Skip to main content

The Structural Organization of the Compound Eye in Insects

  • Chapter
Book cover Physiology of Photoreceptor Organs

Part of the book series: Handbook of Sensory Physiology ((1536,volume 7 / 2))

Abstract

Ever since the first use of the light microscope for examining biological specimens, the compound eye of arthropods has attracted the attention of scholars. More recently, the compound eye has been found to be a particularly suitable model for studying the general problems of the flow and processing of sensory information in the nervous centers. At the same time, for complete understanding of the new data resulting from these novel lines of investigation, a solid base of detailed anatomical knowledge is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Autrum, H., Wiedemann, I.: Versuche über den Strahlengang im Insektenauge (Appositionsauge). Z. Naturforsch. 17, 480–482 (1962).

    Google Scholar 

  • Barra, I.A.: Les photorécepteurs des collemboles, étude ultrastructurale. I. L’appareil dioptrique. Z. Zellforsch. 117, 322–353 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Bernard, G.D.: Evidence for visual function of corneal interference filters. J. Insect Physiol. 17, 2287–2300 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Bernard, G.D., Miller, W.H.: Interference filters in the cornea of Diptera. Invest. Ophth. 7, 416–434 (1968).

    CAS  Google Scholar 

  • Bernard, G.D., Miller, W.H.: What does antenna engineering have to do with insect eyes? IEEE Student Journal. Jan.–Feb., 1–8 (1970).

    Google Scholar 

  • Bernhard, C.G., Gemne, G., Sällström, J.: Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. Z. vergl. Physiol. 67, 1–25 (1970).

    Article  Google Scholar 

  • Bernhard, C.G., Höglund, G., Ottoson, D.: On the relation between pigment position and light sensitivity of the compound eye in different nocturnal insects. J. insect Physiol. 9, 573–586 (1963).

    Article  Google Scholar 

  • Bernhard, C.G., Miller, W.H.: A corneal nipple pattern in insect compound eyes. Acta physiol. scand. 56, 385–386 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Bernhard, C.G., Miller, W.H., Møller, A.R.: The insect corneal nipple array. Acta physiol. scand. 63, suppl. 243, 1–79 (1965).

    Google Scholar 

  • Bernhard, C.G., Ottoson, D.: Studies on the relation between the pigment migration and the sensitivity change during dark adaptation in diurnal and nocturnal Lepidoptera. J. gen. Physiol. 44, 205–215 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Bernhard, C.G., Ottoson, D.: Quantitative studies on pigment migration and light sensitivity in the compound eye at different light intensities. J. gen. Physiol. 47, 465–478 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Bishop, L.G., Keehn, D.C., McCann, G.D.: Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca comestica. J. Neurophysiol. 31, 509–525 (1968).

    PubMed  CAS  Google Scholar 

  • Blackstad, T.W.: Mapping of experimental axon degeneration by electronmicroscopy of Golgi preparations. Z. Zellforsch. 67, 819–834 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Bloom, F.E., Aghajanian, C.K.: Cytochemistry of synapses: Selective staining for electron microscopy. Science 154, 1575–1577 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Bodestein, D.: The postembryonic Development of Drosophila. In: Demerec, M. (Ed.): Biology of Drosophila. New York: Wiley 1950.

    Google Scholar 

  • Bodestein, D.: Postembryonic Development. In: Roeder, K. (Ed.): Insect Physiology. New York: Wiley 1953.

    Google Scholar 

  • Boschek, C.: On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z. Zellforsch. 118, 369–409 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Braitenberg, V.: Unsymmetrische Projektion der Retinulazellen auf die Lamina ganglionaris bei der Fliege Musca demestica. Z. vergl. Physiol. 52, 212–214 (1966).

    Article  Google Scholar 

  • Braitenberg, V.: Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp. Brain Res. 3, 271–290 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Bullock, T.H., Horridge, G.A.: Structure and Function in the Nervous Systems of Invertebrates. San Francisco: Freeman 1965.

    Google Scholar 

  • Burton, P., Stockhammer, R.: Electron microscopic studies of the compound eye of the Toadbug, Gelastocoris oculatus. J. Morph. 127, 233–258 (1969).

    Article  Google Scholar 

  • Cajal, S.R.: Nota sobre la estructura de la retina de la mosca (M. vomitoria L.). Trab. Lab. Invest. Biol. (Madrid) 7, 217–257 (1909).

    Google Scholar 

  • Cajal, S.R.: Nota sobre la retina de los múscidos. Bol. R. Soc. Esp. Hist. Nat. 10, 92–95 (1910).

    Google Scholar 

  • Cajal, S.R. and Sánchez, D.: Contribución al conocimiento de los centros nerviosos de los insectos. Trab. Lab. Invest. Biol. Univ. Madrid. 13, 1–164 (1915).

    Google Scholar 

  • Campos-Ortega, J.A., Strausfeld, N.J.: The columnar Organization of the Second Synaptic Region of the Visual System of Musca domestica L. I. Receptor terminals in the Medulla. Z. Zellforsch. 124, 561–585 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Cuccati, J.: Ãœber die Organisation des Gehirns der Somomya erithrocephala. Z. wiss. Zool. 46, 240–269 (1888).

    Google Scholar 

  • de Vries, H.C.: Physical aspects of the sense organs. Progr. Biophys. 6, 207–264 (1956).

    Google Scholar 

  • Dietrich, W.: Die Facettenaugen der Dipteren. Z. wiss. Zool. 92, 465–539 (1909).

    Google Scholar 

  • Döving, K., Miller, W.: Function of insect compound eyes containing crystalline tracts. J. gen. Physiol. 54, 250–267 (1969).

    Article  PubMed  Google Scholar 

  • Eguchi, E.: Fine Structure and Spectral Sensitivities of Retinular cells in the Dorsal Sector of Compound Eyes in the Dragonfly Aeshna. Z. vergl. Physiologie 71, 204–218 (1971).

    Article  Google Scholar 

  • Eguchi, E., Naka, K., Kuwabara, M.: The development of the rhabdom and the appearance of the electrical response in the insect eye. J. gen. Physiol. 46, 143–157 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Eguchi, E., Waterman, T.: Changes in retinal fine structure induced in the crab Libinia by light and dark adaptation. Z. Zellforsch. 79, 209–229 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Eichenbaum, D., Goldsmith, T.H.: Properties of intact photoreceptor cells lacking synapses. J. exp. Zool. 169, 15–32 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Exner, S.: Die Physiologie der facettierten Augen von Krebsen und Insekten. Leipzig: Deuticke 1891.

    Google Scholar 

  • Fernández-Morán, H.: Fine structure of the insect retinula as revealed by electron microscopy. Nature (Lond.) 177, 742–743 (1956).

    Article  Google Scholar 

  • Fernández-Morán, H.: Fine structure of the light receptors in the compound eyes of insects. Exp. Cell Res. Suppl. 5, 586–644 (1958).

    Google Scholar 

  • Fischer, A., Horstmann, G.: Der Feinbau des Auges der Mehlmotte, Ephestia kuehniella Zeller (Lepidoptera, Pyralididae). Z. Zellforsch. 116, 275–304 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Gemne, G.: Ultrastructural ontogenesis of cornea and corneal Nipples in the compound eye of insects. Acta physiol. scand. 66, 511–512 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith, T.H.: The visual system of insects. In: The Physiology of Insecta, Vol. I. New York: Academic Press 1964.

    Google Scholar 

  • Goldsmith, T.H., Philpott, D.E.: The microstructure of the compound eye of insects. J. biophys. biochem. Cytol. 3, 429–440 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Grenacher, G.H.: Untersuchungen über das Sehorgan der Arthropoden insbesondere der Spinnen, Insecten und Crustacen. Göttingen: Vandenhoeck u. Ruprecht 1879.

    Google Scholar 

  • Hassenstein, B.: Ommatidienraster und afferente Bewegungsintegration (Versuche an dem Rüssel-Käfer Chlorophanus). Z. vergl. Physiol. 33, 301–326 (1951).

    Google Scholar 

  • Hickson, S.: The eye and optic tract of insects. Quart. J. Microbiol. Sci. 25, 215–251 (1885).

    Google Scholar 

  • Höglund, G., Langer, H., Struwe, G., Thorell, B.: Spectral absorption by screening pigment granules in the compound eyes of a moth and a wasp. Z. vergl. Physiol. 67, 238–242 (1970).

    Article  Google Scholar 

  • Höglund, G.: Struwe, G.: Pigment migration and spectral sensitivity in the compound eye of moths. Z. vergl. Physiol. 67, 229–237 (1970).

    Article  Google Scholar 

  • Horridge, G.A.: Arthropoda. Receptors for light and optic lobe. In: Bullock, T.H., Horridge, G.A. (Eds.): Structure and Function in the Nervous Systems of Invertebrates. San Francisco: Freeman 1965.

    Google Scholar 

  • Horridge, G.A.: The retina of the locust. In: The Functional Organization of the Compound Eye. Symp. Werner-Gren Center (1965). London: Pergamon 1966.

    Google Scholar 

  • Horridge, G.A.: Pigment movement and the crystalline threads of the firefly eye. Nature (Lond.) 218, 778–779 (1968a).

    Article  CAS  Google Scholar 

  • Horridge, G.A.: Affinity of neurons in regeneration. Nature (Lond.) 219, 737–740 (1968 b).

    Article  CAS  Google Scholar 

  • Horridge, G.A.: Alternatives to superposition images in clear-zone eyes. Pro. roy. Soc. B 179, 97–124 (1971).

    Article  Google Scholar 

  • Horridge, G.A., Barnard, P.B.T.: Movement of palisade in locust retinula cells when illuminated. Quart. J. micr. Sci. 106, 131–135 (1965).

    CAS  Google Scholar 

  • Horridge, G.A., Giddings, C.: Movement on dark-light adaptation in beetles eyes of the Neuropteran type. Proc. roy. Soc. B 179, 73–85 (1971).

    Article  Google Scholar 

  • Horridge, G.A., Meinertzhagen, I.: The accuracy of the patterns of connexions of the first- and second-order neurons of the visual system of Calliphora. Proc. roy. Soc. London B 175, 69–82 (1970 a).

    Article  CAS  Google Scholar 

  • Horridge, G.A., Meinertzhagen, I.A.: The exact neural projection of the visual fields upon the first and second ganglia of the insect eye. Z. vergl. Physiol. 66, 369–378 (1970 b).

    Article  Google Scholar 

  • Horridge, G.A., Walcott, B., Ioannides, A.C.: The tiered retina of Dytiscus: a new type of compound eye. Proc. roy. Soc. B 175, 83–94 (1970).

    Article  CAS  Google Scholar 

  • Johannsen, O., Butt, F.: Embryology of Insects and Myriapods. New York: McGraw-Hill 1941.

    Google Scholar 

  • Johnas, W.: Das Facettenauge der Lepidopteren. Z. wiss. Zool. 97, 218–261 (1911).

    Google Scholar 

  • Kaneko, A.: Physiological and morphological identification of horizontal, bipolar, and amacrine cells in the goldfish retina. J. Physiol. (Lond.) 207, 623–633 (1970).

    CAS  Google Scholar 

  • Kenyon, P.C.: The brain of the bec. J. comp. Neurol. 6, 133–210 (1896).

    Article  Google Scholar 

  • Kirschfeld, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3, 248–270 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Kirschfeld, K.: Absorption Properties of Photopigments in Single Rods, Cones and Rhabdomeres. In: Reichardt, W. (Ed.): Processing of Optical Data by Organisms and by Machines. New York: Academic Press 1969.

    Google Scholar 

  • Kirschfeld, K.: Aufnahme und Verarbeitung optischer Daten im Komplexauge von Insekten. Naturwissenschaften 58, 201–209 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Kirschfeld, K., Franceschini, W.: Ein Mechanismus zur Steuerung des Sichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6, 13–22 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Kirschfeld, K., Reichardt, W.: Optomotorische Versuche an Musca mit linear polarisiertem Licht. Z. Naturforsch. B 25, 228 (1970).

    PubMed  CAS  Google Scholar 

  • Kuiper, J.W.: The optics of the compound eye. Symp. Soc. exp. Biol. 16, 58–71 (1962).

    Google Scholar 

  • Kuiper, J.W.: On the image formation in a single ommatidium of the compound eye in Diptera. In: The Functional Organization of the Compound Eye. Symp. Wenner-Gren Center (1965). London: Pergamon 1966.

    Google Scholar 

  • Kunze, P.: Verhaltensphysiologische und optische Experimente zur Superpositionstheorie der Bildentstehung in Komplexaugen. Deutsch. Zool. 64. Tagung, 234–238. Stuttgart: Fischer 1970.

    Google Scholar 

  • Kunze, P., Hausen, K.: Inhomogeneous refractive index in the crystalline cone of a moth eye. Nature (Lond.) 231, 392–393 (1971).

    Article  CAS  Google Scholar 

  • Langer, H., Thorell, B.: Microspectrophotometric assay of visual pigments in single rhabdomeres of the insect eye. In: Functional Organization of the Compound Eye. Symp. Wenner-Gren Center (1965). London: Pergamon 1966.

    Google Scholar 

  • Larsen, J.R.: The relationship of the optic fibers to the compound eye and centers of integration in the blow fly Phormia regina. In: The Functional Organization of the Compound Eye. Symp. Wenner-Gren Center (1965). London: Pergamon 1966.

    Google Scholar 

  • Lasansky, A.: Ultrastructural features of and [sic] extracellular ionic pathways in the Limulus ommatidium. Neurosci. Res. Prog. Bull. 8, 467–469 (1970).

    CAS  Google Scholar 

  • Linzen, B.: Zur Biochemie der Ommochrome. Naturwissenschaften 54, 259–267 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Lüdtke, H.: Retinomotorik und Adaptationsvorgänge im Auge des Rückenschwimmers (Notonecta glauca, L.). Z. vergl. Physiol. 35, 129–152 (1953).

    Article  Google Scholar 

  • McCann, G.D., MacGinitie, G.F.: Optomotor response studies of insect vision. Proc. roy. Soc. B 163, 369–401 (1965).

    Article  CAS  Google Scholar 

  • Melamed, J., Trujillo-Cenóz, O.: The fine structure of visual system of Lycosa (Araneae: Lycosidae). Part I. Retina and optic nerve. Z. Zellforsch. 74, 12–31 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Melamed, J., Trujillo-Cenóz, O.: The fine structure of the central cells in the ommatidia of Dipterans. J. Ultrastruct. Res. 21, 313–334 (1968).

    Article  Google Scholar 

  • Miller, W.H.: Morphology of the compound eye of Limulus. J. biophys. biochem. Cytol. 3, 421–428 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Miller, W.H., Bernard, G.-D.: Butterfly glow. J. Ultrastruct. Res. 24, 286–294 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Miller, W.H., Bernard, G.-D., Allen, J.L.: The optics of insects compound eyes. Science 162, 760–767 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Miller, W.H., Møller, A.R., Bernhard, G.-D.: The corneal nipple array. In: The functional organization of the compound eye. Symp. Wenner-Gren Center (1965). London: Pergamon 1966.

    Google Scholar 

  • Mote, M., Goldsmith, T.: Compound Eyes: Localization of two color Receptors in the same Ommatidium. Science 171, 1254–1255 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya, W., Tominaga, Y., Kuwabara, M.: The fine structure of the compound eye of a Damsel-fly. Z. Zellforsch. 98, 17–32 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Pedler, C., Goodland, H.: The compound eye and first optic ganglion of the fly. J. roy. micr. Soc. 84, 161–179 (1965).

    PubMed  CAS  Google Scholar 

  • Perrelet, A., Baumann, F.: Presence of three small retinula cells in the ommatidium of the honey-bee drone eye. J. Micr. 8, 497–502 (1969).

    Google Scholar 

  • Reichardt, W.: Nervous integration in the facet eye. Biophys. J. 2, 121–143 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Sánchez y Sánchez, D.: Sobre el desarrollo de los elementos nerviosos en la retina del Pieris brassicae, L. Trab. Lab. Invest. Biol. Univ. Madrid 17, 1–63 (1919).

    Google Scholar 

  • Schneider, L., Langer, H.: Die Struktur des Rhabdoms im Doppelauge des Wasserläufers Gerris lacustris. Z. Zellforsch. 99, 538–559 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Seitz, G.: Der Strahlengang im Appositionsauge von Calliphora erythrocephala (Meig). Z. vergl. Physiol. 59, 205–231 (1968).

    Google Scholar 

  • Seitz, G.: Untersuchungen am dioptrischen Apparat des Leuchtkäferauges. Z. vergl. Physiol. 62, 61–74 (1969).

    Article  Google Scholar 

  • Seitz, G.: Nachweis einer Pupillenreaktion im Auge der Schmeißfliege. Z. vergl. Physiol. 69, 169–185 (1970).

    Article  Google Scholar 

  • Shaw, S.R.: Organization of the Locust retina. Symp. Zool. Soc. Lond. 23, 135–163 (1968).

    Google Scholar 

  • Shaw, S.R.: Simultaneous recording from two cells in the locust retina. Z. vergl. Physiol. 55, 183–194 (1967).

    Article  Google Scholar 

  • Sjöstrand, F.S.: Ultrastructure of retinal rod synapses of the guinea pig as revealed by three-dimensional reconstruction from serial sections. J. Ultrastruct. Res. 2, 122–170 (1958).

    Article  PubMed  Google Scholar 

  • Smith, D.S.: Synapses in the insect nervous system. In: The Physiology of the Insect Central Nervous System. New York: Academic Press 1965.

    Google Scholar 

  • Snodgrass, R.: The morphology of insect sense organs and the sensory nervous system. Smithsonian Miscell. Collect. 77, 1–80 (1926).

    Google Scholar 

  • Sotelo, J.R., Porter, K.: An electron microscope study of the rat ovum. J. biophys. biochem. Cytol. 5, 327–342 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld, N.J.: Golgi stuides on insects. Part II. The optic lobes of Diptera. Phil. Trans, roy. Soc. London B 258, 135–223 (1970).

    Article  Google Scholar 

  • Strausfeld, N.J.: The organization of the insect visual system (light microscopy) I. Projections and arrangements of neurons in the lamina ganglionaris. Z. Zellforsch. 121, 377–441 (1971 a).

    Article  Google Scholar 

  • Strausfeld, N.J.: The organization of the insect visual system (light microscopy). II. The projection of fibres across the first optic chiasma. Z. Zellforsch. 121, 442–454 (1971 b).

    Article  Google Scholar 

  • Strausfeld, N.J., Blest, A.: Golgi studies on insects. Part. I. The optic lobes of Lepidoptera. Phil. Trans, roy. Soc. Lond. B 258, 81–134 (1970).

    Article  Google Scholar 

  • Strausfeld, N.J., Braitenberg, V.: The compound eye of the fly (Musca domestica): connections between the cartridges of the lamina ganglionaris. Z. vergl. Physiol. 70, 95–104 (1970).

    Article  Google Scholar 

  • Stretton, A.O., Kravitz, E.A.: Neuronal geometry: determination with a technique of intracellular dye injection. Science 162, 132–134 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Thorson, I.: Dynamics of motion perception in the desert locust. Science 145, 69–71 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Thorson, I.: Small-signal analysis of a visual reflex in the locust. I. Input parameters. Kybernetik 3, 41–53 (1966 a).

    Article  PubMed  CAS  Google Scholar 

  • Thorson, I.: Small-signal analysis of a visual reflex in the locust. II. Frequency dependence. Kybernetik 3, 53–66 (1966 b).

    Article  PubMed  CAS  Google Scholar 

  • Trujillo-Cenóz, O.: Some aspects of the structural organization of the intermediate retina of Dipterans. J. Ultrastruct. Res. 13, 1–33 (1965 a).

    Article  PubMed  Google Scholar 

  • Trujillo-Cenóz, O.: Some aspects of the structural organization of the arthropod eye. Cold Spr. Harb. Symp. quant. Biol. 30, 371–382 (1965 b).

    Google Scholar 

  • Trujillo-Cenóz, O.: Some aspects of the structural organization of the medulla in muscoid flies. J. Ultrastruct. Res. 27, 533–553 (1969).

    Article  PubMed  Google Scholar 

  • Trujillo-Cenóz, O., Bernard, G.-D.: Some aspects of the retinal organization of Sympycnus lineatus Loew (Diptera, Dolichopodidae). J. Ultrastruct. Res. 38, 149–160 (1972).

    Article  PubMed  Google Scholar 

  • Trujillo-Cenóz, O., Melamed, J.: Electron microscope observations on the calyces of the insect brain. J. Ultrastruct. Res. 7, 389–398 (1962).

    Article  PubMed  Google Scholar 

  • Trujillo-Cenóz, O., Melamed, J.: On the fine structure of the photoreceptor — second optical neuron synapse in the insect retina. Z. Zellforsch. 59, 71–77 (1963).

    Article  PubMed  Google Scholar 

  • Trujillo-Cenóz, O., Melamed, J.: Electron microscope observations on the peripheral and intermediate retinas of Dipterans. In: The Functional Organization of the Compound Eye. Symp. Wenner-Gren Center (1965). London: Pergamon Press 1966 a.

    Google Scholar 

  • Trujillo-Cenóz, O., Melamed, J.: Compound eye of Dipterans: Anatomical basis for integration. An electron microscope study. J. Ultrastruct. Res. 16, 395–398 (1966 b).

    Article  PubMed  Google Scholar 

  • Trujillo-Cenóz, O., Melamed, J.: Light and electronmicroscope study of one of the systems of centrifugal fibers found in the lamina of muscoid flies. Z. Zellforsch. 110, 336–349 (1970).

    Article  PubMed  Google Scholar 

  • Trujillo-Cenóz, O., Melamed, J.: Spatial distribution of photoreceptor cells in the ommatidia of Periplaneta americana. J. Ultrastruct. Res. 34, 397–400 (1971).

    Article  PubMed  Google Scholar 

  • Varela, F.: The fine structure of the visual system of the honeybee II. The lamina. J. Ultrastruct. Res. 31, 178–194 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Varela, F.: The Vertebrate and the Insect Compound Eye in Evolutionary perspective. Vision Res. Supplement 3, 201–209 (1971).

    Article  Google Scholar 

  • Varela, F., Porter, K.: Fine structure of the visual system of the honeybee (Apis mellifera). I. The retina. J. Ultrastruct. Res. 29, 236–259 (1969).

    Article  CAS  Google Scholar 

  • Varela, F., Wiitanen, W.: The optics of the compound eye of the honey bee (Apis mellifera). J. gen. Physiol. 55, 336–358 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Viallanes, H.: Études histologiques et organologiques sur les centres nerveux et les organes des sens des animaux articulés—quatrième mémoire—le cerveau de la guèpe (Vespa cabro et vespa vulgaris). Ann. Sci. Natur. 7e. Série. 2, 5–100 (1887a).

    Google Scholar 

  • Viallanes, H.: Études histologiques et organologiques sur les centres nerveux et les organes de sens des animaux articulés — cinquième mémoire — I. Le cerveau du criquet. Ann. Sci. Natur. 7e. Série. 4, 1–120 (1887 b).

    Google Scholar 

  • Viallanes, H.: Sur quelques points de l’histoire du dévelopement embryonnaire de la Mante religieuse. Rev. Biol. Nord. France 2, 479–488 (1890).

    Google Scholar 

  • Viallanes, H.: Contribution à l’histologie du système nerveux des invertebrés. La lame ganglionnaire de la langouste. Ann. Sei. Natur. 7e. Série. 13, 385–398 (1892).

    Google Scholar 

  • Vigier, P.: Mécanisme de la synthèse des impressions lumineuses recueillis par les yeux composés des Diptères. C. R. Acad. Sci. (Paris) 145, 122–124 (1907).

    Google Scholar 

  • Vigier, P.: Sur l’existence réèlle et le roles des appendices piriformes des neurones. Le neurone perioptique des diptères. C. R. Soc. Biol. 64, 959–961 (1908).

    Google Scholar 

  • Vowles, D.M.: The receptive fields of cells in the retina of the housefly (Musca domestica). Proc. roy. Soc. B 164, 552–576 (1966).

    Article  Google Scholar 

  • Waddington, C.H., Perry, M.: The ultra-structure of the developing eye of Drosophila. Proc. roy. Soc. B 153, 155–178 (1960).

    Article  Google Scholar 

  • Walcott, B.: Movement of retinula cells in insect eyes on light adaptation. Nature (Lond.) 223, 971–972 (1969).

    Article  CAS  Google Scholar 

  • Walcott, B., Horridge, G.A.: The compound eye of Archichauliodes (Megaloptera). Proc. roy. Soc. B 179, 65–72 (1971).

    Article  Google Scholar 

  • Waterman, T., Fernandez, H., Goldsmith, T.: Dichroism of photosensitive pigment in rhabdoms of the crayfish Orocnetes. J. gen. Physiol. 54, 415–432 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Wiedemann, I.: Versuche über den Strahlengang im Insektenauge (Appositionsauge). Z. vergl. Physiol. 44, 526–542 (1965).

    Article  Google Scholar 

  • Wigglesworth, V.: The Principles of Insect Physiology. London: Methuen 1965.

    Google Scholar 

  • Wolken, J.J., Capenos, J., Turano, A.: Photoreceptor structures. III. Drosophila melanogaster. J. biophys. biochem. Cytol. 3, 441–448 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Zawarzin, A.: Histologische Studien über Insekten. XV. Die optischen Ganglien der Aeschna-Larven. Z. wiss. Zool. 108, 175–257 (1914).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Trujillo-Cenóz, O. (1972). The Structural Organization of the Compound Eye in Insects. In: Fuortes, M.G.F. (eds) Physiology of Photoreceptor Organs. Handbook of Sensory Physiology, vol 7 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65340-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65340-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65342-1

  • Online ISBN: 978-3-642-65340-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics