Quasi-Frobenius Rings

  • Carl Faith
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 191)


A ring A is quasi-Frobenius (QF) in case A is right and left Artinian, and there exists an A-duality fin. gen. mod-A ↝ fin. gen. A-mod.


Finite Group Left Ideal Projective Module Endomorphism Ring Nonzero Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [39]
    Asano, K.: Über verallgemeinerte Abelsche Gruppen mit hyperkomplexen Operatorenring und ihre Anwendungen. Japan J. Math. Soc. Japan 15, 231–253 (1939).MathSciNetMATHGoogle Scholar
  2. [59]
    Azumaya, G.: A duality theory for injective modules (Theory of quasi-Frobenius modules). Amer. J. Math. 81, 249–278 (1959).MathSciNetCrossRefMATHGoogle Scholar
  3. [66]
    Azumaya, G.: Completely faithful modules and self-injective rings, Nagoya Math. J. 27, 697–708 (1966).MathSciNetMATHGoogle Scholar
  4. [43b]
    Baer, R.: Rings with duals. Amer. J. Math. 65, 569–584 (1943).MathSciNetCrossRefMATHGoogle Scholar
  5. [62a]
    Bass, H.: The Morita Theorems. Math. Dept., U. of Oreg., Eugene 1962.Google Scholar
  6. [62b]
    Bass, H.: Injective dimension in Noetherian rings. Trans. Amer. Math. Soc. 102, 18–29 (1962).MathSciNetCrossRefMATHGoogle Scholar
  7. [62c]
    Bass, H.: Torsion free and projective modules. Trans. Math. Soc. 102, 319–327 (1962).MathSciNetCrossRefMATHGoogle Scholar
  8. [63]
    Brauer, R.: Representations of finite groups. Lectures on Modern Mathematics, Vol. I, pp. 133–175 (T.L. Saaty, Ed.). John Wiley and Sons, Inc., New York 1953.Google Scholar
  9. [37]
    Brauer, R., Nesbitt, C.: On the regular representations of algebras. Proc. Nat. Acad. Sci. 23 (1937). Bridger, M. (see Auslander).Google Scholar
  10. [70a]
    Camillo, V. P.: Balanced rings and a problem of Thrall. Trans. Amer. Math. Soc. 149, 143–153 (1970).MathSciNetCrossRefMATHGoogle Scholar
  11. [72]
    Camillo, V. P., Fuller, K.R.: Balanced and QF-1 algebras. Proc. Amer. Math. Soc. 34, 373–378 (1972).MathSciNetMATHGoogle Scholar
  12. [66a]
    Cohn, P. M.: Morita Equivalence and Duality. University of London, Queen Mary College, Mile End Road, London, (Bookstore) 1966.Google Scholar
  13. [63]
    Connell, I.: On the group ring. Canad. J. Math. 15, 650–685 (1963).MathSciNetCrossRefMATHGoogle Scholar
  14. [73]
    Colby, R.R., Rutter, E.A., Jr.: Generalizations of QF-3 algebras. Trans. Amer. Math. Soc. 153, 371–385 (1973).MathSciNetGoogle Scholar
  15. [59]
    Curtis, C. W.: Quasi-Frobenius rings and Galois theory. Ill. J. Math. 3, 134–144 (1959).MathSciNetMATHGoogle Scholar
  16. [62]
    Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. Interscience, New York 1962.Google Scholar
  17. [70]
    Dickson, S.E., Fuller, K.R.: Commutative QF-1 Artinian rings are QF. Proc. Amer. Math. Soc. 24, 667–670 (1970).MathSciNetMATHGoogle Scholar
  18. [58]
    Dieudonné, J.A.: Remarks on quasi-Frobenius rings. Ill. J. Math. 2, 346–354 (1958).MATHGoogle Scholar
  19. [72]
    Dlab and RingelGoogle Scholar
  20. [55]
    Eilenberg, S., Ikeda, M., Nakayama, T.: On the dimension of modules and algebras, I. Nagoya Math. J. 8, 49–57 (1955).MathSciNetMATHGoogle Scholar
  21. [56]
    Eilenberg, S., Nagao, H., Nakayama, T.: On the dimension of modules and algebras, IV. Dimension of residue rings of hereditary rings. Nagoya Math. J. 10, 87–95 (1956).MathSciNetMATHGoogle Scholar
  22. [55, 57]
    Eilenberg, S., Nakayama, T.: On the dimension of modules and algebras, II (Frobenius algebras and quasi-Frobenius rings). Nagoya Math. J. 9, 1–16 (1955);MathSciNetCrossRefMATHGoogle Scholar
  23. [55, 57]
    Eilenberg, S., Nakayama, T.: On the dimension of modules and algebras, IV (dimension of residue rings)loc. cit. 11, 9–12 (1957).MathSciNetMATHGoogle Scholar
  24. [69]
    Elizarov, V.P.: Quotient rings. Algebra and Logic 8, 219–243 (1969).MathSciNetCrossRefMATHGoogle Scholar
  25. [66a]
    Faith, C.: Rings with ascending condition on annihilators. Nagoya Math. J. 27, 179–191 (1966).MathSciNetMATHGoogle Scholar
  26. [76b]
    Faith, C.: Injective cogenerator rings, and Tachikawa’s theorem. Proc. Amer. Math. Soc. (1976).Google Scholar
  27. [76c]
    Faith, C.: Semiperfect Prüfer rings and FPF rings. Israel J. Math. 27, 113–119 (1976).MathSciNetMATHGoogle Scholar
  28. [76d]
    Faith, C.: Characterizations of rings by faithful modules. Lecture Notes, Math. Dept., Israel Institute of Technology (TECHNION), Haifa (1976).Google Scholar
  29. [67]
    Faith, C., Walker, E. A.: Direct sum representations of injective modules. J. Algebra 5, 203–221 (1967).MathSciNetCrossRefMATHGoogle Scholar
  30. [73]
    Farkas, D.: Self-injective group rings. J. Algebra 25, 313–315 (1973).MathSciNetCrossRefMATHGoogle Scholar
  31. [68]
    Floyd, D.R.: On QF-1 algebras. Pac. J. Math. 27, 81–94 (1968).MathSciNetMATHGoogle Scholar
  32. [70]
    Formanek, E.: A short proof of a theorem of Jennings. Proc. Amer. Math. Soc. 26, 406–407 (1970).MathSciNetCrossRefGoogle Scholar
  33. [68a]
    Fuller, K.R.: Generalized uniserial rings and their Kuppisch series. Math. Z. 106, 248–260 (1968).MathSciNetCrossRefMATHGoogle Scholar
  34. [68b]
    Fuller, K.R.: Structure of QF-3 rings. Trans. Amer. Math. Soc. 134, 343–354 (1968).MathSciNetMATHGoogle Scholar
  35. [69a]
    Fuller, K.R.: On indecomposable injectives over Artinian rings. Pac. J. Math. 29, 115–135 (1969).MathSciNetMATHGoogle Scholar
  36. [70a]
    Fuller, K.R.: Double centralizers of injectives and projectives over Artinian rings. Ill. J. Math. 14, 658–664 (1970).MathSciNetMATHGoogle Scholar
  37. [70b]
    Fuller, K.R.: Relative projectivity and injectivity classes determined by simple modules. J. Lond. Math. Soc. 5, 423–431 (1972).MathSciNetCrossRefMATHGoogle Scholar
  38. [70c]
    Fuller, K.R.: Primary rings and double centralizers. Pac. J. Math. 34, 379–383 (1970).MathSciNetMATHGoogle Scholar
  39. [67]
    Gewirtzman, L.: Anti-isomorphisms of the endomorphism rings of torsion-free modules. Math. Z. 98, 391–400 (1967).MathSciNetCrossRefMATHGoogle Scholar
  40. [73]
    Hannula, T.A.: On the construction of QF-rings. J. Algebra 25, 403–414 (1973).MathSciNetCrossRefMATHGoogle Scholar
  41. [66]
    Harada, M.: QF-3 and semiprimary PP-rings. Osaka J. Math. 2, 21–27 (1966).Google Scholar
  42. [64]
    Jacobson [64]Google Scholar
  43. [59a]
    Jans, J.P.: Projective injective modules. Pac. J. Math. 9, 1103–1108 (1959).MathSciNetMATHGoogle Scholar
  44. [59b]
    Jans, J.P.: On Frobenius algebras. Ann. of Math. 69, 392–407 (1959).MathSciNetCrossRefMATHGoogle Scholar
  45. [61]
    Jans, J.P.: Duality in Noetherian rings. Proc. Amer. Math. Soc. 12, 829–835 (1961).MathSciNetCrossRefMATHGoogle Scholar
  46. [67]
    Jans, J.P.: On orders in quasi-Frobenius rings. J. Algebra 7, 35–43 (1967).MathSciNetCrossRefMATHGoogle Scholar
  47. [70]
    Jans, J.P.: On the double centralizer property. Math. Ann. 188, 85–89 (1970).MathSciNetCrossRefGoogle Scholar
  48. [51]
    Ikeda, M.: Some generalizations of quasi-Frobenius rings. Osaka J. Math. 3, 227–239 (1951).MATHGoogle Scholar
  49. [52]
    Ikeda, M.: A characterization of quasi-Frobenius rings. Osaka J. Math. 4, 203–210 (1952).MATHGoogle Scholar
  50. [54]
    Ikeda, M., Nakayama, T.: On some characteristic properties of quasi-Frobenius and regular rings. Proc. Amer. Math. Soc. 5, 15–19 (1954).MathSciNetCrossRefMATHGoogle Scholar
  51. [41]
    Jennings, S. A.: The structure of the group ring of a p-group over a modular field. Trans. Amer. Math. Soc. 50, 175–185 (1941).MathSciNetGoogle Scholar
  52. [54]
    Kasch, F.: Grundlagen einer Theorie der Frobenius-Erweiterungen. Math. Ann. 127, 453–474 (1954).MathSciNetCrossRefMATHGoogle Scholar
  53. [60/61]
    Kasch, F.: Projektive Frobenius-Erweiterungen. Sitzungsber. Heidelberger Akad. 4, 89–109 (1960/61).Google Scholar
  54. [61]
    Kasch, F.: Dualitätseigenschaften von Frobenius-Erweiterungen. Math. Z. 77, 229–237 (1961).MathSciNetCrossRefGoogle Scholar
  55. [68a]
    Kato, T.: Some generalizations of QF-rings. Proc. Japan Acad. 44, 114–119 (1968).MathSciNetCrossRefMATHGoogle Scholar
  56. [68b]
    Kato, T.: Torsionless modules. Tohoku Math. J. 20, 234–243 (1968).MathSciNetCrossRefMATHGoogle Scholar
  57. [72]
    Kato, T.: Structure of left QF-3 rings. Proc. Japan Acad. 48, 479–483 (1972).MathSciNetCrossRefMATHGoogle Scholar
  58. [57]
    Kawada, Y.: On similarities and isomorphisms of ideals in a ring. J. Math. Soc. Japan 9, 374–380 (1957).MathSciNetCrossRefMATHGoogle Scholar
  59. [69]
    Klatt, G.B., Levy, L.S.: Pre-self-injective rings. Trans. Amer. Math. Soc. 122, 407–419 (1969).MathSciNetCrossRefGoogle Scholar
  60. [66a]
    Levy, L.S.: Commutative rings whose homomorphic images are self-injective. Pac. J. Math. 18, 149–153 (1966).MATHGoogle Scholar
  61. [71]
    Maisake [71]Google Scholar
  62. [69]
    Mewborn, A.C., Winton, C.N.: Orders in self-injective semiperfect rings. J. Algebra 13, 5–9 (1969).MathSciNetCrossRefMATHGoogle Scholar
  63. [58]
    Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition. Sci Rpts. Tokyo Kyoiku Daigaku 6, 83–142 (1958).MATHGoogle Scholar
  64. [62]
    Morita, K.: Category-isomorphisms and endomorphism rings of modules. Trans. Amer. Math. Soc. 103, 451–469 (1962).MathSciNetCrossRefMATHGoogle Scholar
  65. [66]
    Morita, K.: On S-rings in the sense of F.Kasch. Nagoya Math. J. 27, 688–695 (1966).Google Scholar
  66. [67]
    Morita, K.: The endomorphism ring theorem for Frobenius extensions. Math. Z. 102, 385–404 (1967).MathSciNetCrossRefMATHGoogle Scholar
  67. [69]
    Morita, K.: Duality in QF-3 rings. Math. Z. 108, 385–404 (1967).CrossRefGoogle Scholar
  68. [56]
    Morita, K., Tachikawa, H.: Character modules, submodules of a free module, and quasi-Frobenius rings. Math. Z. 65, 414–428 (1956).MathSciNetCrossRefMATHGoogle Scholar
  69. [64, 68]
    Müller, B. J.: Quasi-Frobenius-Erweiterungen I, II. Math. Z. 85, 345–368 (1964);MathSciNetCrossRefMATHGoogle Scholar
  70. [64, 68]a
    Müller, B. J.: Quasi-Frobenius-Erweiterungen I, II. Math. Z. 88, 380–409 (1968).CrossRefGoogle Scholar
  71. [39, 41]
    Nakayama, T.: On Frobeniusean algebras I, II. Ann. of Math. 40, 611–633 (1939);MathSciNetCrossRefGoogle Scholar
  72. [39, 41]a
    Nakayama, T.: On Frobeniusean algebras I, II. Ann. of Math. 42, 1–21 (1941).MathSciNetCrossRefGoogle Scholar
  73. [40a]
    Nakayama, T.: Note on uniserial and generalized uniserial rings. Proc. Imp. Acad. Tokyo 16, 285–289 (1940).MathSciNetCrossRefGoogle Scholar
  74. [40b]
    Nakayama, T.: Algebras with antiisomorphic left and right ideal lattices. Proc. Imp. Acad. Tokyo 17, 53–56 (1940).MathSciNetCrossRefGoogle Scholar
  75. [42]
    Nakayama, T.: On Frobeniusean algebras III. Japan J. Math. 18, 49–65 (1942).MathSciNetMATHGoogle Scholar
  76. [50a]
    Nakayama, T.: Supplementary remarks on Frobeniusean algebras II. Osaka Math. J. 2, 7–12 (1950).MathSciNetMATHGoogle Scholar
  77. [50b]
    Nakayama, T.: On two topics in the structural theory of rings (Galois theory and Frobenius algebras). Proc. ICM Vol. II, pp. 49–54 (1950).Google Scholar
  78. [71]
    Onodera, T.: Eine Bemerkung über Kogeneratoren. Proc. Japan Acad. 47, 140–141 (1971).MathSciNetCrossRefMATHGoogle Scholar
  79. [66]
    Osofsky [66]Google Scholar
  80. [71]
    Pareigis, B.: When Hopf algebras are Frobenius algebras. J. Algebra 18, 588–596 (1971).MathSciNetCrossRefMATHGoogle Scholar
  81. [71]
    Pareigis, B.: When Hopf algebras are Frobenius algebras. J. Algebra 18, 588–596 (1971).MathSciNetCrossRefMATHGoogle Scholar
  82. [70]
    Renault, G.: Sur les anneaux de groupes. Preprint. Faculté des Sciences, 86-Poitiers, Vienne 1970.Google Scholar
  83. [74]
    Ringel, C.M.: Commutative QF-1 rings. Proc. Amer. Math. Soc. 42, 365–368 (1974).MathSciNetMATHGoogle Scholar
  84. [75/6]
    Ringel and TachikawaGoogle Scholar
  85. [58]
    Tachikawa, H.: Duality theorem of character modules for rings with minimum condition. Math. Z. 68, 479–487 (1958).MathSciNetCrossRefMATHGoogle Scholar
  86. [62]
    Tachikawa, H.: A characterization of QF-3 algebras. Proc. Amer. Math. Soc. 13, 101–103 (1962).MathSciNetGoogle Scholar
  87. [69a]
    Tachikawa, H.: On splitting of module categories. Math. Z. 111, 145–150 (1969).MathSciNetCrossRefMATHGoogle Scholar
  88. [69b]
    Tachikawa, H.: A generalization of quasi-Frobenius rings. Proc. Amer. Math. Soc. 20, 471–476 (1969).MathSciNetCrossRefMATHGoogle Scholar
  89. [71]
    Tachikawa, H.: Localization and Artinian quotient rings. Math. Z. 119, 239–253 (1971).MathSciNetCrossRefMATHGoogle Scholar
  90. [73]
    Tachikawa, H.: Quasi-Frobenius Rings and Generalizations of QF-3 and QF-1 Rings. Lecture Notes in Mathematics. Springer, Berlin-Heidelberg-New York 1973.Google Scholar
  91. [56]
    Utumi, Y.: On quotient rings. Osaka Math. J. 8, 1–18 (1956).MathSciNetMATHGoogle Scholar
  92. [60a]
    Utumi, Y.: On continuous regular rings and semi-simple self-injective rings. Canad. J. Math. 12, 597–605 (1960).MathSciNetCrossRefMATHGoogle Scholar
  93. [60b]
    Utumi, Y.: A remark on quasi-Frobenius rings. Proc. Japan. Acad. 36, 15–17 (1960).MathSciNetCrossRefMATHGoogle Scholar
  94. [66]
    Utumi, Y.: On the continuity and self-injectivity of a complete regular ring. Canad. J. Math. 18, 404–412 (1966).MathSciNetCrossRefMATHGoogle Scholar
  95. [67]
    Utumi, Y.: Self-injective rings. J. Algebra 6, 56–64 (1967).MathSciNetCrossRefMATHGoogle Scholar
  96. [71]
    Wagoner [71]Google Scholar
  97. [67]
    Bass, H.: Lectures on topics in algebraic X-theory. Tata Institute for Advanced Study, Colaba 1967.Google Scholar
  98. [67]
    Singh, S., Jain, S.K.: On pseudo-injective modules and self-pseudo-injective rings. J. Math. Sci. India 2, 23–31 (1967).MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Carl Faith
    • 1
    • 2
  1. 1.Rutgers, The State UniversityNew BrunswickUSA
  2. 2.The Institute for Advanced StudyPrincetonUSA

Personalised recommendations