Skip to main content

Size and Shape of Gold and Platinum Grains

  • Conference paper
  • 229 Accesses

Part of the book series: International Union of Geological Sciences ((2817,volume 3))

Abstract

Size analyses were made of two samples of gold concentrates, one sample of gold- bearing placer gravel, and two samples of platinum-bearing concentrates. The precious metals were separated from the sized fractions by use of an elutriator. Grain-shape analyses were made from grain dimensions measured microscopically. Breadth and length of each grain were measured by ocular micrometer intercepts; grain thickness was determined from the difference between readings of the fine focusing vernier when focused on the top of the grain and on the grain substrate. These four figures were translated into grain dimensions by a computer program that also calculated various shape factors and ratios between dimensions and mechanically plotted the results in different ways. The Corey shape factor that was plotted against the breadth of the grains, the dimension that controls response to sieving, conveyed the most useful information.

Relations between median sizes of black sand and precious metals, taking the effect of shape factors into account, suggest that the gold concentrate from one sluice accumulated under conditions of hydraulic equivalence and that another did not. Sharp breaks at the find ends of the precious metal cumulative curves seem to indicate the smallest size of effective accumulation for each sluice. The size is smaller for the material believed to have been accumulated under conditions of hydraulic equivalence. The size-distribution curves of a gold-bearing gravel indicate that all the gold could be concentrated in 35 percent of the gravel by sieving at a critical size.

The two gold samples reported have average Corey shape factors of less than 0. 4 and the two platinum samples have factors greater than 0. 4, indicating that the platinum is more spherical than gold. On the shape factor versus size plots, the grains become more spherical as the size decreases although there are some highly spherical, coarse grains of gold in one sample. One of the platinum samples shows a decrease in shape factor as the grain size decreases. The shape data suggest two populations of grains in one of the gold and in one of the platinum samples, though there are two possible methods of interpretation that identify two slightly different pairs of populations.

Sedimentologic data on detrital precious metal grains and host sediments can be useful in designing recovery processes and in interpreting nature and genesis of placer deposits.

Publication authorized by the Director, U. S. Geological Survey.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • COREY, A. T.: Influence of shape on the fall velocity of sand grains. Colorado A & M College (now Colorado State University), Fort Collins, unpub. Master’s thesis, 102 p. (1949).

    Google Scholar 

  • FISHER, N. H.: The fineness of gold, with special reference to the Morobe goldfield, New Guinea. Econ. Geol., 40(8), p. 537–563 (1945).

    Article  Google Scholar 

  • FOLK, R. L.: Petrology of sedimentary rocks. Hemphill’s, Austin, Texas, 114 p. (1957).

    Google Scholar 

  • FROST, I. C.: Elutriating tube for the specific gravity separation of minerals. Am. Mineralogist, 44 (7 & 8 ), p. 886 ’ 890 (1959).

    Google Scholar 

  • HAGERMAN, T. H.: Granulometric studies in northern Argentine. Geografiska Annaler, 18 (2), p. 125–213 (1936).

    Article  Google Scholar 

  • Inter-Agency Committee on Water Resources: A study of methods used in measurement and analysis of sediment loads in streams - Rept. 12, Some fundamentals of particle size analysis. Washington, U.S. Govt. Printing Office, 55 p. ( 1957; 1958 ).

    Google Scholar 

  • JOHANNSEN, A.: Manual of petrographic methods. 2d ed. McGraw-Hill, Inc., New York, 649 p. (1918).

    Google Scholar 

  • MERTIE, J. B., Jr.: Economic geology of the platinum metals. U. S. Geol. Surv. Prof. Paper 630, 120 p. (1969).

    Google Scholar 

  • MOSS, A.J.: The physical nature of common sandy and pebbly deposits. Pt. I. Am. Jour. Sci., 260 (5), p. 337 - 373 (1962).

    Article  Google Scholar 

  • PLUMELY, W.J.: Black Hills terrace gravels: a study in sediment transport. Jour. Geol., 56 (6), p. 526–577 (1948).

    Article  Google Scholar 

  • PRETORIUS, D. A.: Conceptual geological models in the exploration for gold mineralization in the Witwatersrand basin. Econ. Geol. Research Unit IC No. 33, Univ. Witwatersrand, Johannesburg, 38 p. (1966).

    Google Scholar 

  • SNEED, E. D., FOLK, R. L.: Pebbles in the lower Colorado River, Texas — a study in particle morphogenesis. Jour. Geol., 66(2), p. 114–150 (1958).

    Article  Google Scholar 

  • TOURTELOT, H. A., GANTNIER, R. F., TERNES, E. B.: Silt-size gold. Geol. Soc. America Abstract with Programs 3 (6), p. 417 (1971).

    Google Scholar 

  • VILJOEN, R. P.: The quantitative mineralogical properties of the main reef and main reef leader of the Witwatersrand system. Econ. Geol. Research Unit IC No. 41, Univ. Witwatersrand, Johannesburg, 58 p. (1968).

    Google Scholar 

  • WADSWORTH, W. B.: Measurement of c intercepts in loose sand grains by optical height. Jour. Sed. Pet., 41 (1), p. 30–37 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Tourtelot, H.A., Riley, L.B. (1973). Size and Shape of Gold and Platinum Grains. In: Amstutz, G.C., Bernard, A.J. (eds) Ores in Sediments. International Union of Geological Sciences, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65329-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65329-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-05712-3

  • Online ISBN: 978-3-642-65329-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics