Advertisement

The Genetic Control of Spore Formation in Bacilli

  • Georges Balassa
Conference paper
  • 57 Downloads
Part of the Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunitätsforschung book series (CT MICROBIOLOGY, volume 56)

Abstract

Cells of Bacillus species undergo, under certain conditions, a process of cell differentiation, culminating in the development of a resistant structure: the endospore .The endospore differs from normal cells by its structure, especially its external envelopes, by its resistance to physical and chemical agents (heat, dessication, organic solvents, disinfectants, etc.) and by its absolute metabolic dormancy. The sporal cycle of these bacteria consists of the formation of the endospore from the vegetative cell by several consecutive steps, its liberation, and later, if the environment becomes suitable, the germination of the spore followed by the outgrowth of a new vegetative cell. This is truly a process of cell differentiation since it involves a sequence of profound morphological alterations, accompanied by biochemical changes and by the synthesis of qualitatively new proteins.

Keywords

Bacillus Subtilis Bacillus Megaterium Spore Formation Bacterial Spore Mature Spore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

Sp-

Sporulation mutants (in general or asporogenous);

Osp

oligosporogenous mutants.

Sporulation-associated characters

Ab antibiotic on staphylococcus; Ab(BH) antibiotic on Bacillus H; Gel, Alb, Cas, AlN, El, and Prot proteolytic activities on gelatin, denatured albumin, casein, native albumin, elastin and unspecified, respectively; TZ2 oxidation of triphenyl tetrazolium by old colonies; TO high macromolecular turnover; X general term for any of the above.

NTG

nitrosoguanidine.

DPA

dipicolinic acid.

OcR, ChlR, TR

resistance to octanol, chloroform and heat.

OTCase

ornithine transcarbamylase;

ATCase

arginine transcarbamylase.

IMPH

IMP dehydrogenase;

glucH

glucose dehydrogenase;

TCA

tricarboxylic acid cycle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anagnostopoulos, C., Crawford, I. P.: Transformation studies on the linkage of markers in the tryptophan pathway in Bacillus subtilis .Proc. nat. Acad. Sci. (Wash.) 47, 378–390 (1961).Google Scholar
  2. Aronson, A. J.: Characterization of messenger RNA in sporulating Bacillus cereus .J. molec. Biol. 11, 576–588 (1965a).PubMedGoogle Scholar
  3. Aronson, A. J.: Membrane-bound messenger RNA and polysomes in sporulating bacteria. J. molec. Biol. 13, 92–104 (1965b).PubMedGoogle Scholar
  4. Aronson, A. J. Del Valle, M. R.: RNA and protein synthesis required for bacterial spore formation. Biochim. biophys. Acta (Amst.) 87, 267–276 (1964).Google Scholar
  5. Aronson, A. J. Fitz-James, P. C.: Biosynthesis of bacterial spore coats. J. molec. Biol. 33, 199–212 (1968).PubMedGoogle Scholar
  6. Aronson, A. J. Henderson, E., Tincher, A.: Participation of the lysine pathway in dipicolinic acid synthesis in Bacillus cereus T. Biochem. biophys. Res. Commun. 26, 454–460 (1967).PubMedGoogle Scholar
  7. Aronson, A. J. Horn, D.: Synthesis and regulation of the bacterial spore coat. In: Spores IV, p. 72–81, ed. L. L. Campbell. Bethesda, MD: Amer. Soc. Microbiol. 1969.Google Scholar
  8. Aubert, J. P., Millet, J.: Influence de l’alimentation carbonée sur le taux de sporulation de mutants de sporulation de Bacillus megaterium .C. R. Acad. Sci. (Paris) 253, 1880–1882 (1961).Google Scholar
  9. Aubert, J. P., Millet, J.: L’induction de la β-galactosidase au cours de la sporulation chez Bacillus megaterium .C. R. Acad. Sci. (Paris) 256, 1866–1868 (1963a).Google Scholar
  10. Aubert, J. P., Millet, J.: Localisation de la β-galactosidase induite au cours de la sporulation chez Bacillus megaterium .C. R. Acad. Sci. (Paris) 256, 5442–5445 (1963b).Google Scholar
  11. Aubert, J. P., Millet, J.: Induction de la β-galactosidase chez Bacillus megaterium au cours de la sporulation. In: Mécanismes de régulation chez les microorganismes. Coll. int. Centre nat. Rech. sci. (Paris) No 124, 545–551 (1965).Google Scholar
  12. Aubert, J. P., Millet, J. Castoriadis-May, C.: Relation entre le taux de croissance et la sporulation chez Bacillus megaterium .C. R. Acad. Sci. (Paris) 253, 1731–1733 (1961a).Google Scholar
  13. Aubert, J. P., Millet, J. Pineau, E., Milhaud, G.: L’acide N- succinyl-L(+) glutamique chez Bacillus megaterium en voie de sporulation. Biochim. biophys. Acta (Amst.) 51, 529–537 (1961b).Google Scholar
  14. Aubert, J. P., Ryter, A., Schaeffer, P.: Comportement de l’ADN des bactéries et des spores au cours d’un cycle sporal chez B. subtilis .Ann. Inst. Pasteur 115, 989–1007 (1968).Google Scholar
  15. Aubert, J. P., Ryter, A., Schaeffer, P.: Fate of spore deoxyribonucleic acid during a new spore cycle in Bacillus subtilis .In: Spores IV, p. 148–158, ed. L. L. Campbell. Bethesda, MD: Amer. Soc. Microbiol. (1969).Google Scholar
  16. Bach, M., Gilvarg, C.: Biosynthesis of dipicolinic acid in sporulating Bacillus megaterium .J. biol. Chem. 241, 4563–4566 (1966).PubMedGoogle Scholar
  17. Baillie, A.: Antigens of Bacillus cereus: a comparison of a parent strain, an asporogenic variant and cell fractions. J. appl. Bact. 30, 230–238 (1967).Google Scholar
  18. Baillie, A.: Norris, J. E.: Antigen changes during spore formation in Bacillus cereus .J. Bact. 87, 1221–1226 (1964).PubMedGoogle Scholar
  19. Baillie, A. Thomson, R. O., Batty, I., Walker, P. D.: Some preliminary observations on the location of esterases in Bacillus cereus .J. appl. Bact. 30, 312–316 (1967).Google Scholar
  20. Balassa, G.: Renouvellement de l’acide ribonucléique au cours de la sporulation de Bacillus subtilis .Biochem. biophys. Acta (Amst.) 76, 410–416 (1963).Google Scholar
  21. Balassa, G.: Quantitative regulation of RNA synthesis during sporulation of Bacillus subtilis .Biochem. biophys. Res. Commun. 15, 236–239 (1964a).PubMedGoogle Scholar
  22. Balassa, G.: Genetic control of RNA turnover in sporulation mutants of Bacillus subtilis .Biochem. biophys. Res. Commun. 15, 240–242 (1964b).PubMedGoogle Scholar
  23. Balassa, G.: Le métabolisme des acides ribonucléiques au cours du cycle sporal de Bacillus subtilis .In: Mécanismes de régulation chez les micro-organismes. Coll. int. Centre nat. Rech. sci. (Paris) No 124, 565–582 (1965).Google Scholar
  24. Balassa, G.: Les acides ribonucléiques de la spore. Ann. Inst. Pasteur 110, 17–24 (1966a).Google Scholar
  25. Balassa, G.: Synthèse et fonction des ARN messagers au cours de la sporulation de Bacillus subtilis .Ann. Inst. Pasteur 110, 175–191 (1966b).Google Scholar
  26. Balassa, G.: Renouvellement des ARN et des protéines au cours de la sporulation de Bacillus subtüis .Ann. Inst. Pasteur 110, 316–346 (1966c).Google Scholar
  27. Balassa, G.: Biochemical genetics of bacterial sporulation. I. Unidirectional pleiotropic interactions. Molec. Gen. Genetics 104, 73–103 (1969).Google Scholar
  28. Balassa, G. Contesse, G.: Synthèses macromoléculaires au cours de la germination de spores de Bacillus subtüis .I. Cinétique. Ann. Inst. Pasteur 109, 683–705 (1965).Google Scholar
  29. Balassa, G. Contesse, G.: Synthèses macromoléculaires au cours de la germination de spores de Bacillus subtüis .II. Régulation. Ann. Inst. Pasteur 110, 25–48 (1966).Google Scholar
  30. Balassa, G. Ionesco, H., Schaeffer, P.: Preuve génétique d’une relation entre la production d’un antibiotique par Bacillus subtüis et sa sporulation. C. R. Acad. Sci. (Paris) 257, 986–988 (1963).Google Scholar
  31. Balassa, G. Yamamoto, T.: A Bacillus subtilis mutant with heat-sensitive but chloroform-resistant spores. Microbios. 5, 73–76 (1970 a).Google Scholar
  32. Balassa, G. Yamamoto, T.: Biochemical genetics of bacterial sporulation. III. Correlation between morphological and biochemical properties of sporulation mutants. Molec. Gen. Genetics (1970 b).Google Scholar
  33. Baldwin, H. H., Rusch, H. P.: The chemistry of differentiation in lower organisms. Ann. Rev. Biochem. 34, 565–594 (1965).PubMedGoogle Scholar
  34. Barat, M., Anagnostopoulos, C., Schneider, A. M.: Linkage relationships of genes controlling isoleucine, valine, and leucine biosynthesis in Bacillus subtilis .J. Bact. 90, 357–369 (1965).PubMedGoogle Scholar
  35. Bayen, H., Frehel, C., Ryter, A., Sebald, M.: Etude cytologique de la sporulation chez Clostridium histolyticum: souche sporogène et mutants de sporulation. Ann. Inst. Pasteur 113, 163–173 (1967).Google Scholar
  36. Bautz, E., Bautz, F., Dunn, J.: E.coli o factor: a positive control element in phage T4 development. Nature (Lond.) 223, 1022–1024 (1969).Google Scholar
  37. Bernlohr, R. W., Gray, B. H.: Enzyme inactivation during initiation of sporulation. In: Spores IV, p. 186–195, ed. L.L.Campbell. Bethesda, MD: Amer. Soc. Microbiol. (1969).Google Scholar
  38. Bishop, H. L., Doi, R. H.: Isolation and characterization of ribosomes from Bacillus subtilis spores. J. Bact. 91, 695–701 (1966).PubMedGoogle Scholar
  39. Bishop, H. L., Migita, L. K., Doi, R. H.: Peptide synthesis by extracts from Bacillus subtilis spores. J. Bact. 99, 771–778 (1969).PubMedGoogle Scholar
  40. Bonsen, P., Spudich, J. A., Nelson, D. L., Kornberg, A.: Biochemical studies of bacterial sporulation and germination. XII. Sulfonic acid as a major sulfur compound of Bacillus subtilis spores. J. Bact. 98, 62–68 (1969).PubMedGoogle Scholar
  41. Bott, K. F.: Biochemical and genetic studies of Bacillus subtilis mutants induced by acridine orange. Bact. Proc. p. 52 (1967).Google Scholar
  42. Bott, K. F. Davidoff-Abelson, R.: Altered sporulation and respiratory patterns in mutants of Bacillus subtilis induced by acridine orange. J. Bact. 92 229–240 (1966).PubMedGoogle Scholar
  43. Campbell, L. L., (ed.): Spores, III. Ann Arbor, MI: Amer. Soc. Microbiol. 1965.Google Scholar
  44. Campbell, L. L., Halvorson, H. O., (ed.): Spores, IV. Ann Arbor, MI: Amer. Soc. Microbiol. 1965.Google Scholar
  45. Campbell, L. L., Richards, C. M., Sniff, E. E.: Isolation of strains of Bacillus stearothermophilus with altered requirements for spore germination. In: Spores III, p. 55–63, ed. L.L. Campbell and H. O. Halvorson. Ann Arbor, MI: Amer. Soc. Microbiol. 1965.Google Scholar
  46. Cantino, E. C.: The relationship between biochemical and morphological differentiation in non-filamentous aquatic fungi. Symp. Soc. gen. Microbiol. 11, 243–271 (1961).Google Scholar
  47. Cantino, E. C.: Morphogenesis in aquatic fungi. In: The Fungi, ed. G. C. Answorth and A. S. Sussman, vol. II, p. 283–337. New York: Acad. Press 1966.Google Scholar
  48. Chambon, P., Deutscher, M. P., Kornberg, A.: Biochemical studies of bacterial sporulation and germination. X. Ribosomes and nucleic acids of vegetative cells and spores of Bacillus megaterium .J. biol. Chem. 243, 5110–5116 (1968).PubMedGoogle Scholar
  49. Chasin, L. A., Szulmajster, J.: Biosynthesis of dipicolinic acid in Bacillus subtilis. Biochem. biophys. Res. Commun. 29, 648–654 (1967).PubMedGoogle Scholar
  50. Chasin, L. A., Szulmajster, J.: Enzymes of dipicolinic acid biosynthesis in Bacillus subtilis .In: Spores IV, p. 133–147, ed. L. L. Campbell. Bethesda, MD: Amer. Soc. Microbiol. 1969.Google Scholar
  51. Cross, T., Walker, P. D., Gould, G. W.: Thermophilic actinomycetes producing resistant endospores. Nature (Lond.) 220, 352–354 (1968).Google Scholar
  52. Dawes, I. W., Hay, D., Mandelstam, J.: Sporulation in Bacillus subtilis .Establishment of a time scale for the morphological events. J. gen. Microbiol. 56, 171–179 (1969).PubMedGoogle Scholar
  53. Delafield, F. P., Somerville, H. J., Rittenberg, S. C.: Immunological homology between crystal and spore protein of Bacillus thuringiensis .J. Bact. 96, 713–720 (1968).PubMedGoogle Scholar
  54. Del Valle, M. R., Aronson, A. I.: Evidence for the synthesis of stable informational RNA requested for bacterial spore formation. Biochem. biophys. Res. Commun. 9, 421–425 (1962).Google Scholar
  55. Dennis, E. S., Wake, R. G.: Autoradiography of the Bacillus subtilis chromosome. J. molec. Biol. 15, 435–439 (1966).PubMedGoogle Scholar
  56. Deutscher, M. P., Chambon, P., Kornberg, A.: Biochemical studies of bacterial sporulation and germination. XI. Protein-synthesizing systems from vegetative cells and spores of Bacillus megaterium .J. biol. Chem. 243, 5117–5125 (1968).PubMedGoogle Scholar
  57. Deutscher, M. P., Kornberg, A.: Biochemical studies of bacterial sporulation and germination. VIII. Patterns of enzyme development during growth and sporulation of Bacillus subtilis .J. biol. Chem. 243, 4653–4660 (1968).PubMedGoogle Scholar
  58. Doi, R. H.: Genetic transcription of Bacillus subtilis .In: Spores III, p. 111–124, ed. L. L. Campbell and H. O. Halvorson. Ann Arbor, MI: Amer. Soc. Microbiol. 1965.Google Scholar
  59. Doi, R. H.: Changes in nuclei acids during sporulation. In: The bacterial spore, p. 125–166, Gould and Hurst, eds. London: Academic Press 1969.Google Scholar
  60. Doi, R. H., Bishop, H. L., Migita, L. K.: Transfer ribonucleic acid patterns and functions of sporulating cells and spores of Bacillus subtilis .In: Spores IV, p. 159–174, ed. L. L. Campbell. Bethesda, MD: Amer. Soc. Microbiol. 1969.Google Scholar
  61. Doi, R. H. Igarashi, R. T.: Genetic transcription during morphogenesis. Proc. nat. Acad. Sci. (Wash.) 52, 755–762 (1964a).Google Scholar
  62. Doi, R. H. Igarashi, R. T.: Relation of ribonucleic acid composition to growth rate and dormancy in Bacillus subtilis .Nature (Lond.) 203, 1092–1094 (1964b).Google Scholar
  63. Doi, R. H. Igarashi, R. T.: Ribonucleic acids of Bacillus subtilis spores and sporulating cells. J. Bact. 87, 323–328 (1964c).PubMedGoogle Scholar
  64. Doi, R. H. Kaneko, L., Igarashi, R. T.: Pattern of valine transfer ribonucleic acid of Bacillus subtilis under different growth conditions. J. biol. Chem. 243, 945–951 (1968).PubMedGoogle Scholar
  65. Donnellan, J. E., Jr., Stafford, R. S.: The ultraviolet photochemistry and photobiology of vegetative cells and spores of Bacillus megaterium .Biophys. J. 8, 17–28 (1968).PubMedGoogle Scholar
  66. Dubnau, D., Goldthwaite, C., Smith, I., Marmur, J.: Genetic mapping in Bacillus subtilis .J. molec. Biol. 27, 163–185 (1967).PubMedGoogle Scholar
  67. Ephrati-Elizur, E., Fox, M. S.: Comparison of transduction versus transformation of linked markers in Bacillus subtilis .Nature (Lond.) 192, 433–434 (1961).Google Scholar
  68. Fitz-James, P. C.: Sporulation in protoplasts and its dependence on prior forespore development. J. Bact. 87, 667–675 (1964).PubMedGoogle Scholar
  69. Fitz-James, P. C.: Spore formation in wild and mutant strains of B. cereus and some effects of inhibitors. In: Mécanismes de régulation chez les microorganismes. Coll. int. Centre nat. Rech. sci. (Paris) No 124, 529–544 (1965 a).Google Scholar
  70. Fitz-James, P. C.: A consideration of bacterial membrane as the agent of differentiation. Symp. Soc. gen. Microbiol. 15, 369–378 (1965b).Google Scholar
  71. Fitz-James, P. C. Young, E.: Morphology of sporulation. In: The bacterial spore, p. 39–72, Gould and Hurst, eds. London: Academic Press 1969.Google Scholar
  72. Fortnagel, P., Freese, E.: Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J. Bact. 95, 1431–1438 (1968a).PubMedGoogle Scholar
  73. Fortnagel, P., Freese, E.: Inhibition of aconitase by chelation of transition metals causing inhibition of sporulation in Bacillus subtilis .J. biol. Chem. 243, 5289–5295 (1968b).PubMedGoogle Scholar
  74. Freese, E., Fortnagel, P.: Analysis of sporulation mutants I—Response of uracil incorporation to carbon sources, and other mutant properties. J. Bact. 94, 1957–1969 (1967).PubMedGoogle Scholar
  75. Freese, E., Fortnagel, P.: Growth and sporulation of Bacillus subtilis mutants blocked in the pyruvate dehydrogenase complex. J. Bact. 99, 745–756 (1969).PubMedGoogle Scholar
  76. Freese, E., Schmitt, R., Klofat, W., Chappelle, E., Picciolo, G.: Biochemical genetics of initial sporulation stages. In: Spores IV, p. 82–101, ed. L. L. Campbell. Bethesda, MD: Amer. Soc. Microbiol. 1969.Google Scholar
  77. Frehel, C., Ryter, A.: Réversibilité de la sporulation chez B. subtilis .Ann. Inst. Pasteur 117, 297–311 (1969).Google Scholar
  78. Goldring, E. S., Wake, R. G.: A comparison of the segregation of chromosomes within microcolonies developing from single Bacillus subtilis and Bacillus megaterium spores. J. molec. Biol. 35, 647–650 (1968).PubMedGoogle Scholar
  79. Gould, G. W.: Germination. In: The bacterial spore, p. 397–444. London-New York: Academic Press 1969.Google Scholar
  80. Gould, G. W. Hurst, A., (eds.): The bacterial spore. London-New York: Academic Press 1969.Google Scholar
  81. Grelet, N.: Growth limitation and sporulation. J. appl. Bact. 20, 315–324 (1957).Google Scholar
  82. Halvorson, H. O.: The formation of spores by bacteria. In: Growth in living systems, ed. M. X. Zarrow, p. 107–132. New York: Basic Books, INC 1961.Google Scholar
  83. Halvorson, H.O.: Sequential expression of biochemical events during intracellular differentiation. Symp. Soc. gen. Microbiol. 15, 343–368 (1965).Google Scholar
  84. Halvorson, H. O.: Swanson, A.: Role of dipicolinic acid in the physiology of bacterial spores. In: Spores IV, p. 121–132, ed. L. L. Campbell. Bethesda, MD: Amer. Soc. Microbiol. 1969.Google Scholar
  85. Halvorson, H. O., Szulmajster, J., Cohen, R., Michelson, A. M.: Etude de l’acide deoxyribomicleique des spores de Bacillus subtilis .J. molec. Biol. 28, 71–86 (1967).PubMedGoogle Scholar
  86. Hannay, C. L.: Inclusion in bacteria. In: Bacterial anatomy. Sixth symp. Soc. Gen. Microbiol, ed. E. T. C. Spooner and B. A. D. Stoker, p. 318–340. Cambridge 1956.Google Scholar
  87. Hannay, C. L.: The parasporal body of Bacillus laterosporus Laubach. J. biophys. biochem. Cytol. 3, 1001–1010 (1957).PubMedGoogle Scholar
  88. Hanson, R. S., Blicharska, J., Szulmajster, J.: Relationship between the tricarboxylic acid cycle enzymes and sporulation of B. subtilis .Biochem. biophys. Res. Commun. 17, 1–7 (1964).Google Scholar
  89. Hanson, R. S., MacKechnie, I.: Regulation of sporulation and the entry of carbon into the tricarboxylic acid cycle. In: Spores IV, p. 196–211, ed. L.L. Campbell. Bethesda, MD: Amer. Soc. Microbiol. 1969.Google Scholar
  90. Heyman, T., Seror, S., Desseaux, B., Legault-Demare, J.: Valine transfer ribonucleic acid. I. Chromatographic study of valine t-RNA modifications during Bacillus subtilis growth. Biochim. biophys. Acta (Amst.) 145, 596–604 (1967).Google Scholar
  91. Hoch, J. A., Barat, M., Anagnostopoulos, C.: Transformation and transduction in recombination-defective mutants of Bacillus subtilis .J. Bact. 93, 1925–1937 (1967).PubMedGoogle Scholar
  92. Hoch, J. A., Spizizen, J.: Genetic control of some early events in sporulation of Bacillus subtilis 168. In: Spores IV, p. 112–120, ed. L. L. Campbell. Bethesda, MD: Amer. Soc. Microbiol. 1969.Google Scholar
  93. Ionesco, H.: Etude quantitative de la transformation chez des mutants de sporulation de Bacillus subtilis .Ann. Inst. Pasteur 113, 157–162 (1967).Google Scholar
  94. Ionesco, H. Cami, B.: Utilité des marqueurs de sporulation pour établir la continuité du chromosome de Bacillus subtilis .C. R. Acad. Sci. (Paris) 269, 975–977 (1969).Google Scholar
  95. Ionesco, H. Michel, J., Cami, B., Schaeffer, P.: Genetics of sporulation in Bacillus subtilis Marburg. J. appl. Bact. 33, 13–24 (1970).Google Scholar
  96. Ionesco, H. Schaeffer, P.: Localisation chromosomique de certain mutants asporogènes de Bacillus subtilis .Ann. Inst. Pasteur 114, 1–9 (1968).Google Scholar
  97. Jacob, F., Monod, J.: On the regulation of gene activity. Cold Spr. Harb. Symp. quant. Biol. 26, 193–209 (1961).Google Scholar
  98. Jacob, F., Schaeffer, P., Wollman, E. L.: Episomic elements in bacteria. Symp. Soc. gen. Microbiol. 10, 67–91 (1960).Google Scholar
  99. Kaneko, I., Doi, R. H.: Alteration of valyl-sRNA during sporulation of Bacillus subtilis .Proc. nat. Acad. Sci. (Wash.) 55, 564–571 (1966).Google Scholar
  100. Kay, D., Warren, S. C.: Sporulation in Bacillus subtilis .Morphological changes. Biochem. J. 109, 819–824 (1968).PubMedGoogle Scholar
  101. Kelly, M. S.: Physical and mapping properties of distant linkages between genetic markers in transformation of Bacillus subtilis .Molec. Gen. Genetics 99, 333–349 (1967).Google Scholar
  102. Klofat, W., Picciolo, G., Chapelle, E. W., Freese, E.: Production of adenosine triphosphate in normal cells and sporulation mutants of Bacillus subtilis .J. biol. Chem. 244, 3270–3276 (1969).PubMedGoogle Scholar
  103. Kobayashi, Y., Steinberg, W., Higa, A., Halvorson, H. O., Levinthal, C.: Sequential synthesis of macromolecules during outgrowth of bacterial spores. In: Spores III, p. 200–212, ed. L. L. Campbell and H. O. Halvorson. Ann Arbor, MI: Amer. Soc. Microbiol. 1965.Google Scholar
  104. Kornberg, A., Spudich, J. A., Nelson, D. L., Deutscher, M. P.: Origin of proteins in sporulation. Ann. Rev. Biochem. 37, 51–77 (1968).PubMedGoogle Scholar
  105. Lazzarini, R. A.: Differences in lysine-sRNA from spore and vegetative cells of Bacillus subtilis .Proc. nat. Acad. Sci. (Wash.) 56, 185–190 (1966).Google Scholar
  106. Lazzarini, R. A.: Santangelo, E.: Medium-dependent alteration of lysine transfer ribonucleic acid in sporulating Bacillus subtilis cells. J. Bact. 94, 125–130 (1967).PubMedGoogle Scholar
  107. Lead better, E. R., Holt, S. C.: Electron microscopy of frozen-etched Bacillus species. In: Spores IV, p. 39–44, ed. L. L. Campbell. Bethesda, MD: Amer. Soc. Microbiol. 1969.Google Scholar
  108. Leitzmann, C., Bernlohr, R. W.: Threonine dehydratase of Bacillus licheniformis .II. Regulation during development. Biochim. biophys. Acta (Amst.) 151, 461–471 (1968).Google Scholar
  109. Levinthal, C., Fan, D. P., Higa, A., Zimmermann, R. A.: The decay and protection of messenger RNA in bacteria. Cold Spr. Harb. Symp. quant. Biol. 28, 183–190 (1963).Google Scholar
  110. Levisohn, S., Aronson, A. I.: Regulation of extracellular protease in Bacillus cereus .J. Bact. 93, 1023–1030 (1967).PubMedGoogle Scholar
  111. Losick, R., Sonenshein, A. L.: Change in the template specificity of RNA polymerase during sporulation of Bacillus subtilis .Nature (Lond.) 224, 35–37 (1969).Google Scholar
  112. Lundgren, D. G., Karp, D. F., Lang, D. R.: Structure-function relationships in bacterial sporulation. In: Spores IV, p. 20–38, ed. L.L. Campbell. Bethesda, MD: Amer. Soc. Microbiol. 1969.Google Scholar
  113. Luria, S. E., Darnell, J. E.: General virology. New York: J. Wiley & Sons 1967.Google Scholar
  114. Mandel, M., Rowley, D. B.: Configuration and base composition of deoxyribonucleic acid from spores of Bacillus subtilis var. niger .J. Bact. 85, 1445–1446 (1963).PubMedGoogle Scholar
  115. Mandelstam, J.: Regulation of bacterial spore formation. XIX Symposium of the Society for General Microbiology, p. 377–402 (1969).Google Scholar
  116. Mandelstam, J. Sterlini, J. M.: ‘‘Commitment’’ to sporulation in Bacillus subtilis .In: Spores IV, p. 180–185, ed. L. L. Campbell. Bethesda, MD: Amer. Soc. Microbiol. 1969.Google Scholar
  117. Mandelstam, J. Waites, W. M.: Sporulation in Bacillus subtilis. The role of exoprotease. Biochem. J. 109, 793–801 (1968).PubMedGoogle Scholar
  118. Mazanec, K., Kocur, M., Martinec, T.: Electron microscopy of ultrathin sections of Sporosarcina ureae .J. Bact. 90, 808–816 (1965).PubMedGoogle Scholar
  119. Michel, J. F.: L’activité protéolytique du milieu de culture au cours de la croissance et de la sporulation de Bacillus subtilis .Ann. Inst. Pasteur 3, 14–24 (1966).Google Scholar
  120. Michel, J. F. Cami, B.: Sélection de mutants de Bacillus subtilis bloqués au début de la sporulation. III. Nature des mutations sélectionnées. Ann. Inst. Pasteur 116, 3–18 (1969).Google Scholar
  121. Michel, J. F. Schaeffer, P.: Sélection de mutants de Bacillus subtilis bloqués au début de la sporulation I—Mutants asporogènes pléïotropes sélectionnés par croissance en milieu au nitrate. Ann. Inst. Pasteur 114, 11–20 (1968a).Google Scholar
  122. Michel, J. F. Schaeffer, P.: Sélection de mutants de Bacillus subtilis bloqués au début de la sporulation. II. Sélection par adaptation à une source de carbone et par vieillissement de cultures sporulées. Ann. Inst. Pasteur 114, 21–27 (1968b).Google Scholar
  123. Michel, J. F. Millet, J.: Physiological studies on early-blocked sporulation mutants of Bacillus subtilis .J. appl. Bact. 33, 220–227 (1970).Google Scholar
  124. Millet, J.: La phosphatase alcaline de Bacillus megaterium .C. R. Acad. Sci. (Paris) 257, 784–787 (1963).Google Scholar
  125. Millet, J.: Characterization of proteinases excreted by Bacillus subtilis Marburg strain during sporulation. J. appl. Bact. 33, 207–219 (1970).Google Scholar
  126. Monod, J., Jacob, F.: Teleonomic mechanisms in cellular metabolism, growth and differentiation. Cold Spr. Harb. Symp. quant. Biol. 26, 389–401 (1961).Google Scholar
  127. Munakata, N., Ikeda, Y.: A mutant of Bacillus subtilis producing ultraviolet-sensitive spores. Biochem. biophys. Res. Commun. 33, 469–475 (1968).PubMedGoogle Scholar
  128. Murrell, W. G.: The biochemistry of the bacterial endospore. Adv. Microbiol. Physiol. 1, 133–251 (1967).Google Scholar
  129. Murrell, W. G.: Chemical composition of spores and spore structures. In: The bacterial spore, p. 215–274, Gould and Hurst, eds. London: Academic Press 1969.Google Scholar
  130. Murrell, W. G., Ohye, D. F., Gordon, R. A.: Cytological and chemical structure of the spore. In: Spores IV, p. 1–19, ed. L. L. Campbell. Bethesda, MD: Amer. Soc. Microbiol. 1969.Google Scholar
  131. Nelson, D. L., Spudich, J. A., Bonsen, P. P. M., Bertsch, L. L., Kornberg, A.: Biochemical studies of bacterial sporulation and germination. XVI. Small molecules in spores. In: Spores IV, p. 59–71, ed. L. L. Campbell. Bethesda, MD: Amer. Soc. Microbiol. 1969.Google Scholar
  132. Nester, E. W.: Penicillin resistance of competent cells in deoxyribonucleic acid transformation of Bacillus subtilis .J. Bact. 87, 867–875 (1964).PubMedGoogle Scholar
  133. Nester, E. W. Schaffer, M., Lederberg, J.: Gene linkage in DNA transfer: a cluster of genes concerned with aromatic biosynthesis in Bacillus subtilis .Genetics 48, 529–551 (1963).PubMedGoogle Scholar
  134. Nester, E. W. Stocker, B. A. D.: Biosynthetic latency in early stages of deoxyribonucleic acid transformation in Bacillus subtilis .J. Bact. 86, 785–796 (1963).PubMedGoogle Scholar
  135. Nickerson, W. J., Bartnicki-Garcia, S.: Biochemical aspects of morphogenesis in algae and fungi. Ann. Rev. Plant Physiol. 15, 327–344 (1964).Google Scholar
  136. Norris, J. R.: Bacterial spore antigens: a review. J. gen. Microbiol. 28, 393–408 (1962).PubMedGoogle Scholar
  137. Northrop, J., Slepecky, R. A.: Sporulation mutations induced by heat in Bacillus subtilis .Science 155, 838–839 (1967).PubMedGoogle Scholar
  138. Oishi, M., Yoshikawa, H., Sueoka, N.: Synchronous and dichotomous replication of the Bacillus subtilis chromosome during spore germination. Nature (Lond.) 204, 1069–1073 (1964).Google Scholar
  139. Okubo, S., Stodolsky, M., Bott, K., Strauss, B.: Separation of the transforming and viral deoxyribonucleic acids of a transducing bacteriophage of Bacillus subtilis .Proc. nat. Acad. Sci. (Wash.) 50, 679–686 (1963).Google Scholar
  140. Pfennig, N.: Freie und Hydrolysat-Aminosäuren in vegetativen Zellen und Sporen von Bacillus subtilis .Arch. Mikrobiol. 26, 345–352 (1957).Google Scholar
  141. Ramaley, R. F., Bernlohr, R. W.: Postlogarithmic phase metabolism of sporulating microorganisms. II. The occurrence and partial purification of an arginase. J. biol. Chem. 241, 620–623 (1966).PubMedGoogle Scholar
  142. Remsen, C. C.: The fine structure of frozen-etched Bacillus cereus spores. Arch. Mikrobiol. 54, 266–275 (1966).PubMedGoogle Scholar
  143. Remsen, C. C. Lundgren, D. L.: Multiple septation in variants of Bacillus cereus .J. Bact. 90, 1426–1431 (1965).PubMedGoogle Scholar
  144. Rogolsky, M.: Genetic mapping of a locus which regulates the production of pigment associated with spores of Bacillus subtilis .J. Bact. 95, 2426–2427 (1968).PubMedGoogle Scholar
  145. Remsen, C. C. Slepecky, R. A.: Elimination of a genetic determinant for sporulation of B. subtilis with acriflavin. Biochem. biophys. Res. Commun. 16, 204–208 (1964).Google Scholar
  146. Remsen, C. C. Slepecky, R. A.: The response of sporogenesis in Bacillus subtilis to acriflavine. Canad. J. Microbiol. 14, 61–64 (1968).Google Scholar
  147. Remsen, C. C. Spizizen, J.: Chromosomal localization of spore genes in Bacillus subtilis .Bact. Proc, p. 22 (1967).Google Scholar
  148. Rouyard, J. F., Ionesco, H., Schaeffer, P.: Classification génétique de certains mutants de sporulation de Bacillus subtilis Marburg. Ann. Inst. Pasteur 113, 675–683 (1967).Google Scholar
  149. Rutberg, B., Hoch, J.: Genetic and biochemical characterisation of citric acid cycle mutants of Bacillus subtilis .Bact. Proc. 69, 54 (1969).Google Scholar
  150. Ryter, A.: Etude morphologique de la sporulation de Bacillus subtilis .Ann. Inst. Pasteur 108, 40–60 (1965).Google Scholar
  151. Ryter, A.: Association of the nucleus and the membrane of bacteria: a morphological study. Bact. Rev. 32, 39–54 (1968).PubMedGoogle Scholar
  152. Ryter, A.: Structure and functions of mesosomes of Gram-positive bacteria. In: Current topics in microbiology and immunology, vol. 49, p. 151–177 (1969).Google Scholar
  153. Ryter, A., Aubert, J. P.: Etude autoradiographique de la synthèse de l’ADN au cours de la sporulation de Bacillus subtilis .Ann. Inst. Pasteur 117, 601–611 (1969).Google Scholar
  154. Ryter, A., Ben-Bloom, Aubert, J. P.: Localisation intracellulaire des acides ribonucléiques synthétisés pendant la sporulation chez Bacillus subtilis .C. R. Acad. Sci. (Paris) 262, 1305–1307 (1966a).Google Scholar
  155. Ryter, A., Ionesco, H., Schaeffer, P.: Etude au microscope électronique de mutants asporogènes de Bacillus subtilis .C. R. Acad. Sci. (Paris) 252, 2675–3677 (1961).Google Scholar
  156. Ryter, A., Jacob, F.: Etude au microscope électronique de la liaison entre noyau et mésosome chez Bacillus subtilis .Ann. Inst. Pasteur 107, 384–400 (1964).Google Scholar
  157. Ryter, A., Schaeffer, P., Ionesco, H.: Classification cytologique, par leur stade de blocage, des mutants de sporulation de Bacillus subtilis Marburg. Ann. Inst. Pasteur 110, 305–315 (1966b).Google Scholar
  158. Ryter, A., Szulmajster, J.: Action du chloramphénicol sur la sporogenèse de B. subtilis .Ann. Inst. Pasteur 108, 640–651 (1965).Google Scholar
  159. Sadoff, H. L.: Spore enzymes. In: The bacterial spore, p. 275–300, Gould and Hurst, eds. London: Academic Press 1969.Google Scholar
  160. Sadoff, H. L.: Heat resistance of spore enzymes. J. appl. Bact. 33, 130–140 (1970).Google Scholar
  161. Schaeffer, P.: Asporogenous mutants of Bacillus subtilis Marburg. Folia microbiol. Acad. Sci. Bohemoslov. 12, 291–296 (1967).Google Scholar
  162. Schaeffer, P.: Sporulation and the production of antibiotics, exoenzymes, and exotoxins. Bact. Rev. 33, 48–71 (1969).PubMedGoogle Scholar
  163. Schaeffer, P. Ionesco, H.: Contribution à l’étude génétique de la sporogenèse. C. R. Acad. Sci. (Paris) 251, 3125–3127 1960).Google Scholar
  164. Schaeffer, P. Ionesco, H. Jacob, F.: Sur le déterminisme génétique de la sporulation bactérienne. C. R. Acad. Sci. (Paris) 249, 577–578 (1959).Google Scholar
  165. Schaeffer, P. Ionesco, H. Ryter, A., Balassa, G.: La sporulation de Bacillus subtilis: étude génétique et physiologique. In: Mécanismes de régulation chez les microorganismes. Coll. int. Centre nat. Rech. sci. (Paris) No 124, 553–563 (1965a).Google Scholar
  166. Schaeffer, P. Millet, J., Aubert, J. P.: Catabolic repression of bacterial sporulation. Proc. nat. Acad. Sci. (Wash.) 54, 704–711 (1965b).Google Scholar
  167. Schmitt, R., Freese, E.: Curing of a sporulation mutant and antibiotic activity of Bacillus subtilis .J. Bact. 96, 1255–1265 (1968).PubMedGoogle Scholar
  168. Sebald, M.: Sur un mutant asporogène de Clostridium histolyticum incapable de synthétiser l’acide dipicolinique. Ann. Inst. Pasteur 114, 265–276 (1968).Google Scholar
  169. Sebald, M. Cassier, M.: Sporulation and toxigenicity in mutant strains of Clostridium perfringens .In: Spores IV, ed. L. L. Campbell, p. 306–316. Bethesda, MD: Amer. Soc. Microbiol. 1969.Google Scholar
  170. Sebald, M. Schaeffer, P.: Toxinogenèse et sporulation chez Clostridium histolyticum .C. R. Acad. Sci. (Paris) 260, 5398–5400 (1965).Google Scholar
  171. Setlow, P., Kornberg, A.: Biochemical studies of bacterial sporulation and germination. XVII. Sulfhydryl and disulfide levels in dormancy and germination. J. Bact. 100, 1155–1160 (1969).PubMedGoogle Scholar
  172. Sheppard, S., Englesberg, E.: Positive control in the L-arabinose gene-enzyme complex of Escherichia coli B/r as exhibited with stable merodiploïds. Cold Spr. Harb. Symp. quant. Biol. 31, 345–347 (1966).Google Scholar
  173. Somerville, H. J., Delafield, F. P., Rittenberg, S. C.: Biochemical homology between crystal and spore protein of Bacillus thuringiensis .J. Bact. 96, 721–726 (1968).PubMedGoogle Scholar
  174. Sonenshein, A. L., Roscoe, D. H.: The course of phage 0e infection in sporulating cells of Bacillus subtilis strain 3610. Virology 39, 265–276 (1969).PubMedGoogle Scholar
  175. Spizizen, J.: Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc. nat. Acad. Sci. (Wash.) 44, 1072–1078 (1958).Google Scholar
  176. Spizizen, J.: Studies on transformation of sporulating characters, p. 142–148. In: Spores II, ed. H. O. Halvorson. Minneapolis, MN: Burgess 1961.Google Scholar
  177. Spizizen, J., Analysis of asporogenic mutants in Bacillus subUlis by genetic transformation, p. 125–137. In: L. L. Campbell and H. O. Halvorson (eds.), Spores III. Ann Arbor, Mich.: Amer. Soc. Microbiol. 1965.Google Scholar
  178. Spizizen, J., Reilly, B. E., Evans, A. H.: Microbial transformation and transfection. Ann. Rev. Microbiol. 20, 371–400 (1966).Google Scholar
  179. Spotts, C. R., Szulmajster, J.: Synthèse de l’acide ribonucléique et des protéines chez Bacillus subtilis sporogène et asporogène. Biochim. biophys. Acta (Amst.) 61, 635–638 (1962).Google Scholar
  180. Spudich, J. A.: Biochemical studies of spore core and coat protein synthesis. J. appl. Bact. 33, 25–33 (1970).Google Scholar
  181. Spudich, J. A. Kornberg, A.: Biochemical studies of bacterial sporulation and germination. VI. Origin of spore core and coat proteins. J. biol. Chem. 243, 4588–4599 (1968a).PubMedGoogle Scholar
  182. Spudich, J. A. Kornberg, A.: Biochemical studies of bacterial sporulation and germination. VII. Protein turnover during sporulation of Bacillus subtilis .J. biol. Chem. 243, 4600–4605 (1968b).PubMedGoogle Scholar
  183. Stafford, R. S., Donnellan, J. E., Jr.: Photochemical evidence for conformation changes in DNA during germination of bacterial spores. Proc. nat. Acad. Sci. (Wash.) 59, 822–829 (1968).Google Scholar
  184. Stanier, R. Y., Hegeman, G. D., Ornston, L. N.: The mechanism of so-called “sequential induction” in Pseudomonas fluorescens .In: Regulations chez les microorganismes. Paris: Ed. J. Senez, Cnrs. 1965.Google Scholar
  185. Stent, G. S.: Molecular biology of bacterial viruses. San Francisco and London: Freeman & Co. 1963.Google Scholar
  186. Sterlini, J. M., Mandelstam, J.: Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem. J. 113, 29–37 (1969).PubMedGoogle Scholar
  187. Strange, R. E., Dark, F. A.: Cell-wall lytic enzymes at sporulation and spore germination in Bacillus species. J. gen. Microbiol. 17, 525–537 (1957).PubMedGoogle Scholar
  188. Strange, R. E., Hunter, J. R.: Outgrowth and the synthesis of macromolecules. In: The bacterial spore, p. 445–483, Gould and Hurst, eds. London: Academic Press 1969.Google Scholar
  189. Sueoka, N., Yoshikawa, H.: Regulation of chromosome replication in Bacillus subtilis .Cold Spr. Harb. Symp. quant. Biol. 28, 47–54 (1963).Google Scholar
  190. Summers, W., Siegel, R.: Control of template specificity of E. coli RNA polymerase by a phage-coded protein. Nature (Lond.) 223, 111–1113 (1969).Google Scholar
  191. Sussman, A. S., Halvorson, H. O.: Spores, their dormancy and germination. New York: Harper and Row 1966.Google Scholar
  192. Sussman, M.: Some genetic and biochemical aspects of the regulatory program for slime mould development. Curr. Top. Develop. Biol. 1, 61–83 (1966).Google Scholar
  193. Sussman, M. Sussman, R.: Patterns of RNA synthesis and of enzyme accumulation and disappearance during cellular slime mould differentiation. Symp. Soc. gen. Microbiol. 19, 403–435 (1969).Google Scholar
  194. Szulmajster, J., Arnaud, M., Young, F. E.: Some properties of a sporulating Bacillus subtilis mutant containing heavy DNA. J. gen. Microbiol. 57, 1–10 (1969).PubMedGoogle Scholar
  195. Szulmajster, J., Canfield, R. E.: Changements biochimiques associés à la sporulation de B. subtilis .In: Mécanismes de régulation chez les microorganismes. Coll. int. Centre nat. Rech. sci. (Paris) No 124, 587–596 (1965).Google Scholar
  196. Szulmajster, J., Canfield, R. E.: Blicharska, J.: Action de l’Actinomycine D sur la sporulation de Bacillus subtilis .C. R. Acad. Sci. (Paris) 256, 2057–2060 (1963).Google Scholar
  197. Szulmajster, J., Hanson, R. S.: Physiological control of sporulation in Bacillus subtilis, p. 162–173. In: L. L. Campbell and H. O. Halvorson (eds.), Spores III. Ann Arbor, Mich.: Amer. Soc. Microbiol. 1965.Google Scholar
  198. Szulmajster, J., Schaeffer, P.: Biochemical analysis of sporogen and asporogen strains of B. subtilis .Biochem. biophys. Res. Commun. 6, 217–223 (1961).Google Scholar
  199. Takahashi, I.: Transduction of sporogenesis in Bacillus subtilis .J. Bact. 89, 294–298 (1965 a).PubMedGoogle Scholar
  200. Takahashi, I.: Localization of spore markers on the chromosome of Bacillus subtilis .J. Bact. 89, 1065–1067 (1965b).PubMedGoogle Scholar
  201. Takahashi, I.: Mapping of spore markers on the chromosome of Bacillus subtilis, p. 138–143. In: L. L. Campbell and H. O. Halvorson (eds.), Spores II. Ann. Arbor. Mich.: Amer. Soc. Microbiol. 1965 c.Google Scholar
  202. Takahashi, I.: Genes controlling sporulation in Bacillus subtilis .In: Spores IV, p. 102–111, ed. L. L. Campbell. Bethesda, MD: Amer. Soc. Microbiol. 1969.Google Scholar
  203. Tomasz, A.: Some aspects of the competent state in genetic transformation. Ann. Rev. Genet. 3, 217–232 (1969).Google Scholar
  204. Travers, A.: Bacteriophage σ factor for RNA polymerase. Nature (Lond.) 223, 1107–1110 (1969).Google Scholar
  205. Vinter, V.: Changes in radioresistance of sporulating cells of Bacillus cereus .Nature (Lond.) 189, 589–590 (1961).Google Scholar
  206. Vinter, V.: Physiology and biochemistry of sporulation. In: The bacterial spore, p. 73–124, Gould and Hurst, eds. London: Academic Press 1969.Google Scholar
  207. Waites, W. M.: Sporulation in Bacillus subtilis .Antigenic changes during spore formation. Biochem. J. 109, 803–810 (1968).PubMedGoogle Scholar
  208. Walker, P. D., Baillie, A., Thomson, R. O., Batty, I.: The use of ferritin labeled antibodies in the location of spore and vegetative antigens of Bacillus cereus .J. appl. Bact. 29, 512–518 (1966).Google Scholar
  209. Warren, S. C.: Sporulation in Bacillus subtilis .Biochemical changes. Biochem. J. 109, 811–818 (1968).Google Scholar
  210. Woese, C. R.: Further studies on the ionizing radiation inactivation of bacterial spores. J. Bact. 77, 38–42 (1959).PubMedGoogle Scholar
  211. Woese, C. R. Bleyman, M.: Characterization of the ribonucleic acid formed during germination of Bacillus subtilis spores. In: Spores IV, p. 223–234, ed. L. L. Campbell. Bethesda, MD: Amer. Soc. Microbiol. 1969.Google Scholar
  212. Yamagishi, H., Takahashi, I.: Genetic transcription in asporogenous mutants of Bacillus subtilis .Biochim. biophys. Acta (Amst.) 155, 150–158 (1968).Google Scholar
  213. Yamamoto, T., Balassa, G.: Biochemical genetics of bacterial sporulation. II. Membrane development during sporulation of B. subtilis and its mutants. Molec. Gen. Genetics 106, 1–13 (1969a).Google Scholar
  214. Yamamoto, T., Balassa, G.: Observations on the sporulation of a Bacillus badius strain. Microbios. 4, 355–361 (1969b).Google Scholar
  215. Yamamoto, T., Balassa, G.: Abnormal late sporulation mutants of Bacillus subtilis with cytoplasmic inclusions. Microbios. 5, 69–72 (1970).Google Scholar
  216. Yoshikawa, H.: Chromosomes of B. subtilis spores and their segregation during germination. J. Bact. 95, 2282–2292 (1968).PubMedGoogle Scholar
  217. Yoshikawa, H. O’Sullivan, A., Sueoka, N.: Sequential replication of the Bacillus subtilis chromosome, III. Regulation of initiation. Proc. nat. Acad. Sci. (Wash.) 52, 973–980 (1964).Google Scholar
  218. Yoshikawa, H. Sueoka, N.: Sequential replication of Bacillus subtilis chromosome. I. Comparison of marker frequencies in exponential and stationary growth phases. Proc. nat. Acad. Sci. (Wash.) 49, 559–566 (1963 a).Google Scholar
  219. Yoshikawa, H. Sueoka, N.: Sequential replication of the Bacillus subtilis chromosome, II. Isotopic transfer experiments. Proc. nat. Acad. Sci. (Wash.) 49, 806–813 (1963 b).Google Scholar
  220. Young, F. E., Spizizen, J.: Physiological and genetic factors affecting transformation of Bacillus subtilis .J. Bact. 81, 823–829 (1961).PubMedGoogle Scholar
  221. Young, F. E., Spizizen, J.: Crawford, I. P.: Biochemical aspects of competence in the Bacillus subtilis transformation system. J. biol. Chem. 238, 3119–3125 (1963).PubMedGoogle Scholar
  222. Young, I.E.: Characteristics of an abortively disporic variant of Bacillus cereus .J. Bact. 88, 242–254 (1964).PubMedGoogle Scholar
  223. Young, I.E. Fitz-James, P. C.: Chemical and morphological studies of bacterial spore formation. I. The formation of spores in Bacillus cereus .J. biophys. biochem. Cytol. 6, 467–481 (1959).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

  • Georges Balassa
    • 1
  1. 1.Département de Biochimie MacromoléculaireC.N.R.S.MontpellierFrance

Personalised recommendations