Advertisement

Die Bedeutung der Synapsenlokalisation für die Interaktion von post-synaptischen Potentialen an Nervenzellen

Mit 13 Abbildungen
  • Manfred R. Klee
Conference paper

Zusammenfassung

Aufgabe des zentralen Nervensystems ist es, die z. B. aus Receptoren einströmenden Signale zu verarbeiten und funktionsgerecht zu beantworten. In den Nervenzellen werden Aktionspotentiale ausgelöst, die über deren Fortsätze weitergeleitet werden und mittels chemischer Zwischenreaktionen an ihren Kontaktstellen mit anderen Zellen dort in graduierte Potentiale umgewandelt werden. Diese nachfolgenden Zellen integrieren die auf sie konvergierenden Signale und leiten sie entweder mittels eines erneut ausgelösten Aktionspotentials an die nachgeschalteten Zellen weiter, oder aber die Signalkette bricht an dieser Zelle ab, da die kritische Schwelle für die Auslösung dieses Potentials nicht erreicht wurde.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

A. Monographiert, Lehrbücher

  1. Eccles, J. C.: The Physiology of Nerve Cells. Baltimore: Johns Hopkins Press 1957.Google Scholar
  2. Eccles, J. C.: The Physiology of Synapses. Berlin: Springer 1964.CrossRefGoogle Scholar
  3. Hubbard, J. I., Liinas, R., Quastel, D. M. J.: Electrophysiological Analysis of Synaptic Transmission. London: E. Arnold 1969.Google Scholar
  4. Katz, B.: Nerv, Muskel und Synapse. Stuttgart: Thieme 1971.Google Scholar
  5. Keidel, W. D.: Kurzgefaßtes Lehrbuch der Physiologie. Stuttgart: Thieme 1967.Google Scholar
  6. Stevens, Ch. F.: Neurophysiologie. München: BLV-Verlag 1969.Google Scholar

B. Originalarbeiten

  1. Aitken, J. T., Bridger, J. E.: Neuron size and neuron population density in the lumbosacral region of the cat’s spinal cord. J. Anat. 95, 38–53 (1961).PubMedGoogle Scholar
  2. Bodian, D.: Synaptic types on spinal motoneurons: an electron microscopic study. Bull. Johns Hopk. Hosp. 119, 16–45 (1966).Google Scholar
  3. Brookhart, J. M., Kubota, K.: Studies of the integrative function of the motor neurone. Progr. Brain Res. 1, 38–61 (1963).CrossRefGoogle Scholar
  4. Burke, R. E.: Composite nature of the monosynaptic excitatory postsynaptic potential. J. Neurophysiol. 30, 1114–1137 (1967).PubMedGoogle Scholar
  5. Conradi, S.: On motoneuron synaptology in adult cats. Acta physiol. scand. 332, 3–48 (1969 a).Google Scholar
  6. Conradi, S.: Ultrastructure of dorsal root boutons on lumbrosacral motoneurons of the adult cat, as revealed by dorsal root section. Acta physiol. scand. 332; 85–115 (1969 b).Google Scholar
  7. Coombs, J. S., Eccles, J. C., Fatt, P.: The electrical properties of the motoneurone membrane. J. Physiol. (Lond.) 130, 291–325 (1955a).Google Scholar
  8. Coombs, J. S., Eccles, J. C., Fatt, P.: Excitatory synaptic action in motoneurones. J. Physiol. (Lond.) 130, 374–395 (1955b).Google Scholar
  9. Coombs, J. S., Eccles, J. C., Fatt, P.: The inhibitory suppression of reflex discharges from motoneurones. J. Physiol. (Lond.) 130, 396–413 (1955c).Google Scholar
  10. Cragg, B. G.: The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J. Anat. 101, 639–654 (1967).PubMedGoogle Scholar
  11. Creutzfeldt, O. D., Lux, H. D.: Zur Unterscheidung von “spezifischen”und “unspezifischen”Synapsen an corticalen Nervenzellen. Naturwissenschaften 51, 89–90 (1964).CrossRefGoogle Scholar
  12. Curtis, D. R.: The depression of spinal inhibition by electrophoretically administered strychnine. Int. J. Neuropharmacol. 1, 239–250 (1962).CrossRefGoogle Scholar
  13. Curtis, D. R., Hösli, L., Johnston, G. A. R., Johnston, I. H.: The hyperpolarization of spinal motoneurones by glycine and related amino acids. Exp. Brain Res. 5, 235–258 (1968).PubMedCrossRefGoogle Scholar
  14. Eccles, J. C.: The Synapse. Scientific American 212, 56–66 (1965).CrossRefGoogle Scholar
  15. Eccles, J. C., Fatt, P., Koketsu, K.: Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol. (Lond.) 216, 524–562 (1954).Google Scholar
  16. Klee, M. R., Offenloeh, K.: Postsynaptic potentials and spike patterns during augmenting responses in cat’s motor cortex. Science 143, 488–489 (1964).PubMedCrossRefGoogle Scholar
  17. Klee, M. R., Wagner, A.: Evidence for a generation of polysynaptic EPSPs in cat motoneurons by axosomatic synapses. In: Neurophysiological Basis of Normal and Abnormal Motor Activities. Edit.: M. D. Yahr and D. P. Purpura. New York: Raven Press 1967, pp. 29–34.Google Scholar
  18. Klee, M. R., Wagner, A.: Characteristics of polysynaptic excitatory post-synaptic potentials in flexor motoneurons. XXIV Int. Congr. Physiol. Sciences, Vol. VII, p. 241 (1968).Google Scholar
  19. Klee, M. R., Wagner, A., Brooks, B. A.: Differences between monosynaptic and polysynaptic excitatory postsynaptic potentials of cat motoneurons during current injection. Brain Res. 3, 387–391 (1966).CrossRefGoogle Scholar
  20. Lux, H. D.: Eigenschaften eines Neuron-Modells mit Dendriten begrenzter Länge. Pflügers Arch. ges. Physiol. 297, 238–255 (1967).CrossRefGoogle Scholar
  21. Nelson, P. G., Frank, K.: Anomalous rectification in cat spinal motoneurons and effect of polarizing currents on excitatory postsynaptic potentials J. Neurophysiol. 30, 1097–1113 (1967).PubMedGoogle Scholar
  22. Nelson, P. G., Lux, H. D.: Some electrical measurements on motoneuron parameters. Biophys. J. 10, 55–73 (1970).PubMedCrossRefGoogle Scholar
  23. Rall, W.: Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1, 491–527 (1959).PubMedCrossRefGoogle Scholar
  24. Rall, W.: Membrane potential transients and membrane time constant of motoneurons. Exp. Neurol. 2, 503–532 (1960).PubMedCrossRefGoogle Scholar
  25. Rall, W.: Theory of physiological properties of dendrites. Ann. N. Y. Acad. Sei. 96, 1071–1092 (1962a).CrossRefGoogle Scholar
  26. Rall, W.: Electrophysiology of a dendritic neuron model. Biophys. J. 2, 145–167 (1962b).PubMedCrossRefGoogle Scholar
  27. Rall, W.: Theoretical significance of dendritic trees for neuronal input-output relations. In: Neural Theory and Modeling. Stanford Univ. Press. 73–97 (1964).Google Scholar
  28. Rall, W.: Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J. Neurophysiol. 30, 1138–1168 (1967).PubMedGoogle Scholar
  29. Rall, W., Burke, R. E., Smith, T. G., Nelson, P. G., Frank, K.: Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J. Neurophysiol. 30, 1169–1193 (1967).PubMedGoogle Scholar
  30. Smith, T. G., Wuerker, R. B., Frank, K.: Membrane impedance changes during synaptic transmission in cat spinal motoneurons. J. Neurophysiol. 30, 1072–1096 (1967).PubMedGoogle Scholar
  31. Terzuolo, C. A., Llinas, R.: Distribution of synaptic inputs in the spinal motoneurone and its functional significance. In: Muscular Afferents and Motor Control. Nobel Symposium I. Stockholm: Almqvist and Wikseil. 373–384 (1966).Google Scholar
  32. Uchizono, K.: Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature (Lond.) 207, 642–643 (1965).CrossRefGoogle Scholar
  33. Wagner, A., Klee, M. R.: Pharmacological investigation of polysynaptic IPSPS of cat’s flexor motoneurons. XXIV. Int. Congr. Physiol. Sciences, Vol. VII, 457 (1968).Google Scholar
  34. Werman, R., Aprison, M. H.: Glycine: The search for a spinal cord inhibitory transmitter. In: Structure and Function of Inhibitory Neuronal Mechanisms. Edit.: C. von Euler, Oxford: Pergamon Press (1968).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

  • Manfred R. Klee

There are no affiliations available

Personalised recommendations