Advertisement

Spieltheorie pp 182-197 | Cite as

Andere Lösungskonzepte für n-Personen-Spiele

  • Guillermo Owen
Part of the Hochschultext book series (HST)

Zusammenfassung

Da bisher kein allgemeiner Existenzsatz für n-Personenspiele bekannt ist, haben die Mathematiker nach anderen Lösungskonzepten gesucht. Eines dieser Konzepte ist der Shapley-Wert. Shapley definiert seinen Wert axiomatisch.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel IX

  1. 1.
    AUMANN, R.J., MASCHLER, M.: The Bargaining Set for Cooperative Games, Annals 52.Google Scholar
  2. 2.
    LUCE, R.D.: ψ-Stability: a New Equilibrium Concept for n-Person Game Theory, Mathematical Models of Human Behavior (Proceedings of a symposium), Stamford, Conn. (Dunlap and Associates), 1955, pp. 32–44.Google Scholar
  3. 3.
    LUCE, H.D.: k-Stability of Symmetric and Quota Games, Annals of Mathematics 62, S.517–527 (1955).MathSciNetCrossRefGoogle Scholar
  4. 4.
    MASCHLER, M.: The Inequalities that Determine the Bargaining Set Research Program in Game Theory and Mathematical Economics, Research Memorandum 17, Hebrew University of Jerusalem, January 1966.Google Scholar
  5. 5.
    MASCHLER, M., PELEG, B.: A Characterization, Existence Proof, and Dimension Bounds for the Kernel of a Game, Pacific J. Math. 18, S.289–328 (1966).MathSciNetGoogle Scholar
  6. 6.
    MILNOR, J.: Reasonable Outcomes for n-Person Games, RM-916, RAND Corporation, 1952.Google Scholar
  7. 7.
    PELEG, B.: On the Bargaining Set M0 of m-Quota Games, Annals 52.Google Scholar
  8. 8.
    PELEG, B.: Existence Theorem for the Bargaining Set M0(i), Bull. Am. Math. Soc. 69, 109–110 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    SHAPLEY, L.S.: A Value for n-Person Games, Annals 28.Google Scholar

Copyright information

© W. B. Saunders Company 1968

Authors and Affiliations

  • Guillermo Owen
    • 1
  1. 1.Department of Mathematical SciencesRice UniversityHoustonUSA

Personalised recommendations