Advertisement

Abstract

The expression of many bacterial genes adapts itself in an almost instantaneous and reversible way to specific environmental changes. More specifically, the concentration of a number of metabolites, a function of the amounts of enzymes involved in their synthesis or degradation, in turn retroacts on the rate of synthesis of these enzymes. The genetic bases for this regulation were established by Jacob and Monod (1961). These authors also showed how the known elements of these regulatory mechanisms could be connected into a wide variety of circuits endowed with any desired degree of stability, in order to account for essentially irreversible processes like differentiation (Monod and Jacob, 1961). The general principles used by Jacob and Monod in their study of negative regulation were extended to positive regulation by Englesberg et al. (1965). An independent approach permitted the discovery of positive controls in temperate bacteriophages (see below, III).

Keywords

Late Gene Helper Phage Prophage Gene Repressor Regulator Phage Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attardi, G., Naono, S., Rouviere, J., Jacob, F., Gros, F.: Production of messenger RNA and regulation of protein synthesis. Cold Spr. Harb. Symp. quant. Biol. 28, 363–372 (1963).Google Scholar
  2. Bear, P. D., Skalka, A.: The molecular origin of lambda prophage mRNA. Proc. nat. Acad. Sci. (Wash.) 62, 385–388 (1969).CrossRefGoogle Scholar
  3. Bertani, G.: Lysogeny. Advanc. Virus Res. 5, 151–193 (1958).CrossRefGoogle Scholar
  4. Bode, V. C., Kaiser, A. D.: Repression of the cII and cIII cistrons of phage lambda in a lysogenic bacterium. Virology 25, 111–121 (1965).PubMedCrossRefGoogle Scholar
  5. Brachet, P., Eisen, H., Rambach, A.: Mutations of coliphage λ affecting the expression of replicative functions O and P. Molec. Gen. Genetics 108, 266–276 (1970).CrossRefGoogle Scholar
  6. Brachet, P., Green, B. R.: Functional analysis of early defective mutants of coliphage λ. Virology 40, 792–799 (1970).PubMedCrossRefGoogle Scholar
  7. Brooks, K.: Studies in the physiological genetics of some suppressor-sensitive mutants of bacteriophage λ. Virology 26, 489–499 (1965).PubMedCrossRefGoogle Scholar
  8. Butler, B., Echols, H.: Regulation of bacteriophage λ development by gene N: properties of a mutation that by passes N control of late protein synthesis. Virology 40, 212–222 (1970).PubMedCrossRefGoogle Scholar
  9. Buttin, G.: Mécanismes régulateurs dans la biosynthèse des enzymes du métabolisme du galactose chez E. coli K12. III. L’ “effet de dérépression” provoqué par le développement du phage λ. J. molec. Biol. 7, 610–631 (1963).PubMedCrossRefGoogle Scholar
  10. Campbell, A.: Sensitive mutants of bacteriophage λ. Virology 14, 22–32 (1961).PubMedCrossRefGoogle Scholar
  11. Court, D., Sato, K.: Studies of novel transducing variants of lambda: dispensability of genes N and Q. Virology 39, 348–352 (1969).PubMedCrossRefGoogle Scholar
  12. Couturier, M., Dambly, C.: Activation séquentielle des fonctions tardives chez les bactériophages tempérés. C. R. Acad. Sci. (Paris) 270, 428–430 (1970).Google Scholar
  13. Couturier, M., Dambly, C.: In preparation (1971).Google Scholar
  14. Dahl, D., Soller, A., Calef, E.: Functional behavior of λ cry. J. molec. Biol. 32, 639–658 (1968).CrossRefGoogle Scholar
  15. Dambly, C., Couturier, M.: In preparation (1971).Google Scholar
  16. Dambly, C., Couturier, M.: Thomas, R.: Control of development in temperate bacteriophages. II. Control of lysozyme synthesis. J. molec. Biol. 32, 67–81 (1968).PubMedCrossRefGoogle Scholar
  17. Dove, W. F.: The action of the lambda chromosome. I. The control of functions late in phage development. J. molec. Biol. 19, 187–201 (1966).PubMedCrossRefGoogle Scholar
  18. Dove, W. F. Hargrove, E., Ohashi, M., Haugli, F., Guha, A.: Replicator activation in lambda. Japan J. Genetics 44, Suppl. 1., 11–22 (1969).Google Scholar
  19. Echols, H., Joyner, A.: The temperate phage, p. 526. In: H. Fraenkel-Conrat (ed.), The molecular basis of virology. New York: Reinhold 1968.Google Scholar
  20. Eisen, H.: In: The bacteriophage λ (A. D. Hershey, ed.) (1971).Google Scholar
  21. Eisen, H. Brachet, P., Pereira da Silva, L., Jacob, F.: Regulation of repressor expression in lambda. Proc. nat. Acad. Sci. (Wash.) 66, 855–862 (1970).CrossRefGoogle Scholar
  22. Eisen, H. A., Fuerst, C. R., Siminovitch, L., Thomas, R., Lambert, L., Pereira da Silva, L., Jacob, F.: Genetics and physiology of defective lysogeny in K12 (λ): studies of early mutants. Virology 30, 224–241 (1966).PubMedCrossRefGoogle Scholar
  23. Eisen, H. A., Pereira da Silva, L., Jacob, F.: Sur la régulation précoce du bacteriophage. C. R. Acad. Sci. (Paris) 226, 1176–1178 (1968).Google Scholar
  24. Englesberg, E., Irr, J., Power, J., Lee, N.: Positive control of enzyme synthesis by gene C in the λ-arabinose system. J. Bact. 90, 946–957 (1965).PubMedGoogle Scholar
  25. Fiandt, M., Hradecna, Z., Lozeron, H. A., Szybalski, W.: Electron micrographie mapping of deletions, substitutions, inversions and homologies in the lambda and ϕ 80 phage genomes. In: The bacteriophage λ. A. D. Hershey, ed. (1971).Google Scholar
  26. Fischer-Fantuzzi, L., Calef, E.: A type of λ prophage unable to confer immunity. Virology 23, 209–216 (1964).PubMedCrossRefGoogle Scholar
  27. Franklin, N. C.: The N operon of lambda: extent and regulation as observed in fusions to the tryptophan operon in E. coli. In: The bacteriophage λ (A.D. Hershey, ed.) (1971).Google Scholar
  28. Gottesman, M. E., Weissberg, R. A.: Prophage Integration and Excision. In: The bacteriophage λ (A. D. Hershey, ed.) (1971).Google Scholar
  29. Green, M. H.: Inactivation of the prophage lambda repressor without induction. J. molec. Biol. 16, 134–148 (1966).PubMedCrossRefGoogle Scholar
  30. Green, M. H., Hayward, W. S., Gariglio, P.: A method for the localization of active promotors. Cold. Spr. Harb. Symp. quant. Biol. 35, 295–303 (1970).Google Scholar
  31. Gros, F., Kourilsky, P., Marcaud, L.: Pattern of gene transcription during the induction of bacteriophage lambda development: a possible model for the control of gene expression in a differentiating system. Ciba Foundation Symp. Homeostatic regulators, p. 107–124 (1969).Google Scholar
  32. Herskowitz, I., Signer, E. R.: A site essential for expression of all late genes in bacteriophage λ. J. molec. Biol. 47, 545–556 (1970a).PubMedCrossRefGoogle Scholar
  33. Herskowitz, I., Signer, E. R.: Control of transcription from the r-strand of bacteriophage λ. Cold Spr. Harb. Symp. quant. Biol. 35, 355–368 (1970b).Google Scholar
  34. Hopkins, N.: Bypassing a positive regulator: isolation of a lambda mutant that does not require N product to grow. Virology 40, 223–229 (1970).PubMedCrossRefGoogle Scholar
  35. Isaacs, N. L., Echols, H., Sly, W. S.: Control of lambda messenger RNA by the cI-immunity region. J. molec. Biol. 13, 962–967 (1965).CrossRefGoogle Scholar
  36. Jacob, F., Campbell, A.: Sur le système de répression assurant l’immunité chez les bactéries lysogènes. C. R. Acad. Sci. (Paris) 248, 3219–3221 (1959).Google Scholar
  37. Jacob, F., Fuerst, C. R., Wollman, E. L.: Recherches sur les bactéries lysogènes defectives. II. Les types physiologiques liés aux mutations du prophage. Ann. Inst. Pasteur 93, 724–753 (1957).Google Scholar
  38. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J. molec. Biol. 3, 318–356 (1961).PubMedCrossRefGoogle Scholar
  39. Jacob, F., Sussman, R., Monod, J.: Sur la nature du répresseur assurant l’immunité des bactéries lysogènes. C. R. Acad. Sci. (Paris) 254, 4214–4216 (1962).Google Scholar
  40. Jacob, F., Wollman, E. L.: Etude génétique d’un bactériophage tempéré d’E. coli. I. Le système génétique du bactériophage. Ann. Inst. Pasteur 87, 653–673 (1954).Google Scholar
  41. Jacob, F., Wollman, E. L.: Sur le processus de conjugaison et de recombination chez E. coli. I. L’induction par conjugaison ou induction zygotique. Ann. Inst. Pasteur 91, 486–510 (1956).Google Scholar
  42. Jacob, F., Wollman, E. L.: Siminovitch, L.: Propriétés inductrices des mutants virulents d’un phage tempéré. C. R. Acad. Sci. (Paris) 236, 544 (1953).Google Scholar
  43. Joyner, A., Isaacs, L. N., Echols, H., Sly, W.: DNA replication and messenger RNA production after induction of wild-type lambda bacteriophage and lambda mutants. J. molec. Biol. 19, 174–186 (1966).PubMedCrossRefGoogle Scholar
  44. Kaiser, A. D.: Mutations in a temperate bacteriophage affecting its ability to lysogenize E. coli. Virology 3, 42–61 (1957).PubMedCrossRefGoogle Scholar
  45. Kaiser, A. Jacob, F.: Recombination between related temperate bacteriophages and the genetic control of immunity and prophage localization. Virology 4, 509–521 (1957).PubMedCrossRefGoogle Scholar
  46. Kaiser, A. Masuda, T.: Evidence for a prophage excision gene in λ. J. molec. Biol. 47, 557–564 (1970).PubMedCrossRefGoogle Scholar
  47. Kayajanian, G.: Studies on the genetics of biotin-transducing, defective variants of bacteriophage λ. Virology 36, 30–41 (1968).PubMedCrossRefGoogle Scholar
  48. Konrad, M. W.: Dependence of “early” lambda bacteriophage RNA synthesis on bacteriophage-directed protein synthesis. Proc. nat. Acad. Sci. (Wash.) 59, 171–178 (1968).CrossRefGoogle Scholar
  49. Kourilsky, Ph., Marcaud, L., Sheldrick, P., Luzzati, D., Gros, F.: Studies on the messenger RNA of bacteriophage λ. I. Various species synthesized early after induction of the prophage. Proc. nat. Acad. Sci. (Wash.) 61, 1013–1020 (1968).CrossRefGoogle Scholar
  50. Kumar, S., Bøvre, K., Guha, A., Hradecna, Z., Maher, V. M., Zsybalski, W.: Orientation and control of transcription in E. coli phage λ. Nature (Lond.) 221, 823–825 (1969).CrossRefGoogle Scholar
  51. Lieb, M.: Lambda mutants which persist as plasmids. J. Virol. 6, 218–225 (1970).PubMedGoogle Scholar
  52. Lindhal, G.: Bacteriophage P2. Replication of the chromosome requires a protein which acts only on the genome coded for it. Virology 42, 522–533 (1970).CrossRefGoogle Scholar
  53. Luzzati, D.: On the control of exonuclease synthesis. Abs. Lysogeny Workshop, Sorrento (1968).Google Scholar
  54. Luzzati, D.: Regulation of λ exonuclease synthesis: role of the N gene product and λ repressor. J. molec. Biol. 49, 515–519 (1970).PubMedCrossRefGoogle Scholar
  55. Monod, J., Jacob, F.: General conclusions: teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spr. Harb. Symp. quant. Biol. 23, 389–401 (1961).Google Scholar
  56. Muller-Hill, B., Crapo, L., Gilbert, W.: Mutants that make more lac repressor. Proc. nat. Acad. Sci. (Wash.) 59, 1259–1264 (1968).CrossRefGoogle Scholar
  57. Ogawa, Z., Tomizawa, J.: Replication of bacteriophage DNA. I. Replication of DNA of phage lambda defective in early functions. J. molec. Biol. 38, 217–225 (1968).PubMedCrossRefGoogle Scholar
  58. Oppenheim, A. B., Neubauer, Z., Calef, E.: The antirepressor: a new element in the regulation of protein synthesis. Nature (Lond.) 226, 31–32 (1970).CrossRefGoogle Scholar
  59. Packman, S., Sly, W. S.: Constitutive λ DNA replication by λc17, a regulatory mutant related to virulence. Virology 34, 778–789 (1968).PubMedCrossRefGoogle Scholar
  60. Pereira da Silva, L. H., Jacob, F.: Induction of cII and 0 functions in early defective lambda prophages. Virology 33, 618–624 (1967).CrossRefGoogle Scholar
  61. Pereira da Silva, L. H., Jacob, F.: Etude génétique d’une mutation modifiant la sensibilité à l’immunité chez le bactériophage lambda. Ann. Inst. Pasteur 115, 145–158 (1968).Google Scholar
  62. Pero, J.: Location of the phage lambda gene responsible for turning off lambda exonuclease synthesis. Virology 40, 65–71 (1970).PubMedCrossRefGoogle Scholar
  63. Pero, J.: In: The bacteriophage λ (A. D. Hershey, ed.) (1971).Google Scholar
  64. Pironio, M., Ghysen, A.: A bacterial mutation which affects recognition of the N gene product of bacteriophage λ. Molec. Gen. Genetics 108, 373–375 (1970).Google Scholar
  65. Pirrotta, V., Ptashne, M.: Isolation of the 434 phage repressor. Nature (Lond.) 222, 541–544 (1969).CrossRefGoogle Scholar
  66. Protass, J. J., Korn, D.: Function of the N cistron of bacteriophage lambda. Proc. nat. Acad. Sci. (Wash.) 55, 1089–1095 (1966).CrossRefGoogle Scholar
  67. Ptashne, M.: Isolation of the λ phage repressor. Proc. nat. Acad. Sci. (Wash.) 57, 306–313 (1967a).CrossRefGoogle Scholar
  68. Ptashne, M.: Specific binding of the λ phage repressor to λ DNA. Nature (Lond.) 214, 232–234 (1967b).CrossRefGoogle Scholar
  69. Ptashne, M.: In: The bacteriophage λ (A. D. Hershey, ed.) (1971).Google Scholar
  70. Ptashne, M.: Hopkins, N.: The operators controlled by the λ phage repressor. Proc. nat. Acad. Sci. (Wash.) 60, 1282–1287 (1968).CrossRefGoogle Scholar
  71. Radding, C. M., Echols, H.: The role of the N gene of phage λ in the synthesis of two phage-specified proteins. Proc. nat. Acad. Sci. (Wash.) 60, 707–712 (1968).CrossRefGoogle Scholar
  72. Radding, C. M., Schreffler, D. C.: Regulation of λ exonuclease. II. Joint regulation of exonuclease and a new λ antigen. J. molec. Biol. 18, 251–261 (1966).PubMedCrossRefGoogle Scholar
  73. Roberts, J. W.: Termination factor for RNA synthesis. Nature (Lond.) 224, 1168–1174 (1969).CrossRefGoogle Scholar
  74. Sato, K., Campbell, A.: Specialized transduction of galactose by λ phage from a deletion lysogen. Virology 41, 474–487 (1970).PubMedCrossRefGoogle Scholar
  75. Signer, E. R.: Plasmid formation: a new mode of lysogeny by phage λ. Nature (Lond.) 223, 158–160 (1969).CrossRefGoogle Scholar
  76. Signer, E. R.: On the control of lysogeny in phage λ. Virology 46, 624–633 (1970).CrossRefGoogle Scholar
  77. Skalka, A., Butler, B., Echols, H.: Genetic control of transcription during development of phage λ. Proc. nat. Acad. Sci. (Wash.) 58, 576–583 (1967).CrossRefGoogle Scholar
  78. Sly, W. S., Echols, H., Adler, J.: Control of viral messenger RNA after lambda phage infection and induction. Proc. nat. Acad. Sci. (Wash.) 53, 378–385 (1965).CrossRefGoogle Scholar
  79. Szpirer, J., Brachet, P.: Relations physiologiques entre les phages tempérés λ et ϕ 80. Molec. Gen. Genetics 108, 78–92 (1970).CrossRefGoogle Scholar
  80. Szybalski, W., Bøvre, K., Fiandt, M., Hayes, S., Hradecna, Z., Kumar, S., Lozeron, H. A., Nijkamp, H. J. J., Stevens, W. F.: Transcriptional Units and their Controls in Escherichia coli Phage λ: Operons and Scriptons. Cold Spr. Harb. Symp. quant. Biol. 35, 341–353 (1970).Google Scholar
  81. Taylor, K., Hradecna, Z., Szyblaski, W.: Asymmetric distribution of the transcribing regions on the complementary strands of coliphage λ DNA. Proc. nat. Acad. Sci. (Wash.) 57, 1618–1625 (1967).CrossRefGoogle Scholar
  82. Thomas, R.: On the structure of the genetic segment controlling immunity in temperate bacteriophages. J. molec. Biol. 8, 247–253 (1964).PubMedCrossRefGoogle Scholar
  83. Thomas, R.: Le contrôle de la réplication génétique et de l’expression des fonctions chez les bactériophages tempérés. Arch. Biol. (Liège) 76, 551–563 (1965 a).Google Scholar
  84. Thomas, R.: The control of genetic expression in temperate bacteriophages. Proc. Symp. on the Mutational Process, Prague, 295–299 (1965 b).Google Scholar
  85. Thomas, R.: Control of development in temperate bacteriophages I. Induction of prophage genes following heteroimmune superinfection. J. molec. Biol. 22, 79–95 (1966).CrossRefGoogle Scholar
  86. Thomas, R.: Lysogeny. Symp. Soc. Gen. Microbiol. 18, 315–342 (1968).Google Scholar
  87. Thomas, R.: Control of development in temperate bacteriophages. III. Which prophage genes are and which are not trans-activable in the presence of immunity? J. molec. Biol. 49, 393–404 (1970).PubMedCrossRefGoogle Scholar
  88. Thomas, R.: Mousset, S.: Sur le contrôle génétique de l’excision et de la recombinaison chez les bactériophages tempérés. C. R. Acad. Sci. (Paris) 266, 2025–2028 (1968).Google Scholar
  89. Toussaint, A.: Insertion of phage Mu. 1 within prophage λ: a new approach for studying the control of the late functions in bacteriophage λ. Molec. Gen. Genetics 106, 89–92 (1969).CrossRefGoogle Scholar
  90. Yarmolinsky, M.: In: Viruses, nucleic acids and cancer, p. 151. Baltimore: Williams & Wilkins 1963.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

  • René Thomas

There are no affiliations available

Personalised recommendations