Advertisement

Abstract

The concept that foreign amines incorporated into the stores which normally hold the physiological transmitter, noradrenaline, may be released as false transmitters was created less than a decade ago. Nevertheless, this idea has aroused great interest and several review articles dealing with various aspects of the subject were previously published (Sourkes, 1965; Muscholl, 1966a; Stone and Porter, 1967; Kopin, 1968a, 1968b; Thoenen, 1969). However, there are recent developments in this field which will be treated below in more detail. These include stereochemical requirements for formation of false transmitters, release of false transmitters by various stimuli, and the quantitative aspects of simultaneous release of a false transmitter and noradrenaline and their actions on adrenoceptors.

Keywords

Tyrosine Hydroxylase Nerve Stimulation Rabbit Heart Nictitate Membrane Adrenergic Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almgren, O., Anden, N.-E., Waldeck, B.: Extraneuronal binding as a possible factor of tyramine uptake by sympathetic nerves. Life Sci. 4, 121–126 (1965).PubMedGoogle Scholar
  2. Almgren, O., Anden, N.-E., Waldeck, B., Lundborg, P.G., Stitzel, R.E.: Release of 3H-metaraminol from subcellular fractions of rat salivary glands by nerve stimulation. Europ. J. Pharmacol. 6, 109–114 (1969).Google Scholar
  3. Almgren, O., Anden, N.-E., Waldeck, B., Lundborg, P.G., Stitzel, R.E., Waldeck, B.: On the disposition of (3H) metaraminol in the rat salivary gland. J. Pharm. Pharmacol. 19, 705–708 (1967).PubMedGoogle Scholar
  4. Amery, A., Moerman, E.J., Bossaert, H., De Schaepdryver, A.F.:α-Methyl-p-tyrosine inmalignant pheochromocytoma. Pharmacol. Clin. 1, 174–176 (1969).Google Scholar
  5. Anden, N.-E.: On the mechanism of noradrenaline depletion by α-methyl metatyrosine and metaraminol. Acta physiol. scand. 21, 260–271 (1964a).Google Scholar
  6. Anden, N.-E.: Uptake and release of dextro-and levoadrenaline in noradrenergic stores. Acta pharmacol. (Kbh.) 21, 59–75 (1964b).Google Scholar
  7. Anden, N.-E., Fuxe, K., Henning, M.: Mechanisms of noradrenaline and 5-hydroxytryptamine disappearance induced by α-methyldopa and α-methyl-metatyrosine. Europ. J. Pharmacol. 8, 302–309 (1969).Google Scholar
  8. Anden, N.-E., Fuxe, K., Henning, M., Hokfelt, T.: Effect of some drugs on central monoamine nerve terminals lackingnerve impulse flow. Europ. J. Pharmacol. 1, 226–232 (1967).Google Scholar
  9. Anden, N.-E., Fuxe, K., Henning, M., Hokfelt, T., Magnusson, T.: Functional significance of noradrenaline depletion by α-methyl metatyrosine, metaraminol and dextro-adrenaline. In: Pharmacology of Cholinergic and Adrenergic Transmission. Eds. Koelle, G.B., Douglas, W.W., Carlsson, A. 319–328. Oxford: Pergamon Press 1965.Google Scholar
  10. Axelrod, J.: Methylation reactions in the formation and metabolism of catecholamines andother biogenic amines. Pharmacol. Rev. 18, 95–113 (1966).PubMedGoogle Scholar
  11. Berti, F., Shore, P.A.: A kinetic analysis of drugs that inhibit the adrenergic neuronal membrane amine pump. Biochem. Pharmacol. 16, 2091–2094 (1967a).PubMedGoogle Scholar
  12. Berti, F., Shore, P.A.: Interaction of reserpine and ouabain on amine concentrating mechanisms in theadrenergic neurone. Biochem. Pharmacol. 16, 2271–2274 (1967b).PubMedGoogle Scholar
  13. Bhagat, B., Ragland, R.: Effect of infusion of metaraminol on the response of reserpine-pretreated spinal cats to tyramine and to noradrenaline. Brit. J. Pharmacol. 27, 506–513 (1966).PubMedGoogle Scholar
  14. Blaschko, H.: Substrate specificity of amino-acid decarboxylases. Biochim. biophys. Acta (Amst.) 4, 130–137 (1950).Google Scholar
  15. Blaschko, H., Burn, J.H., Langemann, H.: The formation of noradrenaline from dihydroxyphenyl-serine. Brit. J. Pharmacol. 5, 431–437 (1950).PubMedGoogle Scholar
  16. Blaschko, H., Burn, J.H., Langemann, H., Richter, D., Schlossmann, H.: The oxidation of adrenaline and other amines. Biochem. J. 31, 2187–2196 (1937).PubMedGoogle Scholar
  17. Boullin, D.J.: A calcium requirement for release of 3H-guanethidine by sympathetic nervestimulation. J. Pharm. Pharmacol. 18, 709–712 (1966).PubMedGoogle Scholar
  18. Brunner, H., Hedwall, P.R., Maitre, L., Meier, M.: Antihypertensive effects of alpha-methylated catecholamine analogues in the rat. Brit. J. Pharmacol. 30, 108–122 (1967).PubMedGoogle Scholar
  19. Buhs, R.P., Beck, J.L., Speth, O.C., Smith, J.L., Trenner, N.R., Cannon, P. J., Laragh, J.H.: The metabolism of methyldopa in hypertensive human subjects. J. Pharmacol, exp. Ther. 143, 205–214 (1964).Google Scholar
  20. Burgen, A.S.V., Iversen, L.L.: The inhibition of noradrenaline uptake by sympathomimetic amines in the rat isolated heart. Brit. J. Pharmacol. 25, 34–49 (1965).PubMedGoogle Scholar
  21. Cahn, R.S., Ingold, O.K., Prelog, V.: The specification of asymmetric configuration in organic chemistry. Experientia (Basel) 12, 81–94 (1956).Google Scholar
  22. Carlsson, A.: Functional significance of drug-induced changes in brain monoamine levels. Progr. Brain Res. 8, 9–27 (1964).Google Scholar
  23. Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.A.: Failure of reserpine to deplete noradrenaline neurons of α-methylnoradrenaline formed from α-methyl DOPA. Acta pharmacol. (Kbh.) 22, 270–276 (1965a).Google Scholar
  24. Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.A., Hillarp, N.A., Waldeck, B.: Analysis of the Mg++-ATP dependent storage mechanism in the amine granules of the adrenal medulla. Acta physiol. scand. 59, Suppl. 215 (1963).Google Scholar
  25. Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.A., Hillarp, N.A., Waldeck, B., Lindqyist, M.: In-vivo decarboxylation of α-methyl dopa and α-methyl metatyrosine. Acta physiol. scand. 54, 87–94 (1962).PubMedGoogle Scholar
  26. Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.A., Hillarp, N.A., Waldeck, B., Lindqyist, M., Dahlström, A., Fuxe, K., Masxjoka, D.: Effects of the amphetamine group on intra-neuronal brain amines in vivo and in vitro. J. Pharm. Pharmacol. 17, 521–524 (1965b).PubMedGoogle Scholar
  27. Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.A., Hillarp, N.A., Waldeck, B., Lindqyist, M., Dahlström, A., Fuxe, K., Masxjoka, D., Lundborg, P., Stitzel, R., Waldeck, B.: Uptake, storage and release of 3H-a-methyl-norepinephrine. J. Pharmacol, exp. Ther. 158, 175–182 (1967).Google Scholar
  28. Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.A., Hillarp, N.A., Waldeck, B., Lindqyist, M., Dahlström, A., Fuxe, K., Masxjoka, D., Lundborg, P., Stitzel, R., Waldeck, B., Meisch, J.-J., Waldeck, B.: On the /Miydroxylation of (±)-a-methyldopamine in vivo. Europ. J. Pharmacol. 5, 85–92 (1968).Google Scholar
  29. Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.A., Hillarp, N.A., Waldeck, B., Lindqyist, M., Dahlström, A., Fuxe, K., Masxjoka, D., Lundborg, P., Stitzel, R., Waldeck, B., Meisch, J.-J., Waldeck, B., Waldeck, B.: ß-Hydroxylation of tyramine in vivo. Acta pharmacol. (Kbh.) 20, 371–374 (1963).Google Scholar
  30. Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.A., Hillarp, N.A., Waldeck, B., Lindqyist, M., Dahlström, A., Fuxe, K., Masxjoka, D., Lundborg, P., Stitzel, R., Waldeck, B., Meisch, J.-J., Waldeck, B., Waldeck, B.: Inhibition of 3H-metaraminol uptake by antidepressive and related drugs. J. Pharm.Pharmacol. 17, 243–244 (1965a).PubMedGoogle Scholar
  31. Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.A., Hillarp, N.A., Waldeck, B., Lindqyist, M., Dahlström, A., Fuxe, K., Masxjoka, D., Lundborg, P., Stitzel, R., Waldeck, B., Meisch, J.-J., Waldeck, B., Waldeck, B.: Rapid release of 3H-metaraminol induced by combined treatment with protriptyline andreserpine. J. Pharm. Pharmacol. 17, 327–328 (1965b).PubMedGoogle Scholar
  32. Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.A., Hillarp, N.A., Waldeck, B., Lindqyist, M..: Mechanism of amine transport in the cell membranes of the adrenergic nerves. ActaPharmacol. (Kbh.) 22, 293–300 (1965c).Google Scholar
  33. Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.A., Hillarp, N.A., Waldeck, B., Lindqyist, M., Dahlström, A., Fuxe, K., Masxjoka, D., Lundborg, P., Stitzel, R., Waldeck, B., Meisch, J.-J., Waldeck, B., Waldeck, B.: Release of 3H-metaraminol by different mechanisms. Acta physiol. scand. 67, 471–480 (1966a).PubMedGoogle Scholar
  34. Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.A., Hillarp, N.A., Waldeck, B., Lindqyist, M., Dahlström, A., Fuxe, K., Masxjoka, D., Lundborg, P., Stitzel, R., Waldeck, B., Meisch, J.-J., Waldeck, B., Waldeck, B.: Structure-activity relationships for release of 14C-octopamine from adrenergic nervesby phenethylamines. Acta pharmacol. (Kbh.) 24, 255–262 (1966b).Google Scholar
  35. Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.A., Hillarp, N.A., Waldeck, B., Lindqyist, M., Dahlström, A., Fuxe, K., Masxjoka, D., Lundborg, P., Stitzel, R., Waldeck, B., Meisch, J.-J., Waldeck, B., Waldeck, B.: Different mechanisms of drug-induced release of noradrenaline and its congenersa-methyl-noradrenaline and metaraminol. Europ. J. Pharmacol. 4, 165–168 (1968).Google Scholar
  36. Chidsey, C.A., Harrison, D.C.: Studies on the distribution of exogenous norepinephrine in the sympathetic transmitter store. J. Pharmacol, exp. Ther. 140, 217–223 (1963).Google Scholar
  37. Chidsey, C.A., Harrison, D.C., Kaiser, G.A., Lehr, B.: The hydroxylation of tyramine in the isolated canine heart. J. Pharmacol, exp. Ther. 144, 393–398 (1964).Google Scholar
  38. Conradi, E.C., Gaffney, T.E., Fink, D.A., Vangrow, J.S.: Reversal of sympathetic nerve blockade: A comparison of dopa, dopamine, and norepinephrine with their α-methylated analogues. J. Pharmacol, exp. Ther. 150, 26–33 (1965).Google Scholar
  39. Costa, E., Neff, N.H., Ngai, S.H.: Regulation of metaraminol efflux from rat heart and salivary glands. Brit. J. Pharmacol. 36, 153–160 (1969).Google Scholar
  40. Creveling, C.R.: Drugs interfering with the formation of adrenergic transmitters. In: Pharmacology of Cholinergic and Adrenergic Transmission. Eds. Koelle, G.B., Douglas, W.W., Carlsson, A. 185–204. Oxford: Pergamon Press 1965.Google Scholar
  41. Crout, J.R., Alpers, H.S., Tatum, E.L., Shore, P.A.: Release of metaraminol (aramine) from the heart by sympathetic nerve stimulation. Science 145, 828–829 (1964).PubMedGoogle Scholar
  42. Crout, J.R., Alpers, H.S., Tatum, E.L., Shore, P.A., Shore, P.A.: Differential release of metaraminol and norepinephrine from the cat heart. Pharmacologist 6, 175 (1964).Google Scholar
  43. Davies, B.N., Horton, E.W., Withrington, P.G.: The occurrence of prostaglandin E2 in splenic venous blood of the dog following splenic nerve stimulation. J. Physiol. (Lond.) 188, 38P–39P (1967).Google Scholar
  44. Day, M.D., Rand, M.J.: A hypothesis for the mode of action of α-methyldopa in relieving hypertension. J. Pharm. Pharmacol. 15, 221–224 (1963).PubMedGoogle Scholar
  45. Day, M.D., Rand, M.J.: Some observations on the pharmacology of α-methyldopa. Brit. J. Pharmacol. 22, 72–86 (1964).PubMedGoogle Scholar
  46. Drews, E.-F., Lindmar, R., Muscholl, E.: Noradrenaline depleting and blood pressure lowering activity of threo-corbadrine. Europ. J. Pharmacol. 3, 167–169 (1968).Google Scholar
  47. Farrugia, M.T., Hunter, W.H., Kirk, G.: The preparation and pharmacological properties of !F-corbasil. J. Pharm. Pharmacol. 21, Suppl. 199S–205S (1969).Google Scholar
  48. Fein, J., Holtz, P., Palm, D.: Beeinflussung des Nervenreizes und der Noradrenalinwirkung am isolierten Hypogastricus-Vas deferens-Präparat des Meerschweinchens durch α-Methyl-dopamin und andere α-methylierte sympathicomimetische Amine. Naunyn-Schmiede-berg’s Arch. Pharmak. exp. Path. 258, 334–351 (1967).Google Scholar
  49. Fischer, J.E., Horst, W.D., Kopin, I. J.: ß-Hydroxylated sympathomimetic amines as false neurotransmitters. Brit. J. Pharmacol. 24, 477–484 (1965).PubMedGoogle Scholar
  50. Fischer, J.E., Horst, W.D., Kopin, I. J., Weise, V.K., Kopin, I.J.: Release of tritiated bretylium by sympathetic nerve stimula-tion. Nature (Lond.) 209, 778–779 (1966).Google Scholar
  51. Furchgott, R.F., Kirpekar, S.M., Rieker, M., Schwab, A.: Actions and interactions of norepinephrine, tyramine and cocaine on aortic strips of rabbit and left atria of guinea pig and cat. J. Pharmacol, exp. Ther. 142, 39–58 (1963).Google Scholar
  52. Furchgott, R.F., Kirpekar, S.M., Rieker, M., Schwab, A., Sanchez Garcia, P.: Effects of inhibition of monoamine oxidase on the actions and inter-actions of norepinephrine, tyramine and other drugs on guinea-pig left atrium. J. Pharmacol. exp. Ther. 163, 98–122 (1968).PubMedGoogle Scholar
  53. Gessa, G.L., Costa, E., Kuntzman, R., Brodie, B.B.: On the mechanism of norepinephrine release by α-methyl-metatyrosine. Life Sci. 1, 353–360 (1962).PubMedGoogle Scholar
  54. Giachetti, A., Shore, P.A.: Studies in vitro of amine uptake mechanisms in heart. Biochem. Pharmacol. 15, 607–614 (1966).PubMedGoogle Scholar
  55. Gillespie, L., Oates, J.A., Crout, J.R., Sjoerdsma, A.: Clinical and chemical studies with α-methyl-dopa in patients with hypertension. Circulation 25, 281–291 (1962).PubMedGoogle Scholar
  56. Gjessing, L.R.: Studies on urinary phenolic compounds in man. II. Phenolic-acids and-amines during a load of α-methyl-dopa and disulfiram in periodic catatonia. Scand. J. clin. Lab. Invest. 17, 549–557 (1965).PubMedGoogle Scholar
  57. Goldberg, L.I., Da Costa, F.M., Ozaki, M.: Actions of the decarboxylase inhibitor, α-methyl–3, 4-dihydroxyphenylalanine, in the dog. Nature (Lond.) 188, 502–504 (1960).Google Scholar
  58. Goldstein, M., Anagnoste, B.: The conversion in vivo of D-amphetamine to (-[-ß-hydroxy-norephedrine. Biochim. biophys. Acta (Amst.) 107, 166–168 (1965).Google Scholar
  59. Goldstein, M., Anagnoste, B., Mckereghan, M.R., Lauber, E.: The stereospecificity of the enzymatic amphetamine ß-hydroxylation. Biochim. biophys. Acta (Amst.) 89, 191–193 (1964).Google Scholar
  60. Gram, T.E., Wright, H.N.: Lack of metaraminol biotransformation by rabbit tissues in vitro. Biochem. Pharmacol. 14, 1911–1914 (1965).PubMedGoogle Scholar
  61. Gram, T.E., Wright, H.N.: Some factors influencing the action of metaraminol in rabbits. Arch. int. Pharmacodyn. 160, 294–311 (1966).Google Scholar
  62. Grobecker, H., Holtz, P.: Über die Brenzkatechinamine im Froschherzen und in der Froschhaut vor und nach Verabfolgung von α-Methyldopa. Experientia (Basel) 22, 42–43 (1966).Google Scholar
  63. Grobecker, H., Holtz, P., Müller, H.K.: Die Wirkung von α-Methyldopa und Dopa auf den Brenzcatechin-amingehalt des Herzens, der Nebennieren und der Haut des Frosches sowie auf die Melanophoren der Froschhaut. Naunyn-Schmiedeberg’s Arch. Pharmak. exp. Path. 255, 474–490 (1966).Google Scholar
  64. Haefely, W., Hürlimann, A., Thoenen, H.: The effect of stimulation of sympathetic nerves in the cat treated with reserpine, α-methyldopa and α-methylmetatyrosine. Brit. J. Pharmacol. 26, 172–185 (1966).PubMedGoogle Scholar
  65. Haefely, W., Hürlimann, A., Thoenen, H.: Adrenergic transmitter changes and response to sympathetic nerve stimulationafter differing pretreatment with α-methyldopa. Brit. J. Pharmacol. 31, 105–119 (1967).PubMedGoogle Scholar
  66. Häggendal, J., Malmfors, T.: The effect of nerve stimulation on catecholamines taken up in adrenergic nerves after reserpine pretreatment. Acta physiol. scand. 75, 33–38 (1969).PubMedGoogle Scholar
  67. Hamberger, B.: Reserpine-resistant uptake of catecholamines in isolated tissues of the rat. Acta physiol. scand. 71, Suppl. 295 (1967).Google Scholar
  68. Hamberger, B., Malmfors, T., Norberg, K.-A., Sachs, C.: Uptake and accumulation of catecholamines in peripheral adrenergic neurons of reserpinized animals, studied with a histochemical method. Biochem. Pharmacol. 13, 841–844 (1964).PubMedGoogle Scholar
  69. Henning, M.: Studies on the mode of action of α-methyldopa. Acta physiol. scand. Suppl. 322 (1969).Google Scholar
  70. Henning, M., Svensson, L.: Adrenergic nerve function in the anaesthetized rat after treatment with α-methyldopa. Acta pharmacol. (Kbh.) 26, 425–436 (1968).Google Scholar
  71. Hertting, G., Potter, L.T., Axelrod, J.: Effect of decentralization and ganglionic blocking agents on the spontaneous release of 3H-norepinephrine. J. Pharmacol, exp. Ther. 136, 289–292 (1962).Google Scholar
  72. Hess, S.M., Connamacher, R.H., Ozaki, M., Udenfriend, S.: The effects of α-methyl-dopa and α-methyl-metatyrosine on the metabolism of norepinephrine and serotonin in vivo. J. Pharmacol, exp. Ther. 134, 129–138 (1961).Google Scholar
  73. Holtz, P., Heise, R., Lüdtke, K.: Fermentativer Abbau von 1-Dioxyphenylalanin (Dopa) durch Niere. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 191, 87–118 (1938).Google Scholar
  74. Holtz, P., Heise, R., Lüdtke, K., Palm, D.: Brenzkatechinamine und andere sympathicomimetische Amine. Biosynthese und Inaktivierung, Freisetzung und Wirkung. Ergebn. Physiol. 58, 1–580. Berlin-Heidelberg-New York: Springer 1966.PubMedGoogle Scholar
  75. Holtz, P., Heise, R., Lüdtke, K., Palm, D.: On the pharmacology of α-methylated catecholamines and the mechanism of the anti-hypertensive action of α-methyldopa. Life Sci. 6, 1847–1857 (1967).PubMedGoogle Scholar
  76. Hukovtö, S., Muscholl, E.: Die Noradrenalin-Abgabe aus dem isolierten Kaninchenherzen bei sympathischer Nervenreizung und ihre pharmakologische Beeinflussung. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 244, 81–96 (1962).Google Scholar
  77. Ikeda, M., Levitt, M., Udenfriend, S.: Hydroxylation of phenylalanine by purified preparations of adrenal and brain tyrosine hydroxylase. Biochem. biophys. Res. Commun. 18, 482–488 (1965).Google Scholar
  78. Iversen, L. L.: The Uptake and Storage of Noradrenaline in Sympathetic Nerves. Cambridge: University Press 1967.Google Scholar
  79. Iversen, L. L., Glowinski, J., Axelrod, J.: The uptake and storage of 3H-norepinephrine in the reser-pine-pretreated rat heart. J. Pharmacol, exp. Ther. 150, 173–183 (1965).Google Scholar
  80. Iversen, L. L., Glowinski, J., Axelrod, J.: The physiologic disposition and metabolism of norepinephrine in immunosym-pathectomized animals. J. Pharmacol, exp. Ther. 151, 273–284 (1966).Google Scholar
  81. Johnson, G.E., Mickle, D.: The influence of cold exposure on the in vivo release of metaraminol. Brit. J. Pharmacol. 28, 246–254 (1966).PubMedGoogle Scholar
  82. Johnson, G.E., Mickle, D., Pugsley, T.A.: The formation and release of metaraminol during exposure to warm or cold environments. Brit. J. Pharmacol. 34, 267–276 (1968).Google Scholar
  83. Johnson, G.E., Mickle, D., Pugsley, T.A.: Studies on the interrelationship between the syntheses of noradrenaline and metar-aminol. Brit. J. Pharmacol. 39, 167–174 (1970).Google Scholar
  84. Johnson, G.E., Mickle, D., Pugsley, T.A., Ritzen, M.: Microspectrofluorometric identification of metaraminol in sympathetic adrenergic neurons. Acta physiol. scand. 67, 505–513 (1966).Google Scholar
  85. Juorio, A. V., Vogt, M.: Monoamines and their metabolites in the avian brain. J. Physiol. (Lond.) 189, 489–518 (1967).Google Scholar
  86. Kakimoto, Y., Armstrong, M.D.: On the identification of octopamine in mammals. J. biol. Chem. 237, 422–427 (1962).PubMedGoogle Scholar
  87. Kilbinger, H., Lindmar, R., Löffelholz, K., Muscholl, E., Patil, P.N.: Storage and release of false transmitters after infusion of (+)-and (-)-a-methyldopamine. Naunyn-Schmiedeberg’s Arch. Pharmak. 271, 234–248 (1971).Google Scholar
  88. Kisin, I.E.: Der Einfluß von Reserpin, α-Methyldopa und Bretylium auf die Erregungsübertragung von den sympathischen Nerven auf die Gefäße. Verh. dtsch. Ges. exper. Med. 19, 228–236 (1967).Google Scholar
  89. Kopin, I.J.: Biochemical aspects of release of norepinephrine and other amines from sympathetic nerve endings. Pharmacol. Rev. 18, 513–523 (1966).PubMedGoogle Scholar
  90. Kopin, I.J.: False adrenergic transmitters. Ann. Rev. Pharmacol. 8, 377–394 (1968a).PubMedGoogle Scholar
  91. Kopin, I.J.: The influence of false adrenergic transmitters on adrenergic neurotransmission. In: Adrenergic Neurotransmission. Eds. Wolstenholme, G.E.W., O’Connor, M. 95–104. London: Churchill 1968b.Google Scholar
  92. Kopin, I.J., Fischer, J.E., Musacchio, J.M., Horst, W.D., Weise, V.K.: “False neurochemical transmitters” and the mechanism of sympathetic blockade by monoamine oxidase inhibitors. J. Pharmacol, exp. Ther. 147, 186–193 (1965).Google Scholar
  93. Kopin, I.J., Fischer, J.E., Musacchio, J.M., Horst, W.D., Weise, V.K., Weise, V. K.: Effect of reserpine and metaraminol on excretion of homovanillic acid and 3-methoxy–4-hydroxyphenylglycol in the rat. Biochem. Pharmacol. 17, 1461–1464 (1968).PubMedGoogle Scholar
  94. Kopin, I.J., Fischer, J.E., Musacchio, J.M., Horst, W.D., Weise, V.K., Weise, V. K., Sedvall, G. C.: Effect of false transmitters on norepinephrine synthesis. J. Pharmacol.exp. Ther. 170, 246–252 (1969).PubMedGoogle Scholar
  95. Korol, B., Soffer, L., Brown, M.L.: Some cardiovascular studies on octopamine. Arch. int. Pharmacodyn. 171, 415–424 (1968).Google Scholar
  96. Krauss, K.R., Kopin, I. J., Weise, V.K.: The effect of bretylium on amine retention in rat heart. J. Pharmacol, exp. Ther. 172, 282–288 (1970).Google Scholar
  97. Kroneberg, G., Stoepel, K.: Der Einfluß von α-Methyl-Dopa auf die Tyraminwirkung an mit Reserpin vorbehandelten Katzen. Experientia (Basel) 19, 252–253 (1963).Google Scholar
  98. Lee, F.-L., Weiner, N., Trendelenburg, U.: The uptake of tyramine and formation of octopamine in normal and tachyphylactic rat atria. J. Pharmacol, exp. Ther. 155, 211–222 (1967).Google Scholar
  99. Levine, R.J., Sjoerdsma, A.: Dissociation of the decarboxylase-inhibiting and norepinephrine-depleting effects of α-methyl-dopa, α-ethyl-dopa, 4-bromo–3-hydroxy-benzyloxy-amine and related substances. J. Pharmacol, exp. Ther. 146, 42–47 (1964).Google Scholar
  100. Lewander, T.: Displacement of brain and heart noradrenaline by p-hydroxynorephedrine after administration of p-hydroxyamphetamine. Acta pharmacol. (Kbh.) 29, 20–32 (1971a).Google Scholar
  101. Lewander, T.: On the presence of p-hydroxynorephedrine in the rat brain and heart in relation to changes in catecholamine levels after administration of amphetamine. Acta pharmacol. (Kbh.) 29, 33–48 (1971b).Google Scholar
  102. Lindmar, R., Muscholl, E.: Die Wirkung von Pharmaka auf die Elimination von Noradrenalin aus der Perfusionsflüssigkeit und die Noradrenalinaufnahme in das isolierte Herz. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 247, 469–492 (1964).Google Scholar
  103. Lindmar, R., Muscholl, E.: Die Aufnahme von α-Methylnoradrenalin in das isolierte Kaninchenherz und seineFreisetzung durch Reserpin und Guanethidin in vivo. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 249, 529–548 (1965).Google Scholar
  104. Lindmar, E., Muscholl, E., Rahn, K.H.: Effects of rest and physical activity on the urinary excretion of noradrenaline and α-methylnoradrenaline in human subjects treated with α-methyldopa. Europ. J. Pharmacol. 2, 317–319 (1968).Google Scholar
  105. Lindmar, E., Muscholl, E., Rahn, K.H., Sprenger, E.: Funktionelle Bedeutung der Freisetzung von Dihydroxyephedrin und Dihydroxypseudoephedrin als „falschen” sympathischen tlbertragerstoffen am Herzen. Naunyn-Schmiedeberg’s Arch. Pharmak. exp. Path. 256, 1–25 (1967).Google Scholar
  106. Lovenberg, W., Weissbach, H., Udenfriend, S.: Aromatic L-amino-acid decarboxylase. J. biol. Chem. 237, 89–93 (1962).PubMedGoogle Scholar
  107. Lundborg, P., Stitzel, R.: Uptake of biogenic amines by two different mechanisms present in adrenergic granules. Brit. J. Pharmacol. 29, 342–349 (1967a).PubMedGoogle Scholar
  108. Lundborg, P., Stitzel, R.: Effect of reserpine and protriptyline on the subcellular distribution of 3H-metaraminolin the mouse heart. Brit. J. Pharmacol. 30, 379–384 (1967b).PubMedGoogle Scholar
  109. Lundborg, P., Stitzel, R.: Stereospecificity and intracellular binding of metaraminol. Acta physiol. scand. 72, 392–395 (1968a).PubMedGoogle Scholar
  110. Lundborg, P., Stitzel, R.: Studies on the relationship between adrenergic nerve function and granular uptakemechanisms. Brit. J. Pharmacol. 33, 98–104 (1968b).PubMedGoogle Scholar
  111. Maier, R., Maitre, L., Staehelin, M.: Tyramine induced lipolysis following pretreatment of guinea pigs and rats with metaraminol. Biochem. Pharmacol. 16, 1509–1515 (1967).PubMedGoogle Scholar
  112. Maitre, L.: Presence of α-methyl-Dopa metabolites in heart and brain of guinea pigs treated with α-methyl-tyrosine. Life Sci. 4, 2249–2256 (1965).PubMedGoogle Scholar
  113. Maitre, L., Staehelin, M.: Effect of α-methyl-DOPA on myocardial catecholamines. Experientia (Basel) 19, 573–575 (1963).Google Scholar
  114. Maitre, L., Staehelin, M.: Presence of α-methyl-noradrenaline fcorbasil’) in the heart of guinea pigs treated withmetaraminol (“Aramine”). Nature (Lond.) 206, 723–724 (1965).Google Scholar
  115. Maitre, L., Staehelin, M.: On the norepinephrine replacement by α-methyl-norepinephrine in the rat heart aftertreatment with α-methyl-DOPA. Experientia (Basel) 23, 810–811 (1967).Google Scholar
  116. Malik, K.U.: Effect of (±) dihydroxy ephedrine and (±) dihydroxy pseudoephedrine on adrenergic transmission in mesenteric arteries. Brit. J. Pharmacol. 41, 352–360 (1971).Google Scholar
  117. Malik, K.U, Muscholl, E.: The effect of α-methyldopa on the vasoconstrictor responses of the rat mesenteric artery preparation to nerve stimulation. Arzneimittel-Forsch. (Drug Res.) 19, 1111–1113 (1969a).Google Scholar
  118. Malik, K.U.: Effect Of Sympathomimetic Amines On The Response Of The Perfused Mesenteric Artery Preparation To Adrenergic Nerve Stimulation. Arzneimittel-Forsch. (Drug Res.) 19, 1574 To 1579 (1969B).Google Scholar
  119. Malmfors, T.: Studies on adrenergic nerves. The use of rat and mouse iris for direct observations on their physiology and pharmacology at cellular and subcellular levels. Acta physiol. scand. 64, Suppl. 248 (1965).Google Scholar
  120. Masuoka, D.T., Alcaraz, A., Hanson, E.: Studies on the formation of octopamine in mice and rats. Biochim. biophys. Acta (Amst.) 86, 260–263 (1964).Google Scholar
  121. Mccurdy, R.L., Prange, Jr., A.L., Lipton, M.A., Cochrane, C.M.: Effects of α-methyl-dihydroxyphenylalanine, reserpine, and dihydroxyphenylalanine on pressor responses to norepinephrine and tyramine in humans. Proc. Soc. exp. Biol. (N.Y.) 116, 1159–1163 (1964).Google Scholar
  122. Mohammed, S., Gaffney, T.E., Yard, A.C., Gomez, H.: Effect of methyldopa, reserpine and guanethidine on hindleg vascular resistance. J. Pharmacol, exp. Ther. 160, 300–307 (1968).Google Scholar
  123. Molinoff, P., Axelrod, J.: Octopamine: normal occurrence in sympathetic nerves of rats. Science 164, 428–429 (1969).PubMedGoogle Scholar
  124. Molinoff, P., Axelrod, J., Landsberg, L., Axelrod, J.: An enzymatic assay for octopamine and other ß-hydroxy-lated phenethylamines. J. Pharmacol, exp. Ther. 170, 253–261 (1969).Google Scholar
  125. Murad, J.E., Shore, P.A.: Association between biochemical and behavioral actions of tricyclic antidepressants. Int. J. Neuropharmacol. 5, 299–304 (1966).PubMedGoogle Scholar
  126. Musacchio, J.M., Bhagat, B., Jackson, C.J., Kopin, I.J.: The effect of disulfiram on the restoration of the response to tyramine by dopamine and α-methyldopa in the reserpine-treated rat. J. Pharmacol, exp. Ther. 152, 293–297 (1966a).Google Scholar
  127. Musacchio, J.M., Bhagat, B., Jackson, C.J., Kopin, I.J., Fischer, J.E., Kopin, I.J.: Subcellular distribution and release by sympathetic nerve stimulation of dopamine and α-methyldopamine. J. Pharmacol, exp. Ther. 152, 51–55 (1966b).Google Scholar
  128. Musacchio, J.M., Bhagat, B., Jackson, C.J., Kopin, I.J., Fischer, J.E., Kopin, I.J., Goldstein, M.: Biosynthesis of norepinephrine and norsynephrine in the perfused rabbit heart. Biochem. Pharmacol. 12, 1061–1063 (1963).PubMedGoogle Scholar
  129. Musacchio, J.M., Bhagat, B., Jackson, C.J., Kopin, I.J., Fischer, J.E., Kopin, I.J., Goldstein, M., Kopin, I. J., Weise, V.K.: Subcellular distribution of some sympathomimetic amines and their ß-hydroxylated derivatives in the rat heart. J. Pharmacol, exp. Ther. 148, 22–28 (1965a).Google Scholar
  130. Musacchio, J.M., Bhagat, B., Jackson, C.J., Kopin, I.J., Fischer, J.E., Kopin, I.J., Goldstein, M., Kopin, I. J., Weise, V.K., Weise, V.K., Kopin, I.J.: Mechanism of norepinephrine binding. Nature (Lond.) 205, 606–607 (1965b).Google Scholar
  131. Mxjscholl, E.: Biosynthese (aus α-Methyldopa), Aufnahme und Freisetzung von α-Methyl-adrenalin. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 251, 162–163 (1965).Google Scholar
  132. Mxjscholl, E., Autonomie Nervous System: Newer mechanisms of adrenergic blockade. Ann. Rev. Pharmacol. 6, 107–128 (1966a).Google Scholar
  133. Mxjscholl, E., Autonomie Nervous System, Release Of Catecholamines From The Heart. In: Mechanisms of Release of Biogenic Amines. Eds. Euler, U.S. Von, Rosell, S., Uvnäs, B. 247–260. Oxford: Pergamon Press 1966b.Google Scholar
  134. Mxjscholl, E., Autonomie Nervous System, Release Of Catecholamines From The Heart. In: Drews, E.-F., Lindmar, R.: Aufnahme von threo-Corbadrin und seine Freisetzung als falsche sympathische Überträgersubstanz. Naunyn-Schmiedeberg’s Arch. Pharmak. exp. Path. 260, 180–181 (1968).Google Scholar
  135. Mxjscholl, E.:, Autonomie Nervous System, Release Of Catecholamines From The Heart. In, Lindmar, R.: Wirkungen von threo-1-(3, 4-Dihydroxyphenyl)-1-hydroxy-2-aminopropan, dem Diastereomeren von Corbadrin. Naunyn-Schmiedeberg’s Arch. Pharmak. exp. Path. 257, 314–315 (1967).Google Scholar
  136. Mxjscholl, E., Autonomie Nervous System, Release Of Catecholamines From The Heart. In, Lindmar, R., Maitre, L.: Release by sympathetic stimulation of α-methylnoradrenaline stored in the heart after administration of α-methyldopa. Experientia (Basel) 19, 658–659 (1963).Google Scholar
  137. Mxjscholl, E., Autonomie Nervous System, Release Of Catecholamines From The Heart. In, Lindmar, R., Maitre, L., Rahn, K.H.: Nachweis von α-Methylnoradrenalin im Harn von Hypertonikern während einer Behandlung mit α-Methyldopa. Klin. Wschr. 44, 1412–1413 (1966).Google Scholar
  138. Mxjscholl, E., Autonomie Nervous System, Release Of Catecholamines From The Heart. In, Lindmar, R., Maitre, L., Rahn, K.H.: Über den Nachweis und die Bedeutung von α-Methylnoradrenalin im Harn vonHypertonikern bei Verabreichung von α-Methyldopa. Pharmacol. Clin. 1, 19–29 (1968).Google Scholar
  139. Mxjscholl, E., Autonomie Nervous System, Release Of Catecholamines From The Heart. In, Lindmar, R., Maitre, L., Rahn, K.H., Sprenger, E.: Vergleichende Untersuchung der Blutdruckwirkung, Aufnahme und Speicherung von Dihydroxyephedrin (a-Methyladrenalin) und Dihydroxypseudoephedrin. Naunyn-Schmiedeberg’s Arch. Pharmak. exp. Path. 254, 109–124 (1966).Google Scholar
  140. Mxjscholl, E., Autonomie Nervous System, Release Of Catecholamines From The Heart. In, Lindmar, R., Maitre, L., Rahn, K.H., Sprenger, E., Weber, E.: Die Hemmung der Aufnahme von α-Methylnoradrenalin in das Herz durch sympathomimetische Amine. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 252, 134–143 (1965).Google Scholar
  141. Neef, N.H., Ngai, S.H., Wang, C.T., Costa, E.: Calculation of the rate of catecholamine synthesis from the rate of conversion of tyramine–14C to catecholamines. Effect of adrenal demedullation on synthesis rate. Molec. Pharmacol. 5, 90–99 (1969).Google Scholar
  142. Oates, J.A., Gillespie, L., Udenfriend, S., Sjoerdsma, A.: Decarboxylase inhibition and blood pressure reduction by α-methyl–3, 4-dihydroxy-D, L-phenylalanine. Science 131, 1890–1891 (1960).Google Scholar
  143. Palm, D., Langeneckert, W., Holtz, P.: Bedeutung der N-und α-Methylierung für die Affinität von Brenzcatechinaminen zu den adrenergischen Receptoren. Naunyn-Schmiedeberg’s Arch. Pharmak. exp. Path. 258, 128–149 (1967).Google Scholar
  144. Patil, P.N., Jacobowitz, D.: Steric aspects of adrenergic drugs. IX. Pharmacologic and histochemical studies on isomers of cobefrin (a-methylnorepinephrine). J. Pharmacol, exp. Ther. 161, 279–295 (1968).Google Scholar
  145. Patil, P.N., Jacobowitz, D., Lapidus, J.B., Tye, A.: Steric aspects of adrenergic drugs. J. pharm. Sci. 59, 1205–1234 (1970).PubMedGoogle Scholar
  146. Paton, D.M.: Cation and metabolic requirements for retention of metaraminol by rat uterine horns. Brit. J. Pharmacol. 33, 277–286 (1968).PubMedGoogle Scholar
  147. Paton, D.M.: Effects of Na+ and K+ on the uptake of metaraminol by rabbit ventricular slices. Brit. J. Pharmacol. 41, 65–75 (1971).Google Scholar
  148. Pettinger, W.A., Spector, S., Horwitz, D., Sjoerdsma, A.: Restoration of tyramine pressor responses in reserpine-treated animals by methyldopa and its amine metabolites. Proc. Soc. exp. Biol. (N.Y.) 118, 988–993 (1965).Google Scholar
  149. Philippu, A., Schümann, H.J.: Effect of α-methyldopa, α-methyldopamine, and α-methyl-norepinephrine on the norepinephrine content of the isolated heart. Life Sci. 4, 2039 to 2046 (1965).Google Scholar
  150. Philippu, A., Schümann, H.J.: Aufnahme von α-Methyldopamin und α-Methylnoradrenalin in die Noradrenalinspeichernden Herzgranula. Experientia (Basel) 22, 119–120 (1966).Google Scholar
  151. Philippu, A., Schümann, H.J.: Bildung und Speicherung von α-Methylnoradrenalin. Naunyn-Schmiedeberg’s Arch.Pharmak. exp. Path. 256, 183–195 (1967).Google Scholar
  152. Pöch, G.R., Kopin, I.J.: The rôle of octopamine in tachyphylaxis to tyramine. Biochem. Pharmacol. 15, 210–212 (1966).PubMedGoogle Scholar
  153. Porter, C.C., Titus, D.C.: Distribution and metabolism of methyldopa in the rat. J. Pharmacol. exp. Ther. 139, 77–87 (1963).PubMedGoogle Scholar
  154. Porter, C.C., Titus, D.C., Torchiana, M.L., Totaro, J. A., Stone, C.A.: Displacement of norepinephrine from the rat heart by 14C-metaraminol. Biochem. Pharmacol. 16, 2117–2124 (1967).PubMedGoogle Scholar
  155. Porter, C.C., Titus, D.C., Torchiana, M.L., Totaro, J. A., Stone, C.A., Totaro, J.A., Burcin, A.: The relation between radioactivity and norepinephrine concentrations in the brains and hearts of mice following administration of labelled methyldopa or 6-hydroxydopamine. J. Pharmacol, exp. Ther. 150, 17–22 (1965).Google Scholar
  156. Porter, C.C., Titus, D.C., Torchiana, M.L., Totaro, J. A., Stone, C.A., Totaro, J.A., Burcin, A., Leiby, C.M.: Some biochemical effects of α-methyl–3, 4-dihydr oxypheny 1 al anine andrelated compounds in mice. J. Pharmacol, exp. Ther. 134, 139–145 (1961).Google Scholar
  157. Potter, L.T., Axelrod, J.: Studies on the storage of norepinephrine and the effect of drugs. J. Pharmacol, exp. Ther. 140, 199–206 (1963).Google Scholar
  158. Potter, L.T., Axelrod, J., Kopin, I.J.: Differential binding and release of norepinephrine and tachyphylaxis. Biochem. Pharmacol. 11, 254–256 (1962).PubMedGoogle Scholar
  159. Prescott, L.F., Buhs, R.P., Beattie, J.O., Speth, O.C., Trenner, N.R., Lasagna, L.: Combined clinical and metabolic study of the effects of α-methyldopa on hypertensive patients. Circulation 34, 308–321 (1966).PubMedGoogle Scholar
  160. Pruss, T.P., Maengwyn-Davies, G.D., Wurzel, M.: Comparison of effects of aromatic sympathomimetic amines on rabbit aortic strip and rabbit blood pressure. J. Pharmacol, exp. Ther. 147, 76–85 (1965).Google Scholar
  161. Rahn, K.H., Gilfrich, H.J., Olbermann, M.: Ein Vergleich der Kreislaufwirkungen von Noradrenalin und α-Methylnoradrenalin als Studie über den Wirkungsmechanismus von α-Methyldopa. Verh. dtsch. Ges. inn. Med. 76, 937–939 (1970).Google Scholar
  162. Rossum, J.M., Van: The relation between chemical structure and biological activity. J. Pharm. Pharmacol. 15, 285–316 (1963).PubMedGoogle Scholar
  163. Rossum, J.M., Van, Hurkmans, J.A.T.M.: Reversal of the effect of α-methyldopa by m.a.o. inhibitors. J. Pharm. Pharmacol. 15, 493–499 (1963).Google Scholar
  164. Saart, W.S., Raab, A.W., Engelhardt, E.L.: The stereoisomers of α-(1-aminoethyl)-w-hydroxybenzyl alcohol. J. Med. Chem. 11, 1115–1117 (1968).Google Scholar
  165. Salmon, G.K., Ireson, J.D.: A correlation between the hypotensive action of methyldopa and its depression of peripheral sympathetic function. Arch. int. Pharmacodyn. 183, 60–64 (1970).Google Scholar
  166. Schaumann, O.: Über Oxy-Ephedrine. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 160, 127–176 (1931).Google Scholar
  167. Schaumann, O.: Zur Pharmakologie der optischen Isomeren des 3, 4-Dioxy-nor-Ephedrins (Corbasil). Medizin und Chemie 3, 383–392. Leverkusen: Bayer 1936.Google Scholar
  168. Schmitt, H., Petillot, N.: Influence du remplacement de la noradrenaline par des faux médiateurs et de l’inhibition de la synthèse sur l’excitabilité sympathique. J. Pharmacol. (Paris) 1, 183–194 (1970).Google Scholar
  169. Schümann, H.J., Grobecker, H.: Nachweis und Lokalisation von α-Methylnoradrenalin in Meerschweinchenorganen nach Vorbehandlung mit α-Methyl-Dopa. Naunyn-Schmiede-berg’s Arch. exp. Path. Pharmak. 247, 297–298 (1964).Google Scholar
  170. Schümann, H.J., Grobecker, H., Schmidt, K.: Über die Wirkung von α-Methyl-Dopa auf den Brenzcatechinamingehaltvon Meerschweinchenorganen. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 251, 48–61 (1965).Google Scholar
  171. Sedvall, G.C., Weise, V.K., Kopin, I.J.: The rate of norepinephrine synthesis measured in vivo during short intervals; influence of adrenergic nerve impulse activity. J. Pharmacol, exp. Ther. 159, 274–282 (1968).Google Scholar
  172. Shore, P.A., Alpers, H.S.: Fluorometric estimation of metaraminol and related compounds. Life Sci. 3, 551–554 (1964).PubMedGoogle Scholar
  173. Shore, P.A., Alpers, H.S., Busfield, D., Alpers, H.S.: Binding and release of metaraminol: Mechanism of nor-epinephrine depletion by α-methyl-m-tyrosine and related agents. J. Pharmacol, exp. Ther. 146, 194–199 (1964).Google Scholar
  174. Sjoerdsma, A., Studnitz, W., Von: Dopamines-oxidase activity in man, using hydroxy-amphetamine as substrate. Brit. J. Pharmacol. 20, 278–284 (1963).PubMedGoogle Scholar
  175. Sjoerdsma, A., Studnitz, W., Von, Vendsalu, A., Engelman, K.: Studies on the metabolism and mechanism of action of methyldopa. Circulation 28, 492–502 (1963).Google Scholar
  176. Smith, C. B.: The role of monoamine oxidase in the intraneuronal metabolism of norepine-phrine released by indirectly acting sympathomimetic amines or by adrenergic nerve stimulation. J. Pharmacol, exp. Ther. 151, 207–220 (1966).Google Scholar
  177. Sogani, R.K., Sharma, V.N.: Modification of vascular actions of sympathomimetic drugs by methyldopa. Arch. int. Pharmacodyn. 159, 135–139 (1966).Google Scholar
  178. Sourkes, T.L.: Inhibition of dihydroxyphenylalanine decarboxylase by derivatives of phenylalanine. Arch. Biochem. Biophys. 51, 444–456 (1954).PubMedGoogle Scholar
  179. Sourkes, T.L.: The action of α-methyldopa in the brain. Brit. med. Bull. 21, 66–69 (1965).Google Scholar
  180. Sourkes, T.L., Murphy, G.F., Chavez, B., Zielinska, M.: The action of some α-methyl and other amino acids on cerebral catecholamines. J. Neurochem. 8, 109–115 (1961).PubMedGoogle Scholar
  181. Spector, S., Gordon, R., Sjoerdsma, A., Udenfriend, S.: End-product inhibition of tyrosine hydroxylase as a possible mechanism for regulation of norepinephrine synthesis. Molec. Pharmacol. 3, 549–555 (1967).Google Scholar
  182. Spector, S., Gordon, R., Sjoerdsma, A., Udenfriend, S., Sjoerdsma, A., Udenfriend, S.: Blockade of endogenous norepinephrine synthesis by α-methyl-tyrosine, an inhibitor of tyrosine hydroxylase. J. Pharmacol, exp. Ther. 147, 86–95 (1965).Google Scholar
  183. Suärne, L., Lishajko, F.: Localization of different steps in noradrenaline synthesis to different fractions of a bovine splenic nerve homogenate. Biochem. Pharmacol. 16, 1719–1728 (1967).Google Scholar
  184. Stone, C.A., Porter, C.C.: Biochemistry and pharmacology of methyldopa and some related structures. Advanc. Drug Res. 4, 71–93 (1967).Google Scholar
  185. Stone, C.A., Porter, C.C., Ross, C.A., Wenger, H.C., Ludden, C.T., Blessing, J. A., Totaro, J. A., Porter, C.C.: Effects of α-methyl–3, 4-dihydroxyphenylalanine (Methyldopa), reserpine and related agents on some vascular responses in the dog. J. Pharmacol, exp. Ther. 136, 80–88 (1962).Google Scholar
  186. Stone, C.A., Porter, C.C., Ross, C.A., Wenger, H.C., Ludden, C.T., Blessing, J. A., Totaro, J. A., Porter, C.C., Stavorski, J.M., Ludden, C.T., Wenger, H.C., Ross, C. A., Totaro, J. A., Porter, C.C.: Comparison of some pharmacological effects of certain 6-substituted dopamine derivatives with reserpine, guanethidine and metaraminol. J. Pharmacol, exp. Ther. 142, 147–156 (1963).Google Scholar
  187. Stott, A.W., Robinson, R.: Urinary phenols in patients treated with α-methyldopa. J. Pharm. Pharmacol. 15, 773–774 (1963).PubMedGoogle Scholar
  188. Stott, A.W., Robinson, R.: The effects of α-methyldopa on excretion of noradrenaline metabolites. J. Pharm.Pharmacol. 19, 690–693 (1967).PubMedGoogle Scholar
  189. Sugarman, S.R., Margolius, H.S., Gaffney, T.E., Mohammed, S.: Effect of methyldopa on chronotropic responses to cardioaccelerator nerve stimulation in dogs. J. Pharmacol, exp. Ther. 162, 115–120 (1968).Google Scholar
  190. Sugrije, M.F., Shore, P.A.: The mode of sodium dependency of the adrenergic neuron amine carrier. Evidence for a second, sodium-dependent, optically specific and reserpine-sensitive system. J. Pharmacol, exp. Ther. 170, 239–245 (1969).Google Scholar
  191. Swamy, V.C., Tye, A., La Pidijs, J.B., Patil, P.N.: Steric aspects of adrenergic drugs. XIII. Norepinephrine potentiating effects of isomers of sympathomimetic amine in rat vas deferens and atria. Arch. int. Pharmacodyn. 182, 24–31 (1969).Google Scholar
  192. Thoa, N.B., Eccleston, D., Axelrod, J.: The accumulation of C14-serotonin in the guinea-pig vas deferens. J. Pharmacol, exp. Ther. 169, 68–73 (1969).Google Scholar
  193. Thoenen, H.: Bildung und funktionelle Bedeutung adrenerger Ersatztransmitter. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  194. Thoenen, H., Haefely, W., Gey, K.E., Hürlimann, A.: Diminished effects of sympathetic nerve stimulation in cats pretreated with disulfiram; liberation of dopamine as sympathetic transmitter. Life Sci. 4, 2033–2038 (1965).PubMedGoogle Scholar
  195. Thoenen, H., Haefely, W., Gey, K.E., Hürlimann, A.: The effect of α-methyl-tyrosine on peripheral sympathetic transmission. Life Sci. 5, 723–730 (1966a).PubMedGoogle Scholar
  196. Thoenen, H., Haefely, W., Gey, K.E., Hürlimann, A.: Quantitative aspects of the replacement of norepinephrine by dopamine as asympathetic transmitter after inhibition of dopamine-ß-hydroxylase by disulfiram. J. Pharmacol, exp. Ther. 156, 246–251 (1967 a).Google Scholar
  197. Thoenen, H., Haefely, W., Gey, K.E., Hürlimann, A.: Liberation of α-methyldopamine as a “false” sympathetic transmitter afterpretreatment of cats with α-methyldopa and disulfiram. Naunyn-Schmiedeberg’s Arch. Pharmak. exp. Path. 258, 181–196 (1967b).Google Scholar
  198. Thoenen, H., Haefely, W., Gey, K.E., Hürlimann, A.: Diminished effect of sympathetic nerve stimulation in cats pretreated with5-hydroxydopa; formation and liberation of false adrenergic transmitters. Naunyn-Schmiedeberg’s Arch. Pharmak. exp. Path. 259, 17–33 (1967 c).Google Scholar
  199. Thoenen, H., Haefely, W., Gey, K.E., Hürlimann, A., Häusler, G., Hürlimann, A.: Formation of a “false” adrenergic transmitter in catspretreated with 4-methoxy–3, 5-dihydroxyphenylalanine and its effects on postganglionic transmission. J. Pharmacol, exp. Ther. 162, 70–79 (1968).Google Scholar
  200. Thoenen, H., Haefely, W., Gey, K.E., Hürlimann, A., Häusler, G., Hürlimann, A., Hürlimann, A., Gey, K.F., Haefely, W.: Liberation of p-hydroxynorephedrine from cat spleen by sympathetic nerve stimulation after pretreatment with amphetamine. Life Sci. 5, 1715–1722 (1966b).PubMedGoogle Scholar
  201. Thoenen, H., Haefely, W., Gey, K.E., Hürlimann, A., Häusler, G., Hürlimann, A., Hürlimann, A., Gey, K.F., Haefely, W., Haefely, W.: The effect of sympathetic nerve stimulation on volume, vascularresistance, and norepinephrine output in the isolated perfused spleen of the cat, and its modification by cocaine. J. Pharmacol, exp. Ther. 143, 57–63 (1964).Google Scholar
  202. Thoenen, H., Haefely, W., Gey, K.E., Hürlimann, A., Häusler, G., Hürlimann.: Functional importance of subcellular distribution of false adrenergic transmitters. Progr. Brain Res. in the press (1971).Google Scholar
  203. Torchiana, M.L., Porter, C.C., Stone, C.A.: Relation between molecular configuration and certain biological actions of α-methyldopamine and α-methyl-meta-tyramine and their /Miydroxylated products α-methylnorepinephrine and metaraminol. Arch. int. Pharmacodyn. 174, 118–134 (1968).Google Scholar
  204. Torchiana, M.L., Porter, C.C., Stone, C.A., Hanson, H.M.: Some biochemical and pharmacological actions of α-methylphenyl-alanine. Biochem. Pharmacol. 19, 1601–1614 (1970).PubMedGoogle Scholar
  205. Torchiana, M.L., Porter, C.C., Stone, C.A., Hanson, H.M., Wenger, H.C., Stavorski, J., Ludden, C.T., Stone, C.A.: Effect of methyldopa and related agents on pressor responses to tyramine in reserpine-pretreated rats and dogs. J. Pharmacol, exp. Ther. 151, 242–252 (1966).Google Scholar
  206. Trendelenburg, U.: The effect of sympathetic nerve stimulation on isolated atria of guinea pigs and rabbits pretreated with reserpine. J. Pharmacol, exp. Ther. 147, 313–318 (1965).Google Scholar
  207. Trendelenburg, U., Muskus, A., Fleming, W. W., Gomez Alonso De La Sierra, G.: Modification by reserpine of the action of sympathomimetic amines in spinal cats; a classification of sympathomimetic amines. J. Pharmacol, exp. Ther. 138, 170–180 (1962).Google Scholar
  208. Trinker, F.R.: The significance of the relative potencies of noradrenaline and α-methylnor-adrenaline for the mode of action of α-methyldopa. J. Pharm. Pharmacol. 23, 306–308 (1971).PubMedGoogle Scholar
  209. Udenfriend, S.: Physiological regulation of noradrenaline biosynthesis. In: Adrenergic Neurotransmission. Eds. Wolstenholme, G.E.W., O’Connor, M. 3–11. London: J. & A. Churchill 1968.Google Scholar
  210. Udenfriend, S., Zaltzman-Nirenberg, P.: On the mechanism of the norepinephrine release produced by α-methyl-meta-tyrosine. J. Pharmacol, exp. Ther. 138, 194–199 (1962).Google Scholar
  211. Udenfriend, S., Zaltzman-Nirenberg, P., Gordon, K., Spector, S.: Evaluation of the biochemical effects produced in vivo byinhibitors of the three enzymes involved in norepinephrine biosynthesis. Molec. Pharmacol. 2, 95–105 (1966).Google Scholar
  212. Udenfriend, S., Zaltzman-Nirenberg, P., Gordon, K., Spector, S., Nagatsu, T.: Inhibitors of purified beef adrenal tyrosine hydroxylase. Biochem.Pharmacol. 14, 837–845 (1965).PubMedGoogle Scholar
  213. Van Orden, L.S., Bensch, K.G., Giarman, N.J.: Histochemical and functional relationships of catecholamines in adrenergic nerve endings. II. Extravesicular norepinephrine. J. Pharmacol, exp. Ther. 155, 428–439 (1967).Google Scholar
  214. Varma, D.H., Benfey, B.G.: Antagonism of reserpine-induced subsensitivity to tyramine by α-methyldopa. J. Pharmacol, exp. Ther. 141, 310–313 (1963).Google Scholar
  215. Waldeck, B.: On the interaction of threo–3H-a-methylnoradrenaline with the uptake and storage mechanisms of the adrenergic neuron. Europ. J. Pharmacol. 2, 208–213 (1967).Google Scholar
  216. Waldeck, B.: On the stereospecificity of the ß-hydroxylation of α-methyldopamine. Europ. J. Pharmacol. 5, 114–116 (1968).Google Scholar
  217. Waldeck, B.: Failure to demonstrate monoamine oxidase inhibition by glyceryl trinitrate in vivo. Acta Pharmacol. (Kbh.) 28, 406–412 (1970).Google Scholar
  218. Weber, E., Muscholl, E.: Der Einfluß verschiedener Pharmaka auf die Elimination von α-Methylnoradrenalin aus der Perfusionsflüssigkeit des isolierten Kaninchenherzens. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 251, 161–162 (1965).Google Scholar
  219. Weber, L.J.: Drug interactions between disulfiram and α-methyldopa and related agents in reserpine-pretreated rats. Proc. Soc. exp. Biol. (N.Y.) 123, 349–352 (1966).Google Scholar
  220. Weiner, N., Selvaratnam, I.: The effect of tyramine on the synthesis of norepinephrine. J. Pharmacol, exp. Ther. 161, 21–33 (1968).Google Scholar
  221. Weissbach, H., Lovenberg, W., Udenfriend, S.: Enzymatic decarboxylation of α-methyl amino acids. Biochem. biophys. Res. Commun. 3, 225–227 (1960).Google Scholar
  222. Werle, E., Sell, J.: Über die fermentative Decarboxylierung von Mono-und Dioxyphenyl-serinen. Biochem. Z. 326, 110–122 (1954).PubMedGoogle Scholar
  223. Young, J. A., Edwards, K.D.G.: Studies on the absorption, metabolism and excretion of methyldopa and other catechols and their influence on amino acid transport in rats. J. Pharmacol, exp. Ther. 145, 102–112 (1964).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

  • E. Muscholl

There are no affiliations available

Personalised recommendations