. 73, 281–320 (1967).

    Google Scholar 

  • Himstedt, W., Schaller, F.: Versuche zu einer Analyse der Beutefangreaktionen von Urodelen auf optische Reize. Naturwissenschaften 53, 619 (1966).

    PubMed  CAS  Google Scholar 

  • Hirsch, H.V.B., Spinelli, D.N.: Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science 168, 869–871 (1970).

    PubMed  CAS  Google Scholar 

  • Holst, E.V., Mittelstaedt, H.: Das Reafferenzprinzip (Wechselwirkungen zwischen Zentral-nervensystem und Peripherie). Naturwissenschaften 37, 464–476 (1950).

    Google Scholar 

  • Holt, E.B.: Eye movement and central anesthesia. Psychol. Rev. Mon. Suppl. 4, 3–45 (1903).

    Google Scholar 

  • Honegger, H., Schäfer, W.D., Jaeger, W.: Untersuchungen über die Sehschärfe für be¬wegte Objekte. II. Vergleich von horizontaler und kreisförmiger Projektion der Seh¬zeichen. Albrecht v. Graefes Arch. Ophthal. 178, 132–146 (1969).

    CAS  Google Scholar 

  • Horn, G.: The effect of somaesthetic and photic stimuli on the activity of units in the striate cortex of unanesthetized, unrestrained cats. J. Physiol. (Lond.) 179, 263–277 (1965).

    CAS  Google Scholar 

  • Horn, G., Hill, R.M.: Responsiveness to sensory stimulation of units in the superior colliculus and subjacent regions of the rabbit. Exp. Neurol. 14, 199–223 (1966a).

    PubMed  CAS  Google Scholar 

  • Horn, G., Hill, R.M.:Effect of removing the neocortex on the response to repeated sensory stimulation of neurons in the midbrain. Nature (Lond.) 211, 754–755 (1966b).

    CAS  Google Scholar 

  • Horn, G., Hill, R.M.:Modifications of receptive fields of cells in the visual cortex occuring spontaneously and associated with bodily tilt. Nature (Lond.) 221, 186–188 (1969).

    CAS  Google Scholar 

  • Hubel, D.H.: Integrative processes in central visual pathways of the cat. J. Opt. Soc. Amer. 53, 58–66 (1963).

    CAS  Google Scholar 

  • Hubel, D.H.: Single unit activity in striate cortex of unrestrained cats. J. Physiol. (Lond.) 147, 226–238 (1959).

    CAS  Google Scholar 

  • Hubel, D.H.: Transformation of information in the cat’s visual system. In Vol. Ill, Proc. Int. Union Physiol. Sci. 1962, 160–169.

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. (Lond.) 148, 574–591 (1959).

    CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields of optic nerve fibres in the spider monkey. J. Physiol. (Lond.) 154, 572–580 (1960).

    CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Integrative action in the cat’s lateral geniculate body. J. Physiol. (Lond.) 155, 385–398 (1961).

    CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Shape and arrangement of columns in cat’s striate cortex. J. Physiol. (Lond.) 165, 559–568 (1963).

    CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965).

    PubMed  CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields and architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

    CAS  Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Visual area of the lateral suprasylvian gyrus (Clare-Bishop area) of the cat. J. Physiol. (Lond.) 202, 251–260 (1969).

    CAS  Google Scholar 

  • Huber, G.C., Crosby, E.C., Woodburne, R.T., Gillian, L. A., Brown, J. O., Tamthai, B.: The mammalian midbrain and isthmus region. Part I: The nuclear pattern. J. comp. Neurol. 78, 129–534 (1943).

    Google Scholar 

  • Humphrey, N.K.: The receptive fields of visual units in the superior colliculus of the rat. Proc. Physiol. Soc. 189, 86–88 P (1967).

    Google Scholar 

  • Ingle, D.: Visual releasers of prey-catching behavior in frogs and toads. Brain Behav. Evol. 1, 500–518 (1968).

    Google Scholar 

  • Jacobs, J. H.: Receptive fields in visual systems. Brain Res. 14, 553–575 (1969).

    PubMed  CAS  Google Scholar 

  • Jacobson, M.: The representation of the retina on the optic tectum of the frog. Correlation between retinotectal magnification factor and retinal ganglion cell count. Quart. J. exp. Physiol. 47, 170–178 (1962).

    PubMed  CAS  Google Scholar 

  • Jacobson, M.: Spectral sensitivity of single units in the optic tectum of the goldfish. Quart. J. exp. Physiol. 49, 384–393 (1964).

    PubMed  CAS  Google Scholar 

  • Jacobson, M., Gaze, M.R.: Types of visual response from single units in the optic tectum and optic nerve of the goldfish. Quart. J. exp. Physiol. 49, 199–209 (1964).

    PubMed  CAS  Google Scholar 

  • Jaeger, W., Honegger, H.: Untersuchungen über die Sehschärfe für bewegte Objekte. Albrecht v. Graefes Arch. Ophthalm. 166, 601–616 (1964).

    Google Scholar 

  • Jassik-Gerschenfeld, D.: Somesthetic and visual responses of the superior colliculus neurones. Nature (Lond.) 208, 898–900 (1965).

    CAS  Google Scholar 

  • Jassik-Gerschenfeld, D., Minois, T., Conde-Courtine, F.: Receptive field properties of directionally selective units in the pigeon’s optic tectum. Brain Res. 24, 407–421 (1970).

    PubMed  CAS  Google Scholar 

  • Jones, B. H.: Responses of single neurons in cat visual cortex to a simple and a more complex stimulus. Amer. J. Physiol. 218, 1102–1108 (1970).

    PubMed  CAS  Google Scholar 

  • Julesz, B., Payne, R.A.: Differences between monocular and binocular stroboscopic move¬ment perception. Vision Res. 8, 433–444 (1968).

    PubMed  CAS  Google Scholar 

  • Jung, R.: Neuronal discharge. Electroenceph. clin. Neurophysiol., Suppl. 4, 57–71 (1953).

    Google Scholar 

  • Jung, R.: Nystagmographie: Zur Physiologie und Pathologie des optisch-vestibulären Systems beim Menschen. In: Bergmann, G.V. (Hrsg.:) Handbuch der Inneren Medizin, 4. Aufl., Bd. V/1, S. 1325–1379. Berlin-Göttingen-Heidelberg: Springer 1953.

    Google Scholar 

  • Jung, R.: Korrelationen von Neuronentätigkeit und Sehen. In: Jung, R., Kornhuber, H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems, S. 410–434. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Jung, R., Baumgartner, G.: Neuronenphysiologie der visuellen und paravisuellen Rindenfelder. 8. Int. Congr. Neurol. Wien 1965, Symp. Proc. 3, S. 47–75.

    Google Scholar 

  • Jung, R., Baumgartner, G., Baumgartner, R. V., Baumgartner, G.: Mikroableitungen von einzelnen Nervenzellen im optischen Cortex der Katze: die lichtaktivierten B-Neurone. Arch. Psychiat. Nervenkr. 189, 521–539 (1952).

    PubMed  CAS  Google Scholar 

  • Kalil, R.E., Chase, R.: Corticofugal influence on activity of lateral geniculate neurons in the cat. J. Neurophysiol. 33, 459–474 (1970).

    PubMed  CAS  Google Scholar 

  • Kano, C.: Die Wirkung der anschaulichen Größenunterschiede auf die Bewegungsschwelle bei übereinstimmender Größe der gereizten Netzhaut-Areale. Psychol. Forsch. 33, 242–253 (1970).

    PubMed  CAS  Google Scholar 

  • Kawamura, H., Marchiafava, P. L.: Excitability changes along visual pathways during eye tracking movements. Arch. ital. Biol. 100, 141–156 (1968).

    Google Scholar 

  • Keating, M. J., Gaze, R.M.: Observations on the surround properties of the receptive fields of frog retinal ganglion cells. Quart. J. exp. Physiol. 55, 129–142 (1970).

    PubMed  CAS  Google Scholar 

  • Keesey, U. T.: Effects of involuntary eye movements on visual acuity. J. Opt. Soc. Amer. 50, 769–774 (1960).

    CAS  Google Scholar 

  • Keesey, U. T.: Visibility of a stabilized target as a function of rate and amplitude of luminance variation. J. Opt. Soc. Amer. 55, 1577 (1965).

    Google Scholar 

  • Keesey, U. T., Riggs, L.A.: Visibility of Mach bands with imposed motions of the retinal image. J. Opt. Soc. Amer. 52, 719–720 (1962).

    Google Scholar 

  • Kennedy, J. L.: The natures and physiological basis of visual movement discrimination in animals. Psychol. Rev. 43, 494–521 (1936).

    Google Scholar 

  • Kennedy, J. L.: The effect of complete and partial occipital lobectomy upon the thresholds of visual real movement discrimination in the cat. J. gen. Psychol. 54, 119–149 (1939a).

    Google Scholar 

  • Knapp, H., Scalia, F., Riss, W.: The optic tracts of Rana pipiens. Acta neurol. scand. 41, 325–355 (1965).

    Google Scholar 

  • Körner, F.: Die Geschwindigkeitsperzeption beim Bewegungssehen. Ber. dtsch. Ophthal. Ges. 69, 569–1972 (1969).

    Google Scholar 

  • Körner, F., Dichgans, JJ.: Bewegungswahrnehmung, optokinetischer Nystagmus und retinale Bild-wanderung. Der Einfluß visueller Aufmerksamkeit auf zwei Mechanismen des Bewegungs-sehens. Albrecht v. Graefes Arch. klin. exp. Ophthal. 174, 34–48 (1967).

    Google Scholar 

  • Koffka, K.: Die Wahrnehmung von Bewegung. In: Bethe, A.U.A. (Hrsg.): Handbuch der normalen und pathologischen Physiologie, Bd. XII/2, S. 1156–1214. Berlin: Springer 1931.

    Google Scholar 

  • Kommerell, G., Thiele, H.: Der optokinetische Kurzreiznystagmus. Albrecht v. Graefes Arch. klin. exp. Ophthal. 179, 220–234 (1970).

    CAS  Google Scholar 

  • Kornmüller, A.E.: Eine experimentelle Anaesthesie der äußeren Augenmuskeln am Menschen und ihre Auswirkungen. J. Psychol. Neurol. (Lpz.) 41, 354–366 (1931).

    Google Scholar 

  • Kostelyanyets, N.B.: The influence of the speed of increment of the test-object upon the characteristics of the response of the ganglion off-cell of the frog’s retina. Biofizika 157, 1225–1228 (1964) (Russ.).

    Google Scholar 

  • Kostelyanyets, N.B.: Investigation of receptive off-fields of frog retina by means of dark moving stimuli. Zh. vyssh. nerv. Deyat. Pavlova 15, 521–524 (1965) (Russ.).

    Google Scholar 

  • Kozak, W., Rodieck, R.W., Bishop, P.O.: Responses of single units in lateral geniculate of nucleus of cat to moving visual patterns. J. Neurophysiol. 28, 19–47 (1965).

    PubMed  CAS  Google Scholar 

  • Krauskopf, J.: Effect of retinal image motion on contrast thresholds for maintained vision. J. Opt. Soc. Amer. 47, 740–741 (1952).

    Google Scholar 

  • Krauskopf, J.: Effect of target oscillation on contrast resolution. J. Opt. Soc. Amer. 52, 1306 (1962).

    Google Scholar 

  • Ktjffler, S.W.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).

    Google Scholar 

  • Laties, A.M., Sprague, J.M.: The projection of optic fibers to visual centers of the cat. J. comp. Neurol. 127, 35–70 (1966).

    PubMed  CAS  Google Scholar 

  • Latour, P. L.: Visual threshold during eye movements. Vision Res. 2, 261–262 (1962).

    Google Scholar 

  • Lazar, G., Szekely, G.: Golgi studies on the optic center of the frog. J. Hirnforsch. 9, 329–344 (1967).

    PubMed  CAS  Google Scholar 

  • Lazar, G., Szekely, G.: Distribution of optic terminals in the different optic centres of the frog. Brain Res. 10, 1–14 (1969).

    Google Scholar 

  • Lettvin, J.Y., Maturana, H. R., Mcculloch, W.S., Pitts, W.H.: What the frog’s eye tells the frog’s brain. Proc. I.R.E. 47, 1940–1951 (1959).

    Google Scholar 

  • Pitts, W.H., Mcculloch, W.S.: Two remarks on the visual system of the frog. In: Rosenblith, W. (Ed.): Sensory Communication, pp. 757–776. Cambridge: M.I.T. Press 1961.

    Google Scholar 

  • Levick, W.R.: Receptive fields of rabbit retinal ganglion cells. Amer. J. Optom. 42, 337–343 (1965).

    PubMed  CAS  Google Scholar 

  • Levick, W.R.: Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit’s retina. J. Physiol. (Lond.) 188, 285–307 (1967).

    CAS  Google Scholar 

  • Levick, W.R.: Oyster, C.W., Takahashi, E.: Rabbit lateral geniculate nucleus: sharpener of directional information. Science 165, 712–714 (1969).

    PubMed  CAS  Google Scholar 

  • Licker, M.: Changes in receptive field organization of movement detecting neurons of frog retina dependent on adaptation level. Pflügers Arch. ges. Physiol. 294, 64 (1967).

    Google Scholar 

  • Licker, M., Panten, B.: Unpubl. Study 1968.

    Google Scholar 

  • Lipetz, L.E., Hill, R.M.: Discrimination characteristics of the turtle’s retinal ganglion cells. Experientia (Basel) 26, 373–374 (1970).

    CAS  Google Scholar 

  • Lit, A.: Visual acuity. Ann. Rev. Psychol. 19, 27–54 (1968).

    CAS  Google Scholar 

  • Lömo, T., Mollica, A.: Activity of single units in the primary optic cortex in the unanesthetized rabbit during visual, acoustic, olfactory and painful stimulation. Arch. ital. Biol. 100, 86–120 (1962).

    Google Scholar 

  • Ludvigh, E.: Visual acuity while one eye is viewing a moving object. Amer. Arch. Ophthal. 42, 14–22 (1949).

    CAS  Google Scholar 

  • Lund, R.D.: Terminal distribution in the superior colliculus of fibers originating in the visual cortex. Nature (Lond.) 204, 1283–1285 (1964).

    CAS  Google Scholar 

  • Lunkenheimer, H.-U., Grüsser, O.-J.: Nichtlineare Übertragungseigenschaften retinaler Neurone der Katze. Pflügers Arch. ges. Physiol. 291, 88 (1966).

    Google Scholar 

  • Mackay, D.M.: Perceptual stability of stroboscopically lit visual field containing self-luminous objects. Nature (Lond.) 181, 501–508 (1958).

    Google Scholar 

  • Mackay, D.M.: Elevation of visual threshold by displacement of retinal image. Nature (Lond.) 225, 90–92 (1970).

    CAS  Google Scholar 

  • Mandl, G.: Localization of visual patterns by neurons in cerebral cortex of the cat. J. Neuro-physiol. 33, 812–826 (1970).

    CAS  Google Scholar 

  • Marchiafava, P.L., Pepeu, G.: The responses of units in the superior colliculus of the cat to a moving stimulus. Experientia (Basel) 22, 51–53 (1966).

    CAS  Google Scholar 

  • Marchiafava, P.L., Pepeu, G.: Electrophysiological study of tectal responses to optic nerve volley. Arch. ital. Biol. 104, 406–420 (1966).

    Google Scholar 

  • Marg, E., Adams, J. E.: Evidence for a neurological zoom system in vision from angular changes in some receptive fields of single neurons with changes in fixation distance in the human visual cortex. Experientia (Basel) 26, 270–272 (1970).

    CAS  Google Scholar 

  • Mashhour, M.: Psychophysical relations in the perception of velocity. Acta Universitatis Stockholmiensis, Stockholm Studies in Psychology, Vol. 3, p. 176. Stockholm: Alm-quist & Wiksell 1964.

    Google Scholar 

  • Mashhour, M., Maturana, H. R.: Number of fibers in the optic nerve and the number of ganglion cells in the retina of Anurans. Nature (Lond.) 183, 1406–1407 (1959).

    Google Scholar 

  • Mashhour, M., Maturana, H. R.: Functional organization of the pigeon retina. Proc. 22nd int. Cong. Physiol. Sci. 3, 170–178 (1962).

    Google Scholar 

  • Mashhour, M., Maturana, H. R., Frenk, S.: Directional movement and horizontal edge detectors in the pigeon retina. Science 142, 977–979 (1963).

    Google Scholar 

  • Mashhour, M., Maturana, H. R., Frenk, S., Lettvin, J.Y., Mcculloch, W.S., Pitts, W.H.: Physiological evidence that cut optic nerve fibres in the frog regenerate to their proper place in the tectum. Science 130, 1709 (1959).

    Google Scholar 

  • Mashhour, M., Maturana, H. R., Frenk, S., Lettvin, J.Y., Mcculloch, W.S., Pitts, W.H.: Anatomy and physiology of vision in the frog (Rana pipiens). J. gen. Physiol. 43, 129–175 (1960).

    Google Scholar 

  • Mcgill, J. L.: Organization within the central and centrifugal fibre pathway in the avian visual system. Nature (Lond.) 204, 395–396 (1964).

    CAS  Google Scholar 

  • Mcilwain, J.T., Buser, B.: Receptive fields of single cells in the cat’s superior colliculus. Exp. Brain Res. 5, 314–325 (1968).

    PubMed  CAS  Google Scholar 

  • Mcilwain, J.T., Buser, B., Creutzfeldt, O.D.: Microelectrode study of synaptic excitation and inhibition in the lateral geniculate nucleus of the cat. J. Neurophysiol. 30, 1–21 (1967).

    Google Scholar 

  • Mcilwain, J.T., Buser, B., Creutzfeldt, O.D., Fields, H. L.: Superior colliculus: Single unit responses to stimulation of visual cortex in the cat. Science 170, 1426–1428 (1970).

    PubMed  CAS  Google Scholar 

  • Meulders, M., Godfraind, J.M.: Influence du reveil d’origine réticulaire sur l’étendue des champs visuels des neurones de la région genuillée chez le chat avec cerveau intact ou avec cerveau isolé. Exp. Brain Res. 9, 201–220 (1969).

    PubMed  CAS  Google Scholar 

  • Meyer, D.L., Schott, D., Schaefer, K.-P.: Reizversuche im Tectum opticum frei schwim¬mender Kabeljaue bzw. Dorsche (Gadus morrhua L.). Pflügers Arch. ges. Physiol. 314, 240–252 (1970).

    CAS  Google Scholar 

  • Michael, C.R.: Receptive fields of directionally selective units in the optic nerve of ground squirrel. Science 152, 1092–1094 (1966).

    PubMed  CAS  Google Scholar 

  • Michael, C.R.: Receptive fields of opponent color units in the optic nerve of the ground squirrel. Science 152, 1095–1096 (1966).

    PubMed  CAS  Google Scholar 

  • Michael, C.R.: Receptive fields of single optic nerve fibres in a mammal with an all-cone retina. II. Directionally selective units. J. Neurophysiol. 31, 257–261 (1968).

    PubMed  CAS  Google Scholar 

  • Michael, C.R.: Visual response properties and functional organization of cells in the superior colliculus of the ground squirrel. Vision Res. Suppl. 3 (in press, 1971).

    Google Scholar 

  • Miller, I. W., Ludwigh, E.: The effect of relative motion on visual acuity. Invest. Ophthal. 7, 83–116 (1962).

    CAS  Google Scholar 

  • Minkowski, M.: Experimentelle Untersuchungen über die Beziehungen der Großhirnrinde und der Netzhaut zu den primären optischen Zentren, besonders zum Corpus geniculatum externum. Arb. hirnanat. Inst. Zürich 7, 259–362 (1913).

    Google Scholar 

  • Mitrani, L., Mateff, St., Yakimoff, N.: Smearing of the retinal image during voluntary saccadic eye movements. Vision Res. 10, 405–410 (1970).

    Google Scholar 

  • Mitrani, L., Mateff, St., Yakimoff, N.: Temporal and spatial characteristics of visual suppression during voluntary saccadic eye movements. Vision Res. 10, 417–422 (1970).

    Google Scholar 

  • Mkrucheva, L. J.: Elements of the functional organization of the visual system in the frog. Zh, vyssh. nerv. Deyat. Pavlova 15, 513 (1965);

    Google Scholar 

  • Mkrucheva, L. J.: Amer. Fed. Proc. Transl. Suppl. 23, (2), T 373–376 (1966).

    Google Scholar 

  • Mkrucheva, L.T., Samsonova, V.G.: Sensitivity of neurons of the frog’s tectum to changes in the intensity of light stimulus. Vision Res. 6, 419–426 (1966)

    Google Scholar 

  • Montero, V.M., Brugge, J.F.: Direction of movement as the significant stimulus parameter for some lateral geniculate cells in the rat. Vision Res. 9, 71–88 (1969).

    PubMed  CAS  Google Scholar 

  • Montero, V.M., Brugge, J.F., Robles, L.: Oculomotor modulation on lateral geniculate nucleus cell responses. Vision Res. Suppl. 3 (in press, 1971).

    Google Scholar 

  • Moore, R. J., Goldberg, J.M.: Ascending projections of the inferior colliculus in the cat. J. comp. Neurol. 121, 109–136 (1963).

    Google Scholar 

  • Morgan, C.T.: The visual discrimination of real movement in the cat. Psychol. Bull. 34, 519–523 (1937).

    Google Scholar 

  • Müntz, W.R.A.: Microelectrode recordings from the diencephalon of the frog (Rana pipiens) and a blue-sensitive system. J. Neurophysiol. 32, 699–711 (1962).

    Google Scholar 

  • Norton, A.C., Clark, G.: Effects of cortical and collicular lesions on brightness and flicker discrimination in the cat. Vision Res. 3, 29–44 (1963).

    Google Scholar 

  • Norton, A. L., Spekreijse, H., Wagner, H.G., Wolbarsht, M.L.: Responses to directional stimuli in retinal preganglionic units. J. Physiol. (Lond.) 206, 93–107 (1970).

    CAS  Google Scholar 

  • Nyberg-Hansen, R.: The location and termination of tectospinal fibers in the cat. Exp. Neurol. 9, 212–227 (1963).

    Google Scholar 

  • Orban, G., Wissaert, R., Callens, M.: Influence of brain stem oculomotor area stimulation on single unit activity in the visual cortex. Mathematical analysis of the results. Brain Res. 17, 351–355 (1970).

    PubMed  CAS  Google Scholar 

  • Otsuka, R., Hassler, R.: Über Aufbau und Gliederung der corticalen Sehsphäre der Katze. Arch. Psychiat. Nervenkr. 203, 212–234 (1962).

    PubMed  CAS  Google Scholar 

  • Oyster, C.W.: The analysis of image motion by the rabbit retina. J. Physiol. (Lond.) 199, 613–635 (1968).

    CAS  Google Scholar 

  • Oyster, C.W., Barlow, H.B.: Direction selective units in rabbit retina: Distribution of preferred directions. Science 155, 841–842 (1967).

    PubMed  CAS  Google Scholar 

  • Palka, J.: An inhibitory process influencing visual responses in a fibre of the ventral nerve cord of locusts. J. insect Physiol. 13, 235–248 (1967).

    Google Scholar 

  • Pantle, A., Sekuler, R.: Contrast response of human visual mechanisms sensitive to orientation and direction of motion. Vision Res. 9, 397–406 (1969).

    PubMed  CAS  Google Scholar 

  • Pantle, A.J., Sekuler, R.W.: Velocity-sensitive elements in human vision: Initial psycho¬physical evidence. Vision Res. 8, 445–450 (1968).

    PubMed  CAS  Google Scholar 

  • Partridge, L.D., Brown, J. E.: Receptive fields of rat retinal ganglion cells. Vision Res. 10, 455–461 (1970).

    PubMed  CAS  Google Scholar 

  • Patutschnick, M., Grüsser, O.-J.: Der Einfluß des Reiz-Hintergrundkontrastes auf die Aktivierung bewegungsspezifischer Neurone der Froschnetzhaut (Rana esculenta). Pflügers Arch. ges. Physiol. 291, R 85 (1966).

    Google Scholar 

  • Pettigrew, J.D., Nikara, T., Bishop, P.O.: Responses to moving slits by single units in cat striate cortex. Exp. Brain Res. 6, 333–390 (1968).

    Google Scholar 

  • Pettigrew, J.D., Nikara, T., Bishop, P.O., Binocular Interaction On Single Units In Cat Striate Cortex: Simultaneous stimulation by single moving slit with receptive fields in correspondence. Exp. Brain Res. 6, 391–410 (1968).

    PubMed  CAS  Google Scholar 

  • Pickering, S.: The extremely long latency response from on-off-retinal ganglion cells: Relationship to dark adaptation. Vision Res. 8, 383–387 (1968).

    PubMed  CAS  Google Scholar 

  • Pickering, S., Varju, D.: Ganglion cells in the frog retina: Inhibitory receptive field and long latency response. Nature (Lond.) 215, 545–546 (1967).

    CAS  Google Scholar 

  • Precht, W., Richter, A., Grippo, J.: Responses of neurons in cat’s abducens nuclei to horizontal angular acceleration. Pflügers Arch. 309, 285–309 (1969).

    PubMed  CAS  Google Scholar 

  • Pritchard, E.M., Heron, W.: Small eye movement in the cat. Can. J. Psychol. 14, 131–137 (1960).

    PubMed  CAS  Google Scholar 

  • Rackensperger, W., Reiter, H., Wuttke, W., Snigula, F.: Die Reaktion einzelner Retina¬neurone auf sinusförmige Leuchtdichtänderung. Pflügers Arch. ges. Physiol. 283, R 50 (1965).

    Google Scholar 

  • Ramon, Y. Cajal, P.: Investigaciones de histológica comparado de los centros opticos de distinos vertebrados. Doctoral Thesis. Universidad de Zaragoza 1890. Zit. nach MATURANA et al. 1970.

    Google Scholar 

  • Rasmussen, A.T.: Tractus tectospinalis in the cat. J. comp. Neurol. 68, 501–525 (1936).

    Google Scholar 

  • Reich-Motel, H., Butenandt, E.: Nicht photochemisch bedingte Adaptation in der Netz¬haut von Fröschen (Rana esculenta). Pflügers Arch. ges. Physiol. 283, R 28 (1965).

    Google Scholar 

  • Reidemeister, Ch., Grüsser, O.-J.: Flimmerlichtuntersuchungen an der Katzenretina. I. und II. Z. Biol. 111, 241–270 (1959).

    Google Scholar 

  • Reuter, T.: Visual pigments and ganglion cell activity in the retina of tadpoles and adult frogs (Rana temporaria L.). Acta Zool. Fenn. 122, 3–64 (1969).

    Google Scholar 

  • Revzin, A. M.: Unit responses to visual stimuli in the nucleus rotundus of the pigeon. Fed. Proc. 26, 2238 (1969).

    Google Scholar 

  • Revzin, A. M.: A specific visual projection area in the hyperstriatum of the pigeon (Columba livia). Brain Res. 15, 246–249 (1969).

    PubMed  CAS  Google Scholar 

  • Riesen, A. H., Aarons, L.: Visual movement and intensity discrimination in cats after early deprivation of pattern vision. J. comp, physiol. Psychol. 52, 142–149 (1959).

    CAS  Google Scholar 

  • Riggs, L., Ratliff, A., Cornsweet, J.C., Cornsweet, T. N.: The disappearance of steadily fixated visual test objects. J. opt. Soc. Amer. 43, 495–501 (1953).

    CAS  Google Scholar 

  • Riggs, L.A., Tulunay, U.: Visual effects of varying the extent of compensation for eye movements. J. opt. Soc. Amer. 49, 741–746 (1959).

    CAS  Google Scholar 

  • Risos, A.: Die visuelle Wahrnehmung während des optokinetischen Nystagmus des Menschen. Pflügers Arch. ges. Physiol. 283, R 63 (1965).

    Google Scholar 

  • Rizzolatti, G., Trad Ardí, V., Camarda, R.: Unit responses to visual stimuli in the cat’s superior colliculus after removal of the visual cortex. Brain Res. 24, 336–339 (1970).

    Google Scholar 

  • Rodieck, R. W., Stone, J.: Response of cat retinal ganglion cells to moving visual patterns. J. Neurophysiol. 28, 819–832 (1965).

    PubMed  CAS  Google Scholar 

  • Rodieck, R. W., Stone, J.: Analysis of receptive fields of cat retinal ganglion cells. J. Neurophysiol. 28, 833–849 (1965).

    Google Scholar 

  • Roye, D.B.: Visual pathways in the frog as determined by the Guillery modification of the Nauta-Gygax technique. M.S. Thesis, University of Florida, Gainesville 1966, p. 42.

    Google Scholar 

  • Rubinson, K.: Projection of the tectum opticum of the frog. Brain Behav. Evol. 1, 529–561 (1968).

    Google Scholar 

  • Samsonova, V.G.: Functional organization of different types of neurons in the frog visual center. Zh. vyssh. nerv. Deyat. Pavlova 15, 491 (1965);

    CAS  Google Scholar 

  • Samsonova, V.G.: Übers, in Fed. Proc. Transí. Suppl. 22, 384–388 (1965).

    Google Scholar 

  • Sanides, F., Hoffmann, J.: Cyto-and myeloarchitecture of the visual cortex of the cat and of the surrounding integration cortices. J. Hirnforsch. 11, 79–104 (1969).

    PubMed  CAS  Google Scholar 

  • Scalia, F., Knapp, H., Halpern, M., Riss, W.: New observations on the retinal projection in the frog. Brain Behav. Evol. 1, 324–353 (1968).

    Google Scholar 

  • Schaefer, K.-P.: Mikroableitungen vom Tectum opticum. Proc. Int. Union Physiol. Sei. 1962, Vol. 1, part II, p. 496.

    Google Scholar 

  • Schaefer, K.-P.: Mikroableitungen im Tectum opticum des frei beweglichen Kaninchens. Arch. Psychiat. Nervenkr. 208, 120–146 (1966a).

    PubMed  CAS  Google Scholar 

  • Schaefer, K.-P.: Experimenteller Beitrag zum Problem des Bewegungssehens. Fortschr. Med. 84, 65–68 (1966b).

    Google Scholar 

  • Schaefer, K.-P.: Neuronale Entladungsmuster im Tectum opticum des Kaninchens bei passiven und aktiven Eigenbewegungen. Arch. Psychiatr. Nervenkr. 209, 101–125 (1967).

    PubMed  CAS  Google Scholar 

  • Scheibner, J., Baumann, Ch.: Properties of the frog’s retinal ganglion cells as revealed by substitution of chromatic stimuli. Vision Res. 10, 829–837 (1970).

    Google Scholar 

  • Schipperheyn, J.J.: Contrast detection in frog’s retina. Acta Physiol. Pharmacol. Neerl. 13, 231–277 (1965).

    CAS  Google Scholar 

  • Schneider, D.: Beitrag zu einer Analyse des Beute-und Fluchtverhaltens einheimischer Anuren. Biol. Zbl. 73, 225 (1954).

    Google Scholar 

  • Schober, H., Munker, H., Grimm, W.: Zur Erkennbarkeit bewegter Objekte: Dynamische Sehschärfe. Klin. Mbl. Augenheilk. 151, 395–402 (1967).

    Google Scholar 

  • Schwassmann, J.O., Krtjger, L.: Organization of the visual projection upon the optic tectum of some freshwater fish. J. comp. Neurol. 124, 113–126 (1965).

    Google Scholar 

  • Sefton, A. J.: The innervation of the lateral geniculate nucleus and anterior colliculus in the rat. Vision Res. 8, 867–888 (1968).

    PubMed  CAS  Google Scholar 

  • Sefton, A. J.: Properties of cells in the lateral geniculate nucleus. Vision Res. Suppl. 3 (in press, 1971).

    Google Scholar 

  • Sekuler, R.W., Rubin, E.L., Cushman, W.H.: Selectivities of human visual mechanisms for direction of movement and contour orientation. J. opt. Soc. Amer. 58, 1146–1150 (1968).

    CAS  Google Scholar 

  • Siegert, P.: Raumorientierung „rindenblinder” Katzen. Pflügers Arch. ges. Physiol. 242, 515–556 (1939).

    Google Scholar 

  • Siminoff, R., Schwassmann, H.O., Kruger, L.: An electrophysiological study of the visual projection to the superior colliculus of the rat. J. comp. Neurol. 127, 435–444 (1966).

    PubMed  CAS  Google Scholar 

  • Siminoff, R., Schwassmann, H.O., Kruger, L.: Unit analysis of the pretectal nuclear group in the rat. J. comp. Neurol. 130, 329–342 (1968).

    Google Scholar 

  • Smith, K. U.: Visually controlled responses under conditions of stimulation associated with apparent movement in the cat. Psychol. Bull. 34, 537–538 (1937).

    Google Scholar 

  • Smith, K. U.: Visual discrimination in the cat: V. The postoperative effects of removal of the striate cortex upon intensity discrimination. J. gen. Psychol. 51, 329–369 (1937).

    Google Scholar 

  • Smith, K. U., Kappauf, W. E.: A neurological study of apparent movement. J. gen. Psychol. 23, 315–327 (1940).

    Google Scholar 

  • Spinelli, D.N.: Visual receptive fields in the cat’s retina; complications. Science 152, 1768–1769 (1966).

    PubMed  CAS  Google Scholar 

  • Spinelli, D.N.: Receptive field organization of ganglion cells in the cat’s retina. Exp. Neurol. 19, 291–315 (1967).

    PubMed  CAS  Google Scholar 

  • Spinelli, D.N., Barrett, T. W.: Visual receptive field organization of single units in the cat’s visual cortex. Exp. Neurol. 24, 76–98 (1969).

    PubMed  CAS  Google Scholar 

  • Spinelli, D.N., Barrett, T. W., Weingarten, M.: Afferent and efferent activity in single units of the cats optic nerve. Exp. Neurol. 15, 347–362 (1966).

    PubMed  CAS  Google Scholar 

  • Sprague, J.M., Marciafava, P.L., Rizolatti, G.: Unit responses to visual stimuli in the superior colliculus of the unanesthetized mid.-pont. cat. Arch. ital. Biol. 106, 169–193 (1968).

    CAS  Google Scholar 

  • Sprague, J.M., Marciafava, P.L., Rizolatti, G., Meikle, T.H., Jr.: The role of the superior colliculus in visually guided behaviour. Exp. Neurol. 11, 115–146 (1965)

    PubMed  CAS  Google Scholar 

  • St. Cyr, G.J., Fender, D.H.: The interplay of drifts and flicks in binocular fixation. Vision Res. 9, 245–265 (1969).

    Google Scholar 

  • St. Cyr, G.J., Fender, D.H.: Non-linearities of the human oculomotor system: time delays. Vision Res. 9, 1490–1503 (1969).

    Google Scholar 

  • St. Cyr, G.J., Fender, D.H.: Non-linearities of the human oculomotor system: gain. Vision Res. 9, 1235–1246 (1969).

    Google Scholar 

  • Starr, A., Angel, R., Yeates, H.: Visual suppression during smooth following and saccadic eye movements. Vision Res. 9, 195–197 (1969).

    PubMed  CAS  Google Scholar 

  • Sterling, P.: Receptive fields and synaptic organization in the superficial gray of the cat superior colliculus. Vision Res. Suppl. 3 (in press, 1971).

    Google Scholar 

  • Sterling, P., Wickelgren, B. G.: Visual receptive fields in the superior colliculus of the cat. J. Neuro-physiol. 32, 1–23 (1969).

    CAS  Google Scholar 

  • Stone, J., Fabian, M.: Specialized receptive fields of the cat’s retina. Science 152, 1277–1279 (1966).

    PubMed  CAS  Google Scholar 

  • Straschill, M., Hoffmann, K.P.: Response characteristics of movement-detecting neurons in pretectal region of the cat. Exp. Neurol. 25, 165–176 (1969).

    PubMed  CAS  Google Scholar 

  • Straschill, M., Hoffmann, K.P.: Functional aspects of localization in the cat’s tectum opticum. Brain Res. 13, 247–283 (1969).

    Google Scholar 

  • Straschill, M., Hoffmann, K.P.: Activity of movement sensitive neurons of the cat’s tectum opticum during spontaneous eye movements. Exp. Brain Res. 11, 318–326 (1970).

    PubMed  CAS  Google Scholar 

  • Straschill, M., Taghavy, A.: Neuronale Reaktionen im Tectum opticum der Katze auf bewegte und stationäre Lichtreize. Exp. Brain Res. 3, 353–367 (1967).

    PubMed  CAS  Google Scholar 

  • Svaetichin, G.: Spectral response curves from single cones. Acta physiol. scand. 39, Suppl. 134, 17–46 (1965).

    Google Scholar 

  • Taghavy, A., Straschill, M.: Bewegungsneurone im Tectum opticum der Katze. Pflügers Arch. ges. Physiol. 289, R 82 (1966).

    Google Scholar 

  • Tetjber, H.-L.: Some observations on the superior colliculi of the cat by J. Altman. In: Jung, R., Kornhuber, H. (Hrsg.): Neurophysiologie und Psychophysik des visuellen Systems, S. 217–221. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Tetjber, H.-L.: Perception. In: Handbook of Physiology, Sect. Neurophysiology 1/Vol. Ill, p. 1595–1686. THOMSON, L.C.: The localization of function in the rabbit retina. J. Physiol. (Lond.) 119, 191–209 (1953).

    Google Scholar 

  • Van Nes, F.L.: Enhanced visibility-by regular motion of retinal images. Amer. J. Physiol. 81, 367–374 (1968).

    Google Scholar 

  • Van Nes, F.L., Koenderink, J.T., Nas, H., Bouman, M.A.: Spatiotemporal modulation transfer in the human eye. J. opt. Soc. Amer. 57, 1082–1083 (1967).

    Google Scholar 

  • Wagner, H.G., Macnichol, E.F., Wolgarsht, M.L.: Functional basis for “one-centre” and “off-centre” receptive fields in the retina. J. opt. Soc. Amer. 53, 66–70 (1963).

    CAS  Google Scholar 

  • Werblin, F.: Responses of retinal cells to moving spots. J. Neurophysiol. 33, 342–350 (1970).

    PubMed  CAS  Google Scholar 

  • Werblin, F.S., Dowling, J.E.: Organization of the retina of the mudpuppy. II. Intracellular recording. J. Neurophysiol. 32, 339–355 (1969).

    PubMed  CAS  Google Scholar 

  • Wertheimer, M.: Experimentelle Studien über das Sehen von Bewegung. Z. Psychol. 61, 161–265 (1912).

    Google Scholar 

  • Whiteside, T.C.D., Graybiel, A., Niven, J.I.: Visual illusion of movement. Brain 88, 193–210 (1965).

    PubMed  CAS  Google Scholar 

  • Wickelgren, B., Sterling, P.: Receptive fields in cat superior colliculus. Physiologist 10, 344 (1967).

    Google Scholar 

  • Wiesel, T.N.: Receptive fields of ganglion cells in the cat’s retina. J. Physiol. (Lond.) 153, 583–594 (1960).

    CAS  Google Scholar 

  • Wilson, M.E.: Cortico-cortical connexions of the cat visual areas. J. Anat. 102, 375–386 (1968).

    PubMed  CAS  Google Scholar 

  • Wright, M. J.: Visual receptive fields cells in a cortical area remote from the striate cortex in the cat. Nature (Lond.) 223, 973–975 (1969).

    CAS  Google Scholar 

  • Wurtz, R. H.: Comparison of effects of eye movements and stimulus movements on striate cortex neurons of the monkey. J. Neurophysiol. 32, 987–994 (1969).

    PubMed  CAS  Google Scholar 

  • Wurtz, R. H.: Response of striate cortex neurons to stimuli during rapid eye movements in the monkey. J. Neurophysiol. 32, 975–986 (1969).

    PubMed  CAS  Google Scholar 

  • Wurtz, R. H.: Visual receptive fields of striate cortex neurons in awake monkeys. J. Neurophysiol. 32, 727–742 (1969).

    PubMed  CAS  Google Scholar 

  • Wurtz, R. H.: Visual cortex neurons: response to stimuli during rapid eye movements. Science 162, 1148–1150 (1968).

    Google Scholar 

  • Wurtz, R. H., Goldberg, M.E.: Superior colliculus cell responses related to eye movements in awake monkeys. Science 171, 82–83 (1971).

    PubMed  CAS  Google Scholar 

  • Wuttke, W., Grüsser, O.-J.: The conduction velocity of lateral inhibition in the cat’s retina. Pflügers Arch. 304, 253–257 (1968).

    Google Scholar 

  • Yarbus, A.L.: Eye movements and vision. New York: Plenum Press 1967.

    Google Scholar 

  • Zuber, B.L., Stark, L.: Saccadic suppression: Elevation of visual threshold associated with saccadic eye movements. Exp. Neurol. 16, 65–79 (1966)

    PubMed  CAS  Google Scholar 

  • Bach-Y-Rita, P., Collins, C.C., Hyde, J. E.: The control of eye movements, 560 p. New York: Academic Press 1971.

    Google Scholar 

  • Barmack, N. H.: Dynamic visual acuity as an index of eye movement control. Vision Res. 10, 1377–1391 (1970).

    PubMed  CAS  Google Scholar 

  • Barmack, N. H.: Modification of eye movements by instantaneous changes in the velocity of visual targets. Vision Res. 10, 1431–1441 (1970).

    PubMed  CAS  Google Scholar 

  • Bartlett, J.R., Doty, R.W., Choudhury, B.P.: Modulation of unit activity in striate cortex of squirrel monkeys by stimulation of reticular formation. Fed. Proc. 29, (1970).

    Google Scholar 

  • Belekhova, M.G., Kosareva, A. A.: Organization of the turtle thalamus: visual, somatic and tectal zones. Brain, Behav. Evol. 4, 337–375 (1971).

    CAS  Google Scholar 

  • Bishop, P.O., Coombs, J.S., Henry, G.H.: Responses to visual contours: Spatio-temporal aspects of excitation in the receptive fields of simple striate neurones. J. Physiol. (Lond.) 219, 625–657 (1971).

    CAS  Google Scholar 

  • Bishop, P.O., Coombs, J.S., Henry, G.H.: Interaction effects of visual contours on the discharge frequency of simple striate neurones. J. Physiol. (Lond.) 219, 659–687 (1971).

    CAS  Google Scholar 

  • Bishop, P.O., Coombs, J.S., Henry, G.H., Henry, G.H., Smith, C.J.: Binocular interaction fields of single units in the cat striate cortex. J. Physiol. (Lond.) 216, 39–68 (1971).

    CAS  Google Scholar 

  • Bizzi, E., Schiller, P. H.: Single unit activity in the frontal eye fields of unanesthetized monkeys during eye and head movement. Exp. Brain Res. 10, 151–158 (1970).

    Google Scholar 

  • Brandt, T., Dichgans, J., König, E.: Perception of self-rotation (circular-vection) induced by optokinetic stimuli. Pflügers Arch. 322, R 98 (1972).

    Google Scholar 

  • Chow, K.L., Masland, R.H., Stewart, D.L.: Receptive field characteristics of striate cortical neurons in the rabbit. Brain Res. 33, 337–352 (1971).

    PubMed  CAS  Google Scholar 

  • Christensen, J. L., Hill, R.M.: Receptive fields of single cells of a marsupial visual cortex of Didelphis virginiana. Experientia (Basel) 26, 43 (1970).

    CAS  Google Scholar 

  • Chung, S.-H., Raymond, S, A., Lettvin, J.Y.: Multiple meaning in single visual units. Brain Behav. Evol. 3, 72–101 (1970).

    PubMed  CAS  Google Scholar 

  • Collewijn, H.: The normal range of horizontal eye movements in the rabbit. Exp. Neurol. 28, 132–143 (1970).

    PubMed  CAS  Google Scholar 

  • Collewijn, H.: An analog model of the rabbit’s optokinetic system. Brain Res. 36, 71–88 (1972).

    PubMed  CAS  Google Scholar 

  • Collewijn, H.: Latency and gain of the rabbit’s optokinetic reactions to small movements. Brain Res. 36, 59–70 (1972).

    PubMed  CAS  Google Scholar 

  • Corazza, R., Lombroso, C. T.: The neuronal dark discharge during eye movements in awake encephale isolé cats. Brain Res. 34, 345–359 (1971).

    PubMed  CAS  Google Scholar 

  • Creutzfeldt, O., Pöppl, E., Singer, W.: Quantitativer Ansatz zur Analyse der funktionellen Organisation des visuellen Cortex (Untersuchungen an Primaten). In: O.-J. Grüsser, Klinke, R. (Hrsg.): Zeichenerkennung durch biologische und technische Systeme, S. 81–96. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Dowling, J.E., Werblin, F.S.: Synaptic organization of the vertebrate retina. Vision Res. Suppl. 3, 1–15 (1971).

    PubMed  Google Scholar 

  • Ebbesson, S.O.E.: On the organization of central visual pathways in vertebrates. Brain Res. Evol. 3, 178–194 (1970).

    CAS  Google Scholar 

  • Eckmiller, R., Grüsser, O.-J.: Electronic simulation of the velocity function of movement-detecting neurons. Proceedings from: Cerebral Control of Eye Movements and Perception of Motion in Space (Freiburg 1971). Bibl. Ophthal. (Basel) 83, 486–489 (1972).

    Google Scholar 

  • Efron, R., Lee, D.N.: The visual persistence of a moving stroboscopically illuminated object. Amer. J. Psychol. 84, 365–376 (1971).

    PubMed  CAS  Google Scholar 

  • Erke, H., Gräser, H.: Reversibility of perceived motion: Selective adaptation of the human visual system to speed, size and orientation. Vision Res. 12, 69–87 (1972).

    PubMed  CAS  Google Scholar 

  • Ewert, J.-P.: Aufnahme und Verarbeitung visueller Information im Beutefang-und Fluchtverhalten der Erdkröte Bufo bufo (L.). (Information processing in the visual system of toads and the release of prey catching and escape reactions). Sonderdruck aus Verhandlungsbericht der Deutschen Zoologischen Gesellschaft, 64. Tagung, S. 218–226 (1970).

    Google Scholar 

  • Ewert, J.-P.: Single unit response of the toad’s (Bufo americanus) caudal thalamus to visual objects. Z. vergl. Physiol. 74, 81–102 (1971).

    Google Scholar 

  • Ewert, J.-P., Borchers, H.-W.: Reaktionscharakteristik von Neuronen aus dem Tectum opticum und Subtectum der Erdkröte Bufo bufo (L.). Z. vergl. Physiol. 71, 165–189 (1971).

    Google Scholar 

  • Eysel, U.Th., Grüsser, O.-J.: Neurophysiological basis of pattern recognition in the cat’s visual system. In: Grüsser, O.-J., Klinke, R. (Hrsg.): Zeichenerkennung durch biologische und technische Systeme, S. 60–80. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Feldman, J.D., Gaze, R.M., Keating, M. J.: Delayed innervation of the optic tectum during development in Xenopus laevis. Brain Res. 14, 16–23 (1971).

    CAS  Google Scholar 

  • Feldon, S., Feldon, P., Kruger, L.: Topography of the retinal projection upon the superior colliculus of the cat. Vision Res. 10, 135–143 (1970).

    PubMed  CAS  Google Scholar 

  • Foster, D.H.: A model of the human visual system in its response to certain classes of moving stimuli. Kybernetik 8, 69–84 (1971).

    PubMed  CAS  Google Scholar 

  • Foster, D.H.: The response of the human visual system to moving spatially-periodic patterns: further analysis. Vision Res. 11, 57–81 (1971).

    PubMed  CAS  Google Scholar 

  • Gerrits, H. J. M., Vendrik, A. J.H.: Artificial movements of a stabilized image. Vision Res. 10, 1443–1456 (1970).

    PubMed  CAS  Google Scholar 

  • Gould, J. D., Peeples, D.R.: Eye movements during visual search and discrimination of meaningless, symbol and object patterns. J. exp. Psychol. 85, 51–55 (1970).

    PubMed  CAS  Google Scholar 

  • Gross, C.G., Rocha-Miranda, C.E., Bender, D.B.: Visual properties of neurons in infero-temporal cortex of the Macaque. J. Neurophysiol. 35, 96–111 (1972).

    PubMed  CAS  Google Scholar 

  • Grüsser, O.-J.: Metacontrast and the perception of the visual world. Pflügers Arch. 333, R 98 (1972).

    Google Scholar 

  • Grüsser, O.-J., Grüsser-Cornehls, U.: Interaction of vestibular and visual inputs in the visual system. Progr. Brain Res. (in press) (1972).

    Google Scholar 

  • Grüsser, O.-J., Grüsser-Cornehls, U.: Comparative physiology of movement-detecting neuronal systems in lower vertebrates. (Anura and Urodela). Bibl. Ophthal. (Basel) 88, 456–464 (1972).

    Google Scholar 

  • Hamasaki, D.: Proc. XXV, Int. Congr. Physiol. Sci., München, Vol. 2, 652 (1971).

    Google Scholar 

  • Grüsser-Cornehls, U.: Bewegungsempfindliche Neuronensysteme im visuellen System von Amphibien. Eine vergleichende neurophysiologische Untersuchung. Nova Acta Leopoldina (Halle); (in press, 1972).

    Google Scholar 

  • Henn, U., Cohen, B.: Einzelzellableitungen aus Augenmuskelmotoneuronen während Sak-kaden und Fixationsperioden bei wachen Rhesusaffen. Pflügers Arch. 333, R 95 (1972).

    Google Scholar 

  • Hermann, H. T.: Saccade correlated potentials in optic tectum and cerebellum of Carassius auratus. Brain Res. 26, 293–304 (1971).

    PubMed  CAS  Google Scholar 

  • Hoffmann, K.-P., Stone, J.: Conduction velocity of afferents to cat visual cortex; a correlation with cortical receptive field properties. Brain Res. 32, 460–466 (1971).

    Google Scholar 

  • Honegger, H., Alexandridis, E.: Sehschärfe für bewegte Objekte in Abhängigkeit von der Adaptation. Albrecht v. Graefes Arch. klin. exp. Ophthal. 181, 1–11 (1970).

    CAS  Google Scholar 

  • Ingle, D.J.: Brain mechanisms and vision: subcortical systems. Science 168, 1493–1494 (1970).

    PubMed  CAS  Google Scholar 

  • Ingle, D.J.: Prey-catching behavior of anurans toward moving and stationary objects. Vision Res. 3, 447–456 (1971).

    PubMed  Google Scholar 

  • Jones, B.H.: Responses of single neurons in cat visual cortex to a simple and a more complex stimulus. Amer. J. Physiol. 218, 1102–1107 (1970).

    PubMed  CAS  Google Scholar 

  • Kadoya, S., Wolin, L.R., Massopust, L. C.: Collicular unit responses to monochomatic stimulation in squirrel monkey. Brain Res. 32, 251–254 (1971).

    PubMed  CAS  Google Scholar 

  • Massopust, L.C., Jr.: Photically evoked unit activity in the tectum opticum of the squirrel monkey. J. comp. Neurol. 142, 495–508 (1971).

    PubMed  Google Scholar 

  • Kano, C.: Die Wirkung der anschaulichen Größenunterschiede auf die Bewegungsschwelle bei übereinstimmender Größe der gereizten Netzhaut-Areale. Psychol. Forsch. 33, 242–253 (1970).

    PubMed  CAS  Google Scholar 

  • Keating, M.J., Gaze, R.M.: Rigidity and plasticity in the amphibian visual system. Brain Behav. Evol. 3, 102–120 (1970).

    PubMed  CAS  Google Scholar 

  • Kruger, L.: The topography of the visual projection to the mesencephalon: A comparative survey. Brain Behav. Evol. 3, 169–177 (1970).

    PubMed  CAS  Google Scholar 

  • MacKay, D.M.: Elevation of visual threshold by displacement of retinal image. Nature (Lond.) 225, 90–92 (1970).

    CAS  Google Scholar 

  • MacKay, D.M.: Mislocation of test flashes during saccadic image displacements. Nature (Lond.) 227, 731–733 (1970).

    CAS  Google Scholar 

  • Marg, E., Adams, J. E.: Evidence for a neurological zoom system in vision from angular changes in some receptive fields of single neurons with changes in fixation distance in the human visual cortex. Experientia (Basel) 26, 270–271 (1970).

    CAS  Google Scholar 

  • Masland, R.H., Chow, K.L., Stewart, D.L.: Receptive-field characteristics of superior colliculus neurons in the rabbit. J. Neurophysiol. 34, 148–156 (1971).

    PubMed  CAS  Google Scholar 

  • Mcilwain, J.T.: Cortical origin of collicular directional selectivity in the cat. A review of the evidence. Brain Behav. Evol. 3, 219–221 (1970).

    PubMed  CAS  Google Scholar 

  • Mcilwain, J.T., Fields, H.L.: Interactions of cortical and retinal projections on single neurons of the cat’s superior colliculus. J. Neurophysiol. 34, 763–772 (1971).

    PubMed  CAS  Google Scholar 

  • Methling, D.: Über die unterschiedliche Erkennbarkeit von Landoltringöffnungen ver-schiedener Lage bei Augenfolgebewegungen. Vision Res. 10, 543–548 (1970).

    PubMed  CAS  Google Scholar 

  • Methling, D.: Sehschärfe bei Augenfolgebewegungen in Abhängigkeit von der Gesichtsfeldleuchtdichte. Vision Res. 10, 535–541 (1970).

    PubMed  CAS  Google Scholar 

  • Meulders, M.: Intégration centrale des afférences visuelles. J. Physiol. (Lond.) 62, 61–109 (1970).

    Google Scholar 

  • Michael, Ch. R.: Integration of retinal and cortical information in the superior colliculus of the ground squirrel. Brain Behav. Evol. 3, 205–209 (1970).

    Google Scholar 

  • Michael, Ch. R.: Visual response properties and functional organization of cells in the superior colliculus of the ground squirrel. Vision Res. Suppl. 11, 299–308 (1971).

    Google Scholar 

  • Montero, V.M., Robles, L.: Saccadic modulation of cell discharges in the lateral geniculate nucleus. Vision Res. Suppl. 11, 253–268 (1971).

    Google Scholar 

  • Noda, H., Freeman, R.B., Gies, B., Creutzfeldt, O.D.: Neuronal responses in the visual cortex of awake cats to stationary and moving targets. Exp. Brain Res. 12, 389–405 (1971).

    Google Scholar 

  • Noton, D., Stark, L.: Scanpaths in saccadic eye movements while viewing and recognizing patterns. Vision Res. 11, 929–942 (1971).

    PubMed  CAS  Google Scholar 

  • Pickering, S.G., Varju, D.: The retinal On-Off components giving rise to the delayed response. Kybernetik 8, 145–150 (1971).

    PubMed  CAS  Google Scholar 

  • Revzin, A.M.: Some characteristics of wide-field units in the brain of the pigeon. Brain Behav. Evol. 3, 195–204 (1970).

    PubMed  CAS  Google Scholar 

  • Ronchi, L., Scandiffio, E.: IS peripheral movement illusion mediated by directionally selective units? Atti Fond. G. Ronchi 25, 855–865 (1970).

    Google Scholar 

  • Scalia, F., Gregory, K.: Retinofugal projections in the frog: Location of the postsynaptic neurons. Brain Behav. Evol. 3, 16–29 (1970).

    PubMed  CAS  Google Scholar 

  • Schaefer, K. P.: Unit analysis and electrical stimulation in the optic tectum of rabbits and cats. Brain Behav. Evol. 3, 222–240 (1970).

    PubMed  CAS  Google Scholar 

  • Schaefer, K. P., Meyer, D.L., Schott, D.: Optic and vestibular influences on ear movements. Brain Behav. Evol. 4, 323–333 (1971).

    PubMed  CAS  Google Scholar 

  • Schick, F., Straschill, M.: Neuronale Reaktionen in einer visuellen Assoziationsarea der Katze während spontaner Augenbewegungen. Pflügers Arch. 333, R 96 (1972).

    Google Scholar 

  • Schiller, P.H., Koerner, F.: Discharge characteristics of single units in superior colliculus of the alert rhesus monkey. J. Neurophysiol. 34, 920–936 (1971).

    PubMed  CAS  Google Scholar 

  • Schneider, G.E.: Mechanisms of functional recovery following lesions of visual cortex or superior colliculus in neonate and adult hamsters. Brain Behav. Evol. 3, 295–323 (1970).

    PubMed  CAS  Google Scholar 

  • Spinelli, D.N., Pribram, K.H., Bridgeman, B.: Visual receptive field organization of single units in the visual cortex of monkey. Intern. J. Neuroscience 1, 67–74 (1970).

    CAS  Google Scholar 

  • Sprague, J.M., Berlucchi, G., Di Berardino, A.: The superior colliculus and pretectum in visually guided behavior and visual discrimination in the cat. Brain Behav. Evol. 3, 285–294 (1970).

    PubMed  CAS  Google Scholar 

  • Sterling, P.: Receptive fields and synaptic organization of the superficial gray layer of the cat superior colliculus. Vision Res. Suppl. 11, 309–328 (1971).

    Google Scholar 

  • Sterling, P., Wickelgren, B.G.: Function of the projection from the visual cortex to the superior colliculus. Brain Behav. Evol. 3, 210–218 (1970).

    PubMed  CAS  Google Scholar 

  • Straschill, M., Hoffmann, K. P.: Activity of movement sensitive neurons of the cat’s tectum opticum during spontaneous eye movements. Exp. Brain Res. 11, 318–326 (1970).

    PubMed  CAS  Google Scholar 

  • Szekely, G.: The mesencephalic and diencephalic optic centres in the frog. Vision Res. Suppl. 11, 269–279 (1971).

    Google Scholar 

  • Wurtz, R.H., Goldberg, M.E.: Superior colliculus cell responses related to eye movements in awake monkeys. Science 171, 82–84 (1971).

    PubMed  CAS  Google Scholar 

  • Zeki, S.M.: Convergent input from the striate cortex (Area 17) to the cortex of the superior temporal sulcus in the rhesus monkey. Brain Res. 28, 338–340 (1971).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Richard Jung

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Grüsser, OJ., Grüsser-Cornehls, U. (1973). Neuronal Mechanisms of Visual Movement Perception and Some Psychophysical and Behavioral Correlations. In: Jung, R. (eds) Central Processing of Visual Information A: Integrative Functions and Comparative Data. Handbook of Sensory Physiology, vol 7 / 3 / 3 A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65352-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65352-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65354-4

  • Online ISBN: 978-3-642-65352-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics