Catecholamines in the Invertebrates

  • John H. Welsh
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 33)


There are a number of reasons for the rapidly growing interest in the distribution of catecholamines in the invertebrates. Most important among these is the availability of new methods for the isolation, identification, and assay of the individual amines, and for their cellular localization. In applying these newer methods, most workers have been attempting to answer one or more of the following questions: 1. How general is the occurrence of catecholamines throughout the animal kingdom ? 2. How are they distributed in different organs, tissues and cells ? 3. How do their relative amounts compare in different animal phyla ? 4. How does the distribution of the catecholamines compare with that of 5-hydr- oxytryptamine (5-HT) ? 5. What are the functional roles of the catecholamines in the invertebrates ? 6. Will a study of their modes of action in the invertebrates aid in an understanding of their modes of action in the vertebrates ?


Nerve Cord Ventral Nerve Cord Cerebral Ganglion Helix Pomatia Pedal Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandrowicz, J.S.: Nervous organs in the pericardial cavity of the decapod Crustacea. J. Mar. Biol. Ass. U. K. 81, 563–580 (1963).Google Scholar
  2. Applewhite, P.B., Gardner, F.T., Lapan, E.: Physiology of habituation learning in a protozoan. Trans. N. Y. Acad. Sci. Ser. II 31, 842–849 (1969).Google Scholar
  3. Ascher, P.: Electrophoretic injections of dopamine on Aplysia neurons. J. Physiol. (Lond.) 198, 48–49P (1968).Google Scholar
  4. Bayer, G., Wense, T.: Über den Nachweis von Hormonen in einzelligen Tieren. II. Mitt. Adrenalin (Sympathin) im Paramecium. Pflügers Arch. ges. Physiol. 237, 651–653 (1936).Google Scholar
  5. Berlind, A., Cooke, I.M., Goldstone, M.W.: Do the monoamines in crab pericardial organs play a role in peptide neurosecretion ? J. exp. Biol. 53, 669–677 (1970).PubMedGoogle Scholar
  6. Bertaccini, G.: A Discussion in Regional Neurochemistry. S.S. Kety and J. Elkes, eds. Oxford: Pergamon Press 1961.Google Scholar
  7. Bhoola, K.D., Calle, J.D., Schachter, M.: Identification of acetylcholine, 5-hydroxytrypt-amine, histamine, and a new kinin in hornet venom (V. crabro). J. Physiol. (Lond.) 159, 167–182 (1961).Google Scholar
  8. Bianchi, S.: Richerche istochemiche e fluoromicroscopiche su neuroni cromaffini degli Irudinei. Arch. Zool. ital. (Torino) 47, 339–351 (1962).Google Scholar
  9. Biedl, A.: Über das Adrenalgewebe bei Wirbellosen. 8th Int. Congress Zool. Graz, 503–505 (1910).Google Scholar
  10. Blaschko, H., Hope, D.B.: Observations on the distribution of amine oxidase in invertebrates. Arch. Biochem. Biophys. 69, 10–15 (1957).PubMedCrossRefGoogle Scholar
  11. Blum, J.J.: An adrenergic control system in Tetrahymena. Proc. nat. Acad. Sci. (Wash.) 58, 81–88 (1967).CrossRefGoogle Scholar
  12. Blum, J.J., Kirshner, N., Utley, J.: The effect of reserpine on growth and catecholamine content of Tetrahymena. Mol. Pharmacol. 2, 606 (1966).PubMedGoogle Scholar
  13. Bullock, T.H., Horridge, G.A.: Structure and Function in the Nervous Systems of Invertebrates. San Francisco: W.H. Freeman 1965.Google Scholar
  14. Cardot, J.: Sur la présence de dopamine dans le système nerveux et ses relations avec la décarboxylation de la dioxyphénylalanine chez le Mollusque Helix pomatia. C. R. Acad. Sci. (Paris) 257, 1364–1366 (1963).Google Scholar
  15. Cardot, J.: Mise en évidence de monoamines dans les fibres nerveuses du coeur des Mollusques Helix pomatia Linné et Archachatina marginata Swainson par l’histochimie de fluorescence. C. R. Acad. Sci. (Paris) 269, 345–347 (1969a).Google Scholar
  16. Cardot, J.: Recherches sur l’oxydation in vitro de la dopamine par le coeur et les ganglions nerveux du Mollusque Helix pomatia (L.): la cytochrome oxydase. C. R. Soc. Biol. (Paris) 163, 873–877 (1969b).Google Scholar
  17. Carlyle, R. F.: The occurrence of catecholamines in the sea anemone Actinia equina. Brit. J. Pharmacol. 36, 182P (1969a).Google Scholar
  18. Cardot, J.: The occurrence of pharmacologically active substances in, and the action of drugs on, preparations of the sea anemone Actinia equina. Brit. J. Pharmacol. 37, 532–533 P (1969b).Google Scholar
  19. Chanussot, B., Dando, J., Moulins, M., Laverack, M.S.: Mise en évidence d’une amine biogène dans le système nerveux stomatogastrique des Insectes. Étude histochimique et ultrastructurale. C.R. Acad. Sci. (Paris) 268, 2101–2104 (1969).Google Scholar
  20. Chong, G.C., Phillis, J.W.: Pharmacological studies on the heart of Tapes watlingi, a mollusc of the family Veneridae. Brit. J. Pharmacol. 25, 481–496 (1965).PubMedGoogle Scholar
  21. Clark, M.E.: Histochemical localization of monoamines in the nervous system of the polychaete Nephtys. Proc. roy. Soc. B 165, 308–327 (1966).Google Scholar
  22. Cobb, J.L.S.: The distribution of mono-amines in the nervous system of echinoderms. Comp. Biochem. Physiol. 28, 967–971 (1969).CrossRefGoogle Scholar
  23. Cooke, I. M.: Electrical activity and release of neurosecretory material in crab pericardial organs. Comp. Biochem. Physiol. 13, 353–366 (1964).PubMedCrossRefGoogle Scholar
  24. Cooke, I. M., Goldstone, M.W.: Fluorescence localization of monoamines in crab neurosecretory structures. J. exp. Biol. 53, 651–668 (1970).PubMedGoogle Scholar
  25. Corrodi, H., Jonsson, G.: The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines. J. Histochem. Cytochem. 15, 65–78 (1967).CrossRefGoogle Scholar
  26. Cottrell, G. A.: Occurrence of dopamine and noradrenaline in the nervous tissue of some invertebrate species. Brit. J. Pharmacol. 29, 63–69 (1967).PubMedGoogle Scholar
  27. Cottrell, G. A.: Amines in molluscan nervous tissue and their subcellular localization. In: Invertebrate Neurobiology, J. Salanki, ed. New York: Plenum 1968.Google Scholar
  28. Cottrell, G. A., Laverack, M.S.: Invertebrate pharmacology. Ann. Rev. Pharmacol. 8, 273–298 (1968).CrossRefGoogle Scholar
  29. Cottrell, G. A., Laverack, M.S., Osborne, N.N.: Localization and mode of action of cardioexcitatory agents in molluscan hearts. In: Comparative Physiology of the Heart: Current Trends. Experientia Suppl. 15, F. V. McCann, ed. (1969).Google Scholar
  30. Cottrell, G. A., Laverack, M.S., Osborne, N.N.: Serotonin in a subcellular position. Nature (Lond.) 225, 470–472 (1970).CrossRefGoogle Scholar
  31. Cottrell, G. A., Laverack, M.S., Osborne, N.N., Pentreath, V.W.: Localization of catecholamines in the nervous system of a starfish, Asterias rubens, and of a brittlestar, Ophiothrix fragilis. Comp. Gen. Pharmacol. 1, 73–81 (1970).PubMedCrossRefGoogle Scholar
  32. Crescitelli, F., Geissman, T.A.: Invertebrate pharmacology: selected topics. Ann. Rev. Pharmacol. 2, 143–192 (1962).CrossRefGoogle Scholar
  33. Dahl, E., Falck, B., Lindqvist, M., Von Mecklenburg, C.: Monoamines in mollusc neurons. Kgl. Fysiogr. Sällsk. Lund Förh. 32, 89–92 (1962).Google Scholar
  34. Dahl, E., Falck, B., Lindqvist, M., Von Mecklenburg, C., Von Mecklenburg, C., Myhrberg, H.: An adrenergic nervous system in sea anemones. Quart. J. micr. Sci. 104, 531–534 (1963a).Google Scholar
  35. Dahl, E., Falck, B., Lindqvist, M., Von Mecklenburg, C., Von Mecklenburg, C., Myhrberg, H.: Adrenergic sensory neurons in invertebrates. Gen. comp. Endoer. 3, (1963b).Google Scholar
  36. Dahl, E., Falck, B., Lindqvist, M., Von Mecklenburg, C., Von Mecklenburg, C., Myhrberg, H., Rosengren, E.: Neuronal localization of dopamine and 5-hydroxytryptamine in some mollusca. Z. Zellforsch. 71, 489–498 (1966).PubMedCrossRefGoogle Scholar
  37. Dougan, D. F. H., Mclean, J. R.: Evidence for the presence of dopaminergic nerves and recep-tors in the intestine of a mollusc, Tapes watlingi. Comp. Gen. Pharmacol. 1, 33–46 (1970).PubMedCrossRefGoogle Scholar
  38. Ehinger, B., Falck, B., Myhrberg, H.E.: Biogenic monoamines in Hirudo medicinalis. Histochemie 15, 140–149 (1968).PubMedCrossRefGoogle Scholar
  39. Elofsson, R., Kauri, T., Nielsen, S.-O., Strömberg, J.-O.: Localization of monoaminergic neurons in the central nervous system of Astacus astacus Linné (Crustacea). Z. Zellforsch. 74, 464–473 (1966).PubMedCrossRefGoogle Scholar
  40. Elofsson, R., Kauri, T., Nielsen, S.-O., Strömberg, J.-O.: Catecholamine-containing nerve fibers in the hind-gut of the crayfish Astacus astacus L. (Crustacea, Decapoda). Experientia (Basel) 24, 1159 (1968).CrossRefGoogle Scholar
  41. Euler, U. S. v.: Presence of catecholamines in visceral organs of fish and some invertebrates. Acta physiol. scand. 28, 297–305 (1953).CrossRefGoogle Scholar
  42. Euler, U. S. v.: Occurrence of catecholamines in Acrania and invertebrates. Nature (Lond.) 190, 170–171 (1961).CrossRefGoogle Scholar
  43. Falck, B.: Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta physiol. scand. 56, Suppl. 197 (1962).Google Scholar
  44. Falck, B., Owman, C.: A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic monoamines. Acta Univ. Lund, Section 11, No. 7 (1965).Google Scholar
  45. Florey, E.: Acetylcholine and Cholinesterase in tunicates. Comp. Biochem. Physiol. 8, 327–330 (1963).CrossRefGoogle Scholar
  46. Florey, E.: Cholinergic neurons in tunicates: an appraisal of the evidence. Comp. Biochem. Physiol. 22, 617–627 (1967).PubMedCrossRefGoogle Scholar
  47. Frontali, N.: Histochemical localization of catecholamines in the brain of normal and drug-treated cockroaches. J. Insect Physiol. 14, 881–886 (1968).CrossRefGoogle Scholar
  48. Frontali, N., Häggendal, J.: Noradrenaline and dopamine content in the brain of the cockroach Periplaneta americana. Brain Res. 14, 540–542 (1969).PubMedCrossRefGoogle Scholar
  49. Frontali, N., Häggendal, J., Norberg, K.-A.: Catecholamine containing neurons in the cockroach brain. Acta physiol. scand. 66, 243–244 (1966).PubMedCrossRefGoogle Scholar
  50. Furneaux, P. J.S., McF Arlane, J.E.: Identification, estimation, and localization of catechol-amines in eggs of the house cricket, Acheta domesticus (L.). J. Insect Physiol. 11, 591–600 (1965a).PubMedCrossRefGoogle Scholar
  51. Furneaux, P. J.S., McF Arlane, J.E.: A possible relationship between the occurrence of catecholamines and water absorption in insect eggs. J. Insect Physiol. 11, 631–635 (1965b).PubMedCrossRefGoogle Scholar
  52. Gaskell, J.F.: The chromaffine system of annelids and the relation of this system to the con-tractile vascular system in the leech, Hirudo medicinalis. Phil. Trans. B 205, 153–212 (1914).CrossRefGoogle Scholar
  53. Gaskell, J.F.: Adrenalin in annelids. J. gen. Physiol. 2, 73–85 (1919).PubMedCrossRefGoogle Scholar
  54. Gerschenfeld, H.M.: Observations on the ultrastructure of synapses in some pulmonate molluscs. Z. Zellforsch. 60, 258–275 (1963).PubMedCrossRefGoogle Scholar
  55. Gerschenfeld, H.M., Tauç, L.: Différent aspects de la pharmacologie des synapses dans le système nerveux central des mollusques. J. Physiol. (Paris) 56, 360–361 (1964).Google Scholar
  56. Ghiretti, F.: Toxicity of octopus saliva against Crustacea. Ann. N.Y. Acad. Sci. 90, 726–741 (1960).PubMedCrossRefGoogle Scholar
  57. Goldstone, M.W., Cooke, I.M.: Histochemical localization of monoamines in the crab central nervous system. Z. Zellforsch. 116, 7–19 (1971).PubMedCrossRefGoogle Scholar
  58. Greenberg, M.J.: The responses of the Venus heart to catechol amines and high concentrations of 5-hydroxytryptamine. Brit. J. Pharmacol. 15, 365–374 (1960).PubMedGoogle Scholar
  59. Habermann, E.: Biochemie, Pharmakologie und Toxikologie der Inhaltsstoffe von Hymen-opterengiften. Ergebn. Physiol. 60, 220–325 (1968).PubMedGoogle Scholar
  60. Hanström, B.: Hormones in Invertebrates. Oxford: Clarendon Press 1939.Google Scholar
  61. Hartman, W.J., Clark, W.G., Cyr, S.D., Jordan, A.L., Leibhold, R.A.: Pharmacologi-cally active amines and their biogenesis in the octopus. Ann. N. Y. Acad. Sci. 90, 637–666 (1960).PubMedCrossRefGoogle Scholar
  62. Hidaka, T.: Dopamine hyperpolarizes and relaxes Mytilus muscle. Amer. Zool. 9, 1108 (1969).Google Scholar
  63. Jaeger, C.P., Jaeger, E.C., Welsh, J.H.: Localization of monoamine-containing neurones in the nervous system of Strophocheilus oblongus (Gastropoda). Z. Zellforsch. 112, 54–68 (1971).PubMedCrossRefGoogle Scholar
  64. Janakidevi, K., Dewey, V.C., Kidder, G.W.: The biosynthesis of catecholamines in two genera of protozoa. J. biol. Chem. 241, 2576–2578 (1966).PubMedGoogle Scholar
  65. Karlson, P., Sekeris, C.E., Sekeri, K.E.: Zum Tyrosinstoffwechsel der Insekten. VI. Identifizierung von N-Acetyl–3,4-dihydroxy-βphenyläthylamin (N-Acetyl-dopamin) als Tyrosinmetabolit. Hoppe-Seylers Z. physiol. Chem. 327, 86–94 (1962).Google Scholar
  66. Kehoe, J.: Pharmacological characteristics and ionic bases of a two component postsynaptic inhibition. Nature (Lond.) 215, 1503–1505 (1967).CrossRefGoogle Scholar
  67. Kerkut, G. A., Horn, N., Walker, R.J.: Long-lasting synaptic inhibition and its transmitter in the snail Helix aspersa. Comp. Biochem. Physiol. 30, 1061–1074 (1969).PubMedCrossRefGoogle Scholar
  68. Kerkut, G. A., Horn, N., Walker, R.J., Sedden, C.B., Walker, R.J.: The effect of DOPA, α-methyl DOPA and reserpine on the dopamine content of the brain of the snail, Helix aspersa. Comp. Biochem. Physiol. 18, 921–930 (1966).PubMedCrossRefGoogle Scholar
  69. Kerkut, G. A., Horn, N., Walker, R.J., Sedden, C.B., Walker, R.J.: Cellular localization of monoamines by fluorescence microscopy in Hirudo medicinalis and Lumbricus terrestris. Comp. Biochem. Physiol. 21, 687–690 (1967a).PubMedCrossRefGoogle Scholar
  70. Kerkut, G. A., Horn, N., Walker, R.J., Sedden, C.B., Walker, R.J.: Uptake of DOPA and 5-hydroxytryptophan by monoamine-forming neurones in the brain of Helix aspersa. Comp. Biochem. Physiol. 23, 159–162 (1967b).PubMedCrossRefGoogle Scholar
  71. Kerkut, G. A., Horn, N., Walker, R.J., Sedden, C.B., Walker, R.J., Walker, R.J.: The effects of drugs on the neurones of the snail Helix aspersa. Comp. Biochem. Physiol. 3, 143–160 (1961).PubMedCrossRefGoogle Scholar
  72. Kerkut, G. A., Horn, N., Walker, R.J., Sedden, C.B., Walker, R.J., Walker, R.J.: The specific chemical sensitivity of Helix nerve cells. Comp. Biochem. Physiol. 7, 277–288 (1962).PubMedCrossRefGoogle Scholar
  73. Klemm, N.: Monoaminhaltige Strukturen im Zentralnervensystem der Trichoptera (Insecta). Teil I. Z. Zellforsch. 92, 487–502 (1968a).PubMedCrossRefGoogle Scholar
  74. Klemm, N.: Monoaminerge Zellelemente im stomatogastrichen Nervensystem der Trichopteren (Insecta). Z. Naturforsch. 23b, 1279–1280 (1968b).Google Scholar
  75. Krugsman, B.J.: Contractile and pacemaker mechanisms of the heart of arthropods. Biol. Rev. 27, 320–346 (1952).CrossRefGoogle Scholar
  76. Krugsman, B.J., Divaris, G. A.: Contractile and pacemaker mechanisms of the heart of molluscs. Biol. Rev. 30, 1–39 (1955).CrossRefGoogle Scholar
  77. Lancaster, S.: Nature of the chromaffin nerve cells in certain annulates and arthropods. Trans. Amer. microsc. Soc. 58, 90–96 (1939).CrossRefGoogle Scholar
  78. Lentz, T.L.: Histochemical localization of neurohumors in a sponge. J. exp. Zool. 162, 171–180 (1966).CrossRefGoogle Scholar
  79. Lentz, T.L.: Primitive Nervous Systems. New Haven: Yale Univ. Press 1968a.Google Scholar
  80. Lentz, T.L.: Histochemical localization of acetylcholinesterase activity in a planarian. Comp. Biochem. Physiol. 27, 715–718 (1968b).PubMedCrossRefGoogle Scholar
  81. Loveland, R. E.: Some aspects of cardio-regulation in Mercenaria mercenaria. Ph. D. Thesis. Harvard University 1963.Google Scholar
  82. Mancini, G., Frontali, N.: Fine structure of the mushroom body neuropile of the brain of the cockroach, Periplaneta americana. Z. Zellforsch. 83, 334–343 (1967).PubMedCrossRefGoogle Scholar
  83. Mancini, G., Frontali, N.: On the ultrastructural localization of catecholamines in the beta lobes (corpora pedunculata) of Periplaneta americana. Z. Zellforsch. 103, 341–350 (1970).PubMedCrossRefGoogle Scholar
  84. Marsden, C.A., Kerkut, G.A.: Fluorescent microscopy of the 5-HT-and catecholamine-containing cells in the central nervous system of the leech Hirudo medicinalis. Comp. Biochem. Physiol. 31, 851–862 (1969).PubMedCrossRefGoogle Scholar
  85. Marsden, C.A., Kerkut, G.A.: The occurrence of monoamines in Planorbis corneus: a fluorescence microscopic and microspectrometric study. Comp. Gen. Pharmacol. 1, 101–116 (1970).PubMedCrossRefGoogle Scholar
  86. Maynard, D.M.: Thoracic neurosecretory structures in Brachyura. I. Gross anatomy. Biol. Bull. 121, 316–329 (1961).CrossRefGoogle Scholar
  87. Maynard, D.M., Welsh, J.H.: Neurohormones of the pericardial organs of brachyuran crustacea. J. Physiol. (Lond.) 149, 215–227 (1959).Google Scholar
  88. Mirolli, M.: The effects of reserpine on molluscs. Ph. D. Thesis. Cambridge, Mass.: Harvard University 1964.Google Scholar
  89. Mirolli, M., Welsh, J.H.: The effects of reserpine and LSD on molluscs. In: Comparative Neurochemistry. D. Richter, ed. Oxford: Pergamon Press 1964.Google Scholar
  90. Myhrberg, H. E.: Monoaminergic mechanisms in the nervous system of Lumbricus terrestris (L.). Z. Zellforsch. 81, 311–343 (1967).PubMedCrossRefGoogle Scholar
  91. Northrop, R.B.: Pharmacological responses of the anterior byssus retractor muscle of Mytilus to dopamine, serotonin, and methysergide. Amer. Zool. 4, 423 (1964).Google Scholar
  92. Osborne, N.N., Cottrell, G.A.: Occurrence of noradrenaline and metabolites of primary catecholamines in the brain and heart of Helix. Comp. Gen. Pharmacol. 1, 1–10 (1970).PubMedCrossRefGoogle Scholar
  93. Osborne, N.N., Cottrell, G.A., Dando, M. R.: Monoamines in the stomatogastric ganglion of the lobster, Homarus vulgaris. Comp. Biochem. Physiol. 32, 327–331 (1970).PubMedCrossRefGoogle Scholar
  94. Östltjnd, E.: The distribution of catechol amines in lower animals and their effect on the heart. Acta physiol. scand. 31, Suppl. 112 (1954).Google Scholar
  95. Pentreath, V.W., Cottrell, G.A.: Acetylcholine and Cholinesterase in the radial nerve of Asterias rubens. Comp. Biochem. Physiol. 27, 775–785 (1968).PubMedCrossRefGoogle Scholar
  96. Piccinelli, D.: Effect of reserpine on indole-alkylamine and phenylalkylamine levels in tissues of lower vertebrates and molluscs. Arch. int. Pharmacodyn. 117, 452–459 (1958).Google Scholar
  97. Plotnikova, S.I.: The structure of the sympathetic nervous system of insects. In: Neurobiology of Invertebrates. J. Salanki, ed. pp. 59–68. New York: Plenum Press 1968.Google Scholar
  98. Plotnikova, S.I., Kuzmina, L.V.: Distribution of monoamine-containing nervous elements in Planaria, Dendrocoelum lacteum (Turbellaria). J. evol. Biochem. Physiol, suppl. 1968. Physiology and Biochemistry of Invertebrates, pp. 23–29, Leningrad.Google Scholar
  99. Plotnikova, S.N., Govyrin, W. A.: Die Verteilung katecholaminhaltiger Nervenelemente bei einigen Vertretern der Coelenteraten und Protostomier. Arch. anat. gistol. embriol. 50, 79–87 (1966).Google Scholar
  100. Poll, H., Sommer, A.: Über phaeochrome Zellen in Centrainervensystem des Blutegels. Verh. physiol. Ges. Berl. 10, 549 (1903).Google Scholar
  101. Retzius, G.: Zur Kenntnis des centralen Nervensystems der Hirudineen. Biol. Unters. Neue Folge 2, 13–15 (1891).Google Scholar
  102. Reutter, K.: Biogene Amine in Nervensystem von Lineus sanguineus Rathke (Nemertini). Z. Zellforsch. 94, 391–406 (1969a).PubMedCrossRefGoogle Scholar
  103. Reutter, K.: Das Verhalten des aminergen Nervensystems während der Regeneration des Vorderdarms von Lineus sanguineus Rathke (Nemertini). Z. Zellforsch. 102, 283–292 (1969b).PubMedCrossRefGoogle Scholar
  104. Ross, D.M.: The effects of ions and drugs on neuromuscular preparations of sea anemones. I. On preparations of the column of Calliactis and Metridium. J. exp. Biol. 37, 732–752 (1960a).Google Scholar
  105. Ross, D.M.: II. On sphincter preparations of Calliactis and Metridium. J. exp. Biol. 37, 753–774 (1960b).Google Scholar
  106. Rude, S.: Monoamine-containing neurons in the nerve and body wall of Lumbricus terrestris. J. comp. Neurol. 128, 397–412 (1966).PubMedCrossRefGoogle Scholar
  107. Rude, S.: Catecholamines in the ventral nerve cord of Lumbricus terrestris. Comp. Biochem. Physiol. 28, 747–752 (1969a).CrossRefGoogle Scholar
  108. Rude, S.: Monoamine-containing neurons in the central nervous system and peripheral nerves of the leech, Hirudo medicinalis. J. comp. Neurol. 136, 349–372 (1969b).CrossRefGoogle Scholar
  109. Rude, S., Coggeshall, R.E., Van Orden, L.S., 3RD: Chemical and ultrastructural identification of 5-hydroxytryptamine in an identified neuron. J. Cell Biol. 41, 832–854 (1969).PubMedCrossRefGoogle Scholar
  110. Sakharov, D.A., ZZ.-Nagy, I.: Localization of biogenic monoamines in cerebral ganglia of Lymnaea stagnalis L. Acta biol. hung. 19, 145–157 (1968).Google Scholar
  111. Sedden, C.B., Walker, R.J., Kerkut, G.A.: The localization of dopamine and 5-hydroxy-tryptamine in neurones of Helix aspersa. Symp. Zool. Soc. (Lond.) No. 22, 19–32 (1968).Google Scholar
  112. Sekeris, C.E., Karlson, P.: Biosynthesis of catecholamines in insects. Pharmacol. Rev. 18, 89–94 (1966).PubMedGoogle Scholar
  113. Sweeney, D.C.: Dopamine: Its occurrence in molluscan ganglia. Science 139, 1051 (1963).PubMedCrossRefGoogle Scholar
  114. Sweeney, D.C.: Histochemical and pharmacological indications that dopamine may be a neurohumor in molluscs. Amer. Zool. 5, 671 (1965).Google Scholar
  115. Sweeney, D.C.: The anatomical distribution of monoamines in a fresh-water bivalve mollusc, Sphaerium sulcatum (L.). Comp. Biochem. Physiol. 25, 601–613 (1968).PubMedCrossRefGoogle Scholar
  116. Sweeney, D.C.: Absence of monoamine oxidase activity in several invertebrate nervous systems. Amer. Zool. 9, 582 (1969 a).Google Scholar
  117. Sweeney, D.C.: The synthesis of dopamine from DOPA in the ganglia of Mercenaria mercenaria (Mollusca, Pelecypoda). Comp. Biochem. Physiol. 30, 903–907 (1969b).PubMedCrossRefGoogle Scholar
  118. Tauc, L.: Processus postsynaptiques d’excitation et d’inhibition dans le soma neuronique de l’Aplysie et de l’Escargot. Arch. ital. Biol. 96, 78–110 (1958).Google Scholar
  119. Tauc, L.: Transmission in invertebrate and vertebrate ganglia. Physiol. Rev. 47, 521–593 (1967).PubMedGoogle Scholar
  120. Treherne, J.E.: The Neurochemistry of Arthropods. Cambridge: University Press 1966.Google Scholar
  121. Udenfriend, S., Lovenberg, W., Sjoerdsma, A.: Physiologically active amines in common fruits and vegetables. Arch. Biochem. Biophys. 85, 487–491 (1959).PubMedCrossRefGoogle Scholar
  122. Vialli, M.: Le cellule cromaffini dei gangli nervosi negli Irudinei. Atti Soc. Ital. Sci. Nat. 73, 57–73 (1934).Google Scholar
  123. Walker, R.J.: Certain aspects of the pharmacology of Helix and Hirudo neurons. In: Neurobiology of Invertebrates. J. Salanki, ed. pp. 227–253. New York: Plenum Press 1968.Google Scholar
  124. Walker, R.J.: Woodruff, G.N., Glaizner, B., Sedden, C.B., Kerkut, G.A.: The pharmacology of Helix depamine receptor of specific neurones in the snail, Helix aspersa. Comp. Biochem. Physiol. 24, 455–469 (1968).Google Scholar
  125. Wells, G. P.: Studies on the physiology of Arenicola marina L. I. The pace-maker role of the oesophagus, and the action of adrenaline and acetylcholine. J. exp. Biol. 14, 117–157 (1937).Google Scholar
  126. Welsh, J. H.: Neurohumors and neurosecretion. In: Physiology of Echinodermata. R. A. Boolootian, ed. New York: Interscience 1966.Google Scholar
  127. Welsh, J. H., King, E.C.: Catecholamines in planarians. Comp. Biochem. Physiol. 36, 683–688 (1970).CrossRefGoogle Scholar
  128. Welsh, J. H., Loveland, R.E.: 5-Hydroxvtryptamine in the ascidian, Ciona intestinalis L. Comp. Biochem. Physiol. 27, 719–722 (1968).Google Scholar
  129. Welsh, J. H., Moorhead, M.: The quantitative distribution of 5-hydroxytryptamine in the invertebrates, especially in their nervous systems. J. Neurochem. 6, 146–169 (1960).CrossRefGoogle Scholar
  130. Welsh, J. H., Williams, L.D.: Monoamine-containing neurons in planaria. J. comp. Neurol. 138, 103–116 (1970).PubMedCrossRefGoogle Scholar
  131. Wood, J. G.: Electron microscopic localization of amines in central nervous tissue. Nature (Lond.) 209, 1131–1133 (1966).CrossRefGoogle Scholar
  132. Wood, J. G., Lentz, T.L.: Histochemical localization of amines in Hydra and in the sea anemone. Nature (Lond.) 201, 88–90 (1964).CrossRefGoogle Scholar
  133. Woodruff, G.N., Walker, R.J.: The effect of dopamine and other compounds on the activity of neurones of Helix aspersa; structure-activity relationships. Int. J. Neuropharmacol. 8, 279–289 (1969).PubMedCrossRefGoogle Scholar
  134. Woodruff, G.N., Walker, R.J., Kerkut, G. A.: Actions of ergometrine on catecholamine receptors in the guineapig vas deferens and in the snail brain. Comp. Gen. Pharmacol. 1, 61–66 (1970).CrossRefGoogle Scholar
  135. Wu, K. S.: On the physiology and pharmacology of the earthworm gut. J. exp. Biol. 16, 184–197 (1939).Google Scholar
  136. Ziller-PEREZ, H. V.: On the chromaffin cells of the nerve ganglia of Hirudo medicinalis L. J. comp. Neurol. 76, 367–394 (1942).CrossRefGoogle Scholar
  137. ZS.-Nagy, I.: Histochemical demonstration of biogenic monoamines in the central nervous system of the lamellibranch mollusc Anodonta cygnea L. Acta biol. hung. 18, 1–8 (1967).Google Scholar
  138. ZS.-Nagy, L.: Histochemical and electron-microscopic studies on the relation between dopamine and densecore vesicles in the neurons of Anodonta cygnea L. In: Neurobiology of Invertebrates. J. Salanki, ed. pp. 69–84. New York: Plenum Press 1968.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

  • John H. Welsh

There are no affiliations available

Personalised recommendations