Advertisement

Zusammenfassung

Die Skeletmuskulatur ist mit 40% der Körpermasse das gröβte Organsystem des Menschen. In Ruhe ist der Durchblutungsanteil dieses Organs gering: Die spezifische Durchblutungsgröβe liegt bei 2–3 mlfmin 100 ml (2–3% fmin), woraus sich eine Gesamtdurchblutung von 600–900 mlfmin für 30 kg Muskulatur ergibt, also etwa 10–15% des Herzminutenvolumens. Bei Muskelarbeit kann aber die spezifische Durchblutung bis zu 50% /min oder noch höher ansteigen, was bei gleichzeitigem Einsatz aller Muskeln eine Gesamtdurchblutung von 151/min bedeuten würde.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ablad, B., Mellander, S.: Comparative effects of hydralazine, sodium nitrite and acetylcholine on resistance and capacitance blood vessels and capillary filtration in skeletal muscle in the cat. Acat physiol. scand. 58, 319–329 (1963).Google Scholar
  2. Abrahams, V. S., Hilton, S. M., Zbrozyna, A.: Active muscle Vasodilatation produced by Stimulation of the brain stem: its significance in the defence reaction. J. Physiol. (Lond.) 154, 491–513 (1960).Google Scholar
  3. Alpert, J. S., Coffman, J. D.: Effect of intravenous epinephrine on skeletal muscle, skin, and subcutaneous blood flow. Amer. J. Physiol. 216, 156–160 (1969).PubMedGoogle Scholar
  4. Ardill, B. L., Bannister, R. G., Fentem, P. H., Greenfield, A. D. M.: Circulatory responses of supine subjects to the exposure of parts of the body below the xiphisternum to subatmospheric pressure. J. Physiol. (Lond.) 193, 57–72 (1967).Google Scholar
  5. Barcroft, H.: Circulation in skeletal muscle. Handbook of physiology, Circulation II, p. 1353–1385. Washington: Amer. Physiol. Soc. 1963.Google Scholar
  6. Barcroft, H., Bock, K. D., Hensel, H., Kitchin, A. H.: Die Muskeldurchblutung des Menschen bei indirekter Erwärmung und Abkühlung. Pflügers Arch. ges. Physiol. 261, 199–210 (1955).Google Scholar
  7. Barcroft, H., Brod, J., Hejl, Z., Hirsjärvi, E. A., Kitchin, A. H.: The mechanism of the Vasodilatation in the forearm muscle during stress (mental arithmetic). Clin. Sei. 19, 577–586 (1960).Google Scholar
  8. Barcroft, H., Foley, T. H., McSwiney, R. R.: Experiments on the liberation of phosphate from active human muscle, and on the action of phosphate on human blood vessels. J. Physiol. (Lond.) 210, 34P–35P (1970).Google Scholar
  9. Barcroft, H., Greenwood, B., McArdle, B., McSwiney, R. R., Semple, S. J. G., Whelan, R. F.,Google Scholar
  10. Barcroft, H., Yottlton, L. F. J.: The effect of exercise on forearm blood flow and on venous blood pH, Pco2, and lactate in a subject with phosphorylase deficiency in skeletal muscle (MeArdle’s syndrome). J. Physiol. (Lond.) 189, 44P–46P (1967).Google Scholar
  11. Barcroft, H., Millen, J. L. E.: The blood flow through muscle during sustained contraction. J. Physiol. (Lond.) 97, 17–31 (1939).Google Scholar
  12. Barcroft, H., Swan, H. J. C.: Sympathetic control of human blood vessels. London: Arnold 1953. Basar, E., Ruedas, G., Schwarzkopf, H. J., Weiss, C.: Untersuchungen des zeitlichen Verhaltens druckabhängiger Änderungen des Strömungswiderstandes im Coronargef äß system des Rattenherzens. Pflügers Arch. ges. Physiol. 304, 189–202 (1968).Google Scholar
  13. Barcroft, H., Weiss, C.: Time series analysis of spontaneous fluctuations of the flow in the perfused rat kidney. Pflügers Arch. ges. Physiol. 319, 205–214 (1970).Google Scholar
  14. Bayliss, W. M.: On the local reactions of the arterial wall to changes of internal pressure. J. Physiol. (Lond.) 28, 220–231 (1902).Google Scholar
  15. Beck, L.: Active reflex dilatation in the innervated perfused hind leg of the dog. Amer. J. Physiol. 201, 123–128 (1961).PubMedGoogle Scholar
  16. Beck, L., Histamine as the potential mediator of active reflex Vasodilatation. Fed. Proc. 24, 1298–1310 (1965).PubMedGoogle Scholar
  17. Beișer, G. D., Zelis, R., Epstein, S. E., Mason, D. T., Braunwald, E.: The role of skin and muscle resistance vessels in reflexes mediated by the baroreceptor system. J. clin. Invest. 49, 225–231 (1970).PubMedGoogle Scholar
  18. Bevegard, B. S., Shepherd, J. T.: Circulatory effects of stimulating the carotid arterial stretch receptors in man at rest and during exercise. J. clin. Invest. 45, 132 (1966 a).Google Scholar
  19. Bevegard, B. S.,Reaction in man of resistance and capacity vessels in forearm and hand to leg exercise. J. appl. Physiol. 21, 123–132 (1966b).PubMedGoogle Scholar
  20. Bevegard, B. S., Regulation of the circulation during exercise in man. Physiol. Rev. 47, 178–213 (1967).PubMedGoogle Scholar
  21. Black, J. E.: Blood flow requirements of the human calf after walking and running. Clin. Sei. 18, 89–93 (1959).Google Scholar
  22. Blair, D. A., Glover, W. E., Greenfield, A. D. M., Roddie, I. C.: Excitation of cholinergic vasodilator nerves to human skeletal muscles during emotional stress. J. Physiol. (Lond.) 148, 633–647 (1959).Google Scholar
  23. Bock, K. D., Dengler, H., Kuhn, H. M., Matthes, K.: Die Wirkung von 5-Hydroxytryptamin auf Blutdruck, Haut- und Muskeldurchblutung des Menschen. Naunyn- Schmiedebergs Arch. exp. Path. Pharmak. 230, 257–273 (1957).Google Scholar
  24. Bock, K. D., Hensel, H., Ruef, J.: Die Wirkung von Adrenalin und Noradrenalin auf die Muskel- und Hautdurchblutung des Menschen. Pflügers Arch. ges. Physiol. 261, 322–333 (1955).Google Scholar
  25. Bock, K. D., Krecke, H.-J., Kuhn, H. M.: Untersuchung über die Wirkung von synthetischem Hypertensin II auf Blutdruck, Atmung und Extremitätendurchblutung des Menschen. Klin. Wschr. 36, 254–261 (1958).PubMedGoogle Scholar
  26. Bolme, P., Edwall, L.: The disappearance of Xe133 and I125 from skeletal muscle of the anesthetized dog during sympathetic cholinergic Vasodilatation. Acta physiol. scand. 78, 28–38 (1970).PubMedGoogle Scholar
  27. Bolme, P., Fuxe, K.: Adrenergic and cholinergic nerve terminals in skeletal muscle vessels. Acta physiol. scand. 78, 52–59 (1970).PubMedGoogle Scholar
  28. Bolme, P., Ngai, S. H., Rosell, S.: Influence of vasoconstrictor nerve activity on the cholinergic vasodilator response in skeletal muscle in the dog. Acta physiol. scand. 71, 323–333 (1967).PubMedGoogle Scholar
  29. Bolme, P., Novotny, J.: Oxygen uptake in skeletal muscle of the anesthetized dog during sympathetic Vasodilatation. Acta physiol. scand. 77, 333–343 (1969).PubMedGoogle Scholar
  30. Bolme, P., Uvnäs, B., Wright, P. G.: Species distribution of sympathetic cholinergic vasodilator nerves in skeletal muscle. Acta physiol. scand. 78, 60–64 (1970).PubMedGoogle Scholar
  31. Boyd, I. A., Forrester, T.: The release of adenosine triphosphate from frog skeletal muscle in vitro. J. Physiol. (Lond.) 199, 115–135 (1968).Google Scholar
  32. Brecht, K., Konold, P., Gebert, G.: The effect of potassium, catecholamines andother vasoactive agents on isolated arterial segments of the muscular type. Physiol. bohemoslov. 18, 15–22 (1969).PubMedGoogle Scholar
  33. Brick, I., Hutchison, K. J., Roddie, I. C.: Effect of adrenergic receptor blockade on the responses of forearm blood vessels to circulating noradrenaline and vasoconstrictor nerve activity. In: Hudlicka, 0. (ed.), Circulation in skeletal muscle, p. 25–34. Oxford: Pergamon Press 1968.Google Scholar
  34. Brod, J., Fencl, V., Hejl, Z., Jirka, J.: Circulatory changes underlying blood pressure elevation during acute emotional stress (mental arithmetic) in normotensive and hypertensive subjects. Clin. Sei. 18, 269–279 (1959).Google Scholar
  35. Brod, J., Hejl, Z., Hornych, A., Jirka, J., Slechta, V.: Effect of intravenous angiotensin infusion on redistribution of blood to viscera and muscle in man. In: Hudlicka, O. (ed.), Circulation in skeletal muscle, p. 15–23. Oxford: Pergamon Press 1968.Google Scholar
  36. Brody, M. J., Shaffer, R. A.: Distribution of vasodilator nerves in the canine hindlimb. Amer. J. Physiol. 218, 470–474 (1970).PubMedGoogle Scholar
  37. Brown, E., Goei, J. S., Greenfield, A. D. M., Plassaras, G. C.: Circulatory responses to simulated gravitational shifts of blood in man induced by exposure of the body below the iliac crests to sub-atmospheric pressure. J. Physiol. (Lond.) 183, 607–627 (1966).Google Scholar
  38. Celander, 0.: The ränge of control exercised by the sympathico-adrenal system. Acta physiol. scand. 32, Suppl. 116 (1954).Google Scholar
  39. Christensen, N. J.: The significance of work load and injected volume in Xenon133 measurement of muscular blood flow. Acta med. scand. 183, 445–447 (1968).PubMedGoogle Scholar
  40. Clarke, R. S. J., Hellon, R. F.: Hyperaemia following sustained and rhythmic exercise in the human forearm at various temperatures. J. Physiol. (Lond.) 145, 447–458 (1959).Google Scholar
  41. Cobbold, A., Folkow, B., Kjellmer, I., Mellander, S.: Nervous and local chemical control of pre-capillary sphincters in skeletal muscle as measured by changes in filtration coefficient. Acta physiol. scand. 57, 180–192 (1963).PubMedGoogle Scholar
  42. Coles, D. R., Cooper, K. E.: Hyperaemia following arterial occlusion or exercise in the warm and cold human forearm. J. Physiol. (Lond.) 145, 241–250 (1959).Google Scholar
  43. Cooper, K. E., Edholm, 0. G., Mottram, R. F.: The blood flow in skin and muscle of the human forearm. J. Physiol. (Lond.) 128, 258–267 (1955).Google Scholar
  44. Dahn, I., Lassen, N. A. (Ed.): Clinical studies of peripheral circulation. Scand. J. clin. Lab. Invest. 19, Suppl. 99 (1967).Google Scholar
  45. Dahn, I., Westling, H.: Blood flow in human muscles during external pressure or venous stasis. Clin. Sei. 32, 467–473 (1967).Google Scholar
  46. Diana, J. N., Kaiser, R. S.: Pre- and posteapillary resistance during histamine infusion in isolated dog hindlimb. Amer. J. Physiol. 218, 132–142 (1970).PubMedGoogle Scholar
  47. Djojosugito, A. M., Folkow, B., Lisander, B., Sparks, H.: Mechanism of escape of skeletal muscle resistance vessels from the influence of sympathetic cholinergic vasodilator fibre activity. Acta physiol. scand. 72, 148–156 (1968).PubMedGoogle Scholar
  48. Djojosugito, A. M., Folkow, A. M., Yonce, L. R.: Neurogenic adjustments of muscle blood flow, cutaneous A-V shunt flow and of venous tone during „diving“in ducks. Acta physiol. scand. 75, 377–386 (1969).PubMedGoogle Scholar
  49. Dörner, J.: Zum Vorhandensein einer auf nervösem Wege hervorgerufenen Gefäßdilatation nach Adrenalin und Noradrenalin. Pflügers Arch. ges. Physiol. 262, 265–271 (1956). Doll, E., Keul, J., Maiwald, C.: Oxygen tension and acid-base equilibria in venous blood of working muscle. Amer. J. Physiol. 215, 23–29 (1968).Google Scholar
  50. Donald, D. E., Ferguson, D. A.: Study of the sympathetic vasoconstrictor nerves to the vessels of the dog hind limb. Circulat. Res. 26, 171–184 (1970).PubMedGoogle Scholar
  51. Donald, D. Rowlands, D. J., Ferguson, D. A.: Similarity of blood flow in the normal and the sympathectomized dog hind limb during graded exercise. Circulat. Res. 26, 185–199 (1970).PubMedGoogle Scholar
  52. Duff, F., Patterson, G. C., Shepherd, J. T.: A quantitative study of the response to adenosine triphosphate of the blood vessels of the human hand and forearm. J. Physiol. (Lond.) 125, 581–589 (1954).Google Scholar
  53. Duff, R. S., Sw an, H. J. C.: Further observations on the effect of adrenaline on the blood flow through the human skeletal muscle. J. Physiol. (Lond.) 114, 41–55 (1951).Google Scholar
  54. Edholm, O. G., Fox, R. H., Macpherson, R. K.: The effect of body heating on the circulation in skin and muscle. J. Physiol. (Lond.) 134, 612–619 (1956).Google Scholar
  55. Elsner, R. W., Carlson, L. D.: Postexercise hyperemia in trained and untrained subjects. J. appl. Physiol. 17, 436–440 (1962).Google Scholar
  56. Fencl, Y., Hejl, Z., Jirka, J., Madlafousek, J., Brod, J.: Changes of blood flow in forearm muscle and skin during an acute emotional stress (mental arithmetic). Clin. Sei. 18, 491–498 (1959).Google Scholar
  57. Fentem, P. H., Matthews, J. A.: The duration of the increase in arterial inflow during exposure of the forearm to subatmospheric pressure. J. Physiol. (Lond.) 210, 65P (1970).Google Scholar
  58. Finer, B., Graf, K.: Mechanisms of circulatory changes accompanying hypnotic imagination of hyperalgesia and hypoalgesia in causalgic limbs. Z. ges. exp. Med. 148, 1–21 (1968).Google Scholar
  59. Folkow, B.: The nervous control of the blood vessels. In: McDowall, R. J. S., The control of the circulation of the blood, Suppl., Dawson Ltd. 1956, p. 1–85. (1969).Google Scholar
  60. Folkow, B., The efferent innervation of the cardiovascular system. Verh. dtsch. ges. Kreisl.-Forsch. 25, 84–96 (1959).Google Scholar
  61. Folkow, B., Role of the nervous system in the control of vascular tone. Circulation 21, 760–768 (1960).PubMedGoogle Scholar
  62. Folkow, B., Nervous adjustments of the vascular bed with special reference to patterns of vasoconstrictor fibre discharge. In: Bock, K. D. (ed.), Schock, p. 61–72. Berlin-Göttingen Heidelberg: Springer 1962.Google Scholar
  63. Folkow, B., Autoregulation in muscle and skin. Circulat. Res. 14/15, Suppl. 1, 19–24 (1964a).Google Scholar
  64. Folkow, B., Description of the myogenic hypothesis. Circulat. Res. 14/15, Suppl. 1, 279–285 (1964b).Google Scholar
  65. Folkow, B., Fuxe, K., Sonnenschein, R. R.: Responses of skeletal musculature and its vasculature during „diving“in the duck: Peculiarities of the adrenergic vasoconstrictor innervation. Acta physiol. scand. 67, 327–342 (1966).PubMedGoogle Scholar
  66. Folkow, B., Häggendal, J., Lisander, B.: Extent of release and elimination of noradrenaline at peripheral adrenergic nerve terminals. Acta physiol. scand., Suppl. 307 (1967).Google Scholar
  67. Folkow, B., Halicka, H. D.: A comparison between „red“and „white“muscle with respect to blood supply, eapillary surface area and oxygen uptake during rest and exercise. Microvasc. Res. 1, 1–14 (1968).Google Scholar
  68. Folkow, B., Heymans, C., Neil, E.: Integrated aspects of cardiovascular regulation. Handbook of physiology, sect. 2, Circulation III, p. 1787–1823. Washington: Amer. Physiol. Soc. 1965.Google Scholar
  69. Folkow, B., Johansson, B., Mellander, S.: The comparative effects of angiotensin and noradrenaline no consecutive vascular sections. Acta physiol. scand. 53, 99–104 (1961b).PubMedGoogle Scholar
  70. Folkow, B., Lisander, B., Tuttle, R. S., Wang, S. C.: Changes in cardiac output upon Stimulation of the hypothalamic defence area and the medullary depressor area in the cat. Acta physiol. scand. 72, 220–233 (1968).PubMedGoogle Scholar
  71. Folkow, B., Mellander, S., Öberg, B.: The ränge of effect of the sympathetic vasodilator fibres with regard to consecutive sections of the muscle vessels. Acta physiol. scand. 53, 7–22 (1961a).PubMedGoogle Scholar
  72. Folkow, B., Öberg, B.: Autoregulation and basal tone in consecutive vascular sections of the skeletal muscles in reserpine-treated cats. Acta physiol. scand. 53, 105–113 (1961).PubMedGoogle Scholar
  73. Folkow, B., Rubinstein, E. H.: A proposed differentiated neuro-effector organization in muscle resistance vessels. Angiologica 1, 197–208 (1964).PubMedGoogle Scholar
  74. Folkow, B., Rubinstein, E.H.: Behavioural and autonomic patterns evoked by Stimulation of the lateral hypothalamic area in the cat. Acta physiol. scand. 65, 292–299 (1965).PubMedGoogle Scholar
  75. Frey, E. K., Kraut, H., Werle, E.: Das Kallikrein-Kinin-System und seine Inhibitoren. Stuttgart: Ferdinand Enke 1968.Google Scholar
  76. Gaskell, T. W. H.: The changes of the bloodstream in muscle through Stimulation of their nerves. J. Anat. (Lond.) 11, 360 (1877).Google Scholar
  77. Golenhofen, K.: Die Wirkung von Adrenalin auf die menschlichen Muskelgefäße. Verh. dtsch. ges. Kreisl.-Forsch. 25, 96–104 (1959a).Google Scholar
  78. Golenhofen, K.: Die Reaktionen der menschlichen Muskulatur in Kälte und Affekt unter dem Gesichtspunkt der Thermoregulation. Arch. Phys. Med. 11, 45–58 (1959b).Google Scholar
  79. Golenhofen, K.: Physiologie des menschlichen Muskelkreislaufes. Marb. Sitzungsber. 83 /84, 167–254 (1962a).Google Scholar
  80. Golenhofen, K.: Sustained dilatation in human muscle blood vessels under the influence of adrenaline. J. Physiol. (Lond.) 160, 189–199 (1962b).Google Scholar
  81. Golenhofen, K.: Zur Reaktionsdynamik der menschlichen Muskelstrombahn. Arch. Kreisl.-Forsch. 38, 202–223 (1962c).Google Scholar
  82. Golenhofen, K.: Physiologie der Kurzschlußdurchblutung. In: Hammersen, F., und D. Gross (Hrsg.), Die arteriovenösen Anastomosen, S. 67–81. Bern u. Stuttgart: Hans Huber 1968a.Google Scholar
  83. Golenhofen, K.: Spontaneous rhythms in muscle blood flow. In: Hudlicka, 0. (ed.), Circulation in skeletal muscle, p. 287–294. Oxford: Pergamon Press 1968b.Google Scholar
  84. Golenhofen, K.: Slow rhythms in smooth muscle (minute-rhythm). In: E. Bülbring et al. (ed.), Smooth muscle, p. 316–342. London: Arnolds Ltd. 1970.Google Scholar
  85. Golenhofen, K., Blair, D. A., Seidel, W.: Zur Natur affektiver Muskeldurchblutungssteigerungen beim Menschen. Pflügers Arch. ges. Physiol. 272, 223–236 (1961).Google Scholar
  86. Golenhofen, K.: Hensel, H., Hildebrandt, G.: Durchblutungsmessung mit Wärmeleitelementen. Stuttgart: Georg Thieme 1963.Google Scholar
  87. Golenhofen, K.: Hildebrandt, G.: Über spontan-rhythmische Schwankungen der Muskeldurchblutung des Menschen. Z. Kreisl.-Forsch. 46, 257–270 (1957a).Google Scholar
  88. Golenhofen, K., Blair, D. A.: Zur Ursache spontaner Muskeldurchblutungsschwankungen im 1-Minuten-Rhythmus. Verh. dtsch. Ges. Kreisl.-Forsch. 23, 380–385 (1957b).Google Scholar
  89. Golenhofen, K., Blair, D. A.: Psychische Einflüsse auf die Muskeldurchblutung. Pflügers Arch. ges. Physiol. 263, 637–646 (1957c).Google Scholar
  90. Golenhofen, K., Blair, D. A.: Die Reaktion der menschlichen Muskelgefäße auf Durchblutungsdrosselung. Pflügers Arch. ges. Physiol. 264, 492–512 (1957d).Google Scholar
  91. Golenhofen, K., Blair, D. A.: Normale Funktion des Muskelkreislaufes beim Menschen. In: Delius, L., und E. Witzleb (Hrsg.), Probleme der Haut- und Muskeldurchblutung, S. 70–87. BerlinGöttingen-Heidelberg: Springer 1964.Google Scholar
  92. Golenhofen, K., v. Loh, D.: Intracelluläre Potentialmessungen zur normalen Spontanaktivität der iso lierten Portalvene des Meerschweinchens. Pflügers Arch. ges. Physiol. 319, 82–100 (1970).Google Scholar
  93. Gottstein, U., Felix, R., Flad, H. D., Sedlmeyer, I.: Untersuchungen zur Wirkung von Nikotinsäure und Adenosinmonophosphat auf Haut- und Muskeldurchblutung von Gefäßgesunden und Kranken mit peripheren Durchblutungsstörungen. Z. Kreisl.-Forsch. 55, 970–987 (1966).Google Scholar
  94. Graf, K., Graf, W., Rosell, S.: Zusammenhänge der Durchblutungsrhythmik in Haut-, Muskel- und Intestinalstrombahn des Menschen. Pflügers Arch. ges. Physiol. 270, 43 (1959).Google Scholar
  95. Graf, K., Ström, G.: Größe und Verhalten der peripheren Durchblutung des Menschen bei vasoregulativer Asthenie. Verh. dtsch. Ges. Kreisl.-Forsch. 25, 223–230 (1959).Google Scholar
  96. Grimby, G., Häggendal, E., Saltin, B.: Local Xenon133 clearance from the quadriceps muscle during exercise in man. J. appl. Physiol. 22, 305–310 (1967). Haddy, F. J.: Serotonin and the vascular system. Angiology 11, 21–24 (1960).Google Scholar
  97. Grimby, G., Scott, J. B.: Metabolically linked vasoactive chemicals in local regulation of blood flow. Physiol. Rev. 48, 688–707 (1968).Google Scholar
  98. Häggendal, E., Kerstell, J., Steen, B., Svanborg, A.: Blood flow and uptake of oxygen and substrates in forearm muscle and subcutaneous fat tissue in man. Acta med. scand. 188, 79 (1968).Google Scholar
  99. Hammersen, F.: Das Gefäßmuster der Skeletmuskulatur. In: Delius, L., u. E. Witzleb (Hrsg.), Probleme der Haut- und Muskeldurchblutung, S. 11–26. Berlin-Göttingen Heidelberg: Springer 1964.Google Scholar
  100. Hammersen, F.: The terminal vascular bed in skeletal muscle with special regard to the problem of shunts. Alfred Benzon Symp. II, Capillary permeability. Copenhagen: Munksgaard 1970.Google Scholar
  101. Hammersen, F., Gross, D.: Die arterio-venösen Anastomosen. Bern u. Stuttgart: Hans Huber 1968. Hensel, H., Hildebrandt, G.: Organ systems in adaptation: the muscular system. Handbook of physiology, sect. 4: Adaptation to the environment, p. 73–90. Washington: Amer. Physiol. Soc. 1964.Google Scholar
  102. Hammersen, F., Ruef, J.: Fortlaufende Registrierung der Muskeldurchblutung am Menschen mit einer Calorimetersonde. Pflügers Arch. ges. Physiol. 259, 267–280 (1954).Google Scholar
  103. Hildebrandt, G.: Significance of autoregulation in skeletal muscle for orthostatic regulation. In Hudlicka, 0. (ed.), Circulation in skeletal muscle, p. 277–285. Oxford: Pergamon Press 1968.Google Scholar
  104. Hille, H., Nobel, J.: Über spontanrhythmische Durchblutungsschwankungen des menschlichen Uterus. Pflügers Arch. ges. Physiol. 293, 172–183 (1967).Google Scholar
  105. Hilton, S. M.: Experiments on the post-contraction hyperaemia of skeletal muscle. J. Physiol. (Lond.) 120, 230–245 (1953).Google Scholar
  106. Hilton, S. M.: Local mechanisms regulating peripheral blood flow. Physiol. Rev. 42, Suppl. 5, 265–275 (1962).Google Scholar
  107. Hilton, S. M.: Emotion. In: Edholm, 0. G., and A. L. Bacharach (ed.), The physiology of human survival, p. 465–489. London-NewYork: Academic Press 1965.Google Scholar
  108. Hilton, S. M.: Central nervous regulation of skeletal muscle circulation. In: Hudlicka, 0. (ed.), Circulation in skeletal muscle, p. 5–13. Oxford: Pergamon Press 1968a.Google Scholar
  109. Hilton, S. M.: The search for the cause of functional hyperaemia in skeletal muscle. In: Hudlicka, O. (ed.), Circulation in skeletal muscle, p. 137–144. Oxford: Pergamon Press 1968b.Google Scholar
  110. Hilton, S. M.: A new candidate for mediator of functional dilatation in skeletal muscle. Circulat. Res. 28, Suppl. 1, 70–72 (1971a).Google Scholar
  111. Hilton, S. M.: Local chemical factors involved in vascular control. Int. Symp. on Angiology. Basel: Karger 1971b (im Druck).Google Scholar
  112. Hilton, S. M.: Vrbova, G.: Absence of functional hyperaemia in the soleus muscle of the cat. J. Physiol. (Lond.) 194, 86P (1968).Google Scholar
  113. Hilton, S. M.: Inorganic phosphate — a new candidate for mediator of functional Vasodilatation in skeletal muscle. J. Physiol. (Lond.) 206, 29P–30P (1970).Google Scholar
  114. Hirche, H., Raff, W. K., Grün, D.: The resistance to blood flow in the gastrocnemius of the dog during sustained and rhythmical isometric and isotonic contractions. Pflügers Arch. ges. Physiol. 314, 97–112 (1970).Google Scholar
  115. Holmgren, A., Jonsson, B., Levander, M., Linderholm, H., Mossfeldt, F., Sjöstrand, T., Ström, G.: Effect of physical training in vasoregulatory asthenia, in Da Costa’s syndrome, and in neurosis without heart symptoms. Acta med. scand. 165,89–103 (1959). Hudlicka, 0. (ed.): Circulation in skeletal muscle. Oxford: Pergamon Press 1968.Google Scholar
  116. Holmgren, A., Resting and postcontraction blood flow in slow and fast muscles of the chick during development. Microvasc. Res. 1, 390–402 (1969).Google Scholar
  117. Holmgren, A., Regulation of muscle blood flow. Prag: Akademie-Verlag; Amsterdam: Swets & Zeitlinger 1971 (im Druck).Google Scholar
  118. Illig, L.: Die terminale Strombahn. Capillarbett und Mikrozirculation. Berlin-Göttingen- Heidelberg: Springer 1961.Google Scholar
  119. Johnsson, G., Henning, M., Äblad, B.: Studies on the mechanism of the vasoconstrictor effect of angiotensin II in man. Life Sei. 4, 1549–1554 (1965).Google Scholar
  120. Johnsson, G., Öberg, B.: Comparative effects of isoprenaline and nitroglycerin on consecutive vascular sections in the skeletal muscle of the cat. Angiologica 5, 161–171 (1968).PubMedGoogle Scholar
  121. Kaneko, M., Zechman, F. W., Smith, R. E.: Circadian Variation in human peripheral blood flow levels and exercise responses. J. appl. Physiol. 25, 109–114 (1968).PubMedGoogle Scholar
  122. Keller, C. J., Loeser, A., Rein, H.: Die Physiologie der Skelett-Muskeldurehblutung. Z. Biol. 90, 260–298 (1930).Google Scholar
  123. Kjellmer, I.: The potassium ion as a vasodilator during muscular exercise. Acta physiol. scand. 63, 460–468 (1965 a).Google Scholar
  124. Kjellmer, I.: On the competition between metabolic Vasodilatation and neurogenic vasoconstriction in skeletal muscle. Acta physiol. scand. 63, 450–459 (1965b).PubMedGoogle Scholar
  125. Kjellmer, I.: Studies on exercise hyperemia. Acta physiol. scand. 64, Suppl. 244 (1965c).Google Scholar
  126. Kjellmer, I., Lindbjerg, I., Prerovsky, I., Tönnesen, H.: The relation between blood flow in an isolated muscle measured with the Xe133 clearance and a direct recording technique. Acta physiol. scand. 69, 69–78 (1967).PubMedGoogle Scholar
  127. Kjellmer, I., Odelram, H.: The effect of some physiological vasodilators on the vascular bed of skeleta muscle. Acta physiol. scand. 63, 94–102 (1965).PubMedGoogle Scholar
  128. Kontos, H.A., Richardson, D.W., Patterson, J. L.: Blood flow and metabolism of forearm muscle in man at rest and during sustained contraction. Amer. J. Physiol. 211, 869–876 (1966).Google Scholar
  129. Kramer, K., Obal, F., Quensel, W.: Untersuchungen über den Muskelstoffwechsel des Warmblüters. III. Die Sauerstoffaufnahme des Muskels während rhythmischer Tätigkeit. Pflügers Arch. ges. Physiol. 241, 717–729 (1939a).Google Scholar
  130. Kramer, K., Quensel, W.: Untersuchungen über den Muskelstoffwechsel des Warmblüters. I. Der Verlauf der Muskeldurchblutung während der tetanischen Kontraktion. Pflügers Arch. ges. Physiol. 239, 620–643 (1938).Google Scholar
  131. Kramer, K., Schäfer, K. E.: Untersuchungen über den Muskelstoffwechsel des Warmblüters. IV. Beziehungen zwischen Sauerstoffaufnahme und Milchsäureabgabe des Muskels während der Tätigkeit. Pflügers Arch. ges. Physiol. 241, 730–740 (1939b).Google Scholar
  132. Lande, I. S. de la, Whelan, R. F.: The role of lactic acid in the vasodilator action of adrenaline in the human limb. J. Physiol. (Lond.) 162, 151–154 (1962).Google Scholar
  133. Landin, S., Wahren, J.: Blood flow, oxygen uptake and lactate production in the forearm during exercise induced by median nerve Stimulation. Acta physiol. scand. 75, 82–91 (1969).PubMedGoogle Scholar
  134. Lange Andersen, K.: The cardiovascular system in exercise. In: Falls, H. B. (ed.), Exercise physiology, p. 79–128. New York-London: Academic Press 1968.Google Scholar
  135. Langendorf, H., Schönbach, G., Zahn, R. K.: Das Verhalten der kleinen Blutgefäße der Schwimmhaut des Frosches bei erhöhtem Außendruck. Z. exp. Med. 126, 82–104 (1955).Google Scholar
  136. Lassen, N. A., Lindbjerg, I., Dahn, I.: Validity of the Xenon133 method for measurement of muscle blood flow evaluated by simultaneous venous occlusion plethysmography. Circulat. Res. 16, 287–293 (1965).PubMedGoogle Scholar
  137. Lassen, N. A., Lindbjerg, I. F., Munck, 0.: Measurement of blood flow through skeletal muscle by intramuscular injection of Xenon133. Lancet 1964, 686–689.Google Scholar
  138. Lewis, D. H., Mellander, S.: Competitive effects of sympathetic control and tissue metabolites on resistance and capacitance vessels and capillary filtration in skeletal muscle. Acta physiol. scand. 56, 162–188 (1962).Google Scholar
  139. Lewis, T., Grant, R.: Observations upon hyperaemia in man. Heart 12, 73–120(1926). Lundgren, 0., Lundwall, J., Mellander, S.: Range of sympathetic discharge and reflex vascular adjustments in skeletal muscle during hemorrhagic hypotension. Acta Physiol scand. 62, 380–390 (1961).Google Scholar
  140. Lundholm, L.: The mechanism of the vasodilator effect of adrenaline. I. Effect on skeletal muscle vessels. Acta physiol. scand. 39, Suppl. 133 (1956).Google Scholar
  141. Lundvall, J., Mellander, S., Sparks, H.: Myogenic response of resistance vessels and precapillary sphincters in skeletal muscle during exercise. Acta physiol. scand. 70, 257–268 (1967).PubMedGoogle Scholar
  142. Lundvall, J., Mellander, S., White, T.: Hyperosmolality and Vasodilatation in human skeletal muscle. Acta physiol. scand. 77, 224–233 (1969).PubMedGoogle Scholar
  143. McArdle, B.: Myopathy due to a defect in muscle glycogen breakdown. Clin. Sei. 10, 13–33 (1951).Google Scholar
  144. Mellander, S.: Comparative studies on the adrenergic neurohormonal control of resistance and capacitance blood vessels in the cat. Acta physiol. scand. 50, Suppl. 176 (1960).Google Scholar
  145. Mellander, S.: Systemic circulation: Local control. Ann. Rev. Physiol. 32, 313–344 (1970).Google Scholar
  146. Mellander, S.: Interaction of local and nervous factors in vascular control. Int. Symp. on Angiology. Basel: Karger 1971 (im Druck).Google Scholar
  147. Mellander, S.: Johansson, B.: Control of resistance, exchange and capacitance functions in the peripheral circulation. Pharmacol. Rev. 20, 117–196 (1968).PubMedGoogle Scholar
  148. Mellander, S.: Gray, S., Jonsson, O., Lundvall, J., Ljung, B.: The effects of hyperosmolarity on intact and isolated vascular smooth muscle. Possible role in exercise hyperemia. Angio logica 4, 310–322 (1967).Google Scholar
  149. Mellander, S.: Lundvall, J.: Role of tissue hyperosmolality in exercise hyperemia. Circulat. Res. 28, Suppl. 1, 39–45 (1971).Google Scholar
  150. Mellander, S.: Nordenfelt, I.: Comparative effects of dihydroergotamine and noradrenaline on resistance, exchange and capacitance functions in the peripheral circulation. Clin. Sei. 39, 183–201 (1970).Google Scholar
  151. Mellander, S.: Öberg, B., Odelram, H.: Vascular adjustments to increased transmural pressure in cat and man with special reference to shifts in capillary fluid transfer. Acta physiol. scand. 61, 34–48 (1964).Google Scholar
  152. Merguet, P., Golenhofen, K.: Lokal-mechanische Regulation der menschlichen Muskelstrombahn („myogene Reaktion“, „Bayliss-Effekt“). Pflügers Arch. ges. Physiol. 297, R36 (1967).Google Scholar
  153. Peiper, U., Ohnhaus, E. E., Brettschneider, H.: Kontraktionsablauf der Muskulatur der Widerstandsgefäße in situ (Skeletmuskelstrombahn) bei Variation der intravasalen Noradrenalinkonzentration. Pflügers Arch. ges. Physiol. 290, 362–375 (1966).Google Scholar
  154. Peiper, U., Wullstein, H. K., Maier, C. P.: Unterschiedliche Summationsfähigkeit für vasoeonstrictorische Efferenzen im Haut-, Skeletmuskel- und Mesenterialkreislauf der Katze. Pflügers Arch. ges. Physiol. 298, 31–43 (1967).Google Scholar
  155. Peňáz, J.: The blood pressure control system: a critical and methodological introduction. In: Koster, M., H. Musaph, and P. Visser (ed.), Psychosomatics in essential hypertension, p. 125–150. Basel-München-NewYork: Karger 1970.Google Scholar
  156. Peňáz, J., Buriánek, P., Semrad, B.: Dynamic aspects of vasomotor and autoregulatory control of blood flow. In: Hudlicka, O. (ed.), Circulation in skeletal muscle, p. 255–269. Oxford: Pergamon Press 1968.Google Scholar
  157. Piiper, J., Rosell, S.: Attempt to demonstrate large arteriovenous shunts in skeletal muscle during Stimulation of sympathetic vasodilator nerves. Acta physiol. scand. 53, 214–217 (1961).PubMedGoogle Scholar
  158. Prill, H. J.: Über die Durchblutung des Uterus. Z. Geburtsh. Gynäk. 152, 69–98 (1959). Quensel, W., Kramer, K.: Untersuchungen über den Muskelstoffwechsel des Warmblüters. II. Die Sauerstoffaufnahme des Muskels während der tetanischen Kontraktion. Pflügers Arch. ges. Physiol. 241, 698–716 (1939).Google Scholar
  159. Rein, H.: Vasomotorische Regulationen. Ergebn. Physiol. 32, 28–72 (1931).Google Scholar
  160. Rein, H.: Kreislauf und Stoffwechsel. Verh. dtsch. Ges. Kreislauf.-Forsch. 14, 9–39 (1941).Google Scholar
  161. Rein, H.: Die bestimmenden Faktoren für die Vasomotorik der Ruhedurchblutung des Skelet- muskels. Pflügers Arch. ges. Physiol. 248, 100–110 (1944).Google Scholar
  162. Rein, H.: Über die Drosselungstoleranz und die kritische Drosselungsgrenze der Herz-Coronargefäße. Pflügers Arch. ges. Physiol. 253, 205–223 (1951).Google Scholar
  163. Rein, H., Schneider, M.: Die Physiologie der Skeletmuskel-Durchblutung. II. Mitt. Die Interferenzen verschiedener Regulationen im Muskelgefäßnetz. Z. Biol. 91, 13–25 (1930).Google Scholar
  164. Reis, D. J., Wooten, G. F., Hollenberg, M.: Differences in nutrient blood flow of red and white skeletal muscle in the cat. Amer. J. Physiol. 213, 592–596 (1967).PubMedGoogle Scholar
  165. Renkin, E. M., Rosell, S.: Effects of different types of vasodilator mechanisms on vascular tonus and on transcapillary exchange of diffusible material in skeletal muscle. Acta physiol. scand. 54, 241–251 (1962).PubMedGoogle Scholar
  166. Rigler, R.: Über die Ursache der vermehrten Durchblutung des Muskels während der Arbeit. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 167, 54–56 (1932).Google Scholar
  167. Rodbard, S., Pragay, E. B.: Contraction frequency, blood supply and muscle pain. J. appl. Physiol. 24, 142–145 (1968).PubMedGoogle Scholar
  168. Roddie, I. C., Shepherd, J. T., Whelan, R. F.: Evidence from venous oxygen Saturation measurements that the increase in forearm blood flow during body heating is confined to the skin. J. Physiol. (Lond.) 134, 444–450 (1956).Google Scholar
  169. Rosell, S., Uvnäs, B.: Vasomotor nerve activity and oxygen uptake in skeletal muscle of the anesthetized cat. Acta physiol. scand. 54, 209–222 (1962).PubMedGoogle Scholar
  170. Sakuma, A., Beck, L.: Pharmacological evidence for active reflex dilatation. Amer. J. Physiol. 201, 129–133 (1961).PubMedGoogle Scholar
  171. Schächter, M.: Kallikreins and kinins. Physiol. Rev. 49, 509–547 (1969).PubMedGoogle Scholar
  172. Schmid, R., Mahler, R.: Chronic progressive myopathy with myoglobinuria; demonstration of a glycogenolytic defect in the muscle. J. clin. Invest. 38, 2044 (1959). Schmidt-Vanderheyden, W., Koepchen, H. P.: Zum Mechanismus der Adrenalindilatation der Skeletmuskelgefäße. Pflügers Arch. ges. Physiol. 298, 1–11 (1967).Google Scholar
  173. Schoop, W., Pfleiderer, T.: Die Bedeutung eines lokalen Regelmechanismus für die Muskeldurchblutung bei intraarterieller Dauerinfusion von Adenylsäuren. Z. Kreisl.-Forsch. 46, 304–311 (1957).Google Scholar
  174. Schoop, W., Schmidtke, I.: The effect of beta-adrenergic blocking substances on muscle blood flow in man. Angiologica 3, 141–152 (1965).Google Scholar
  175. Schroeder, W.: Nutritive und nicht-nutritive Skelettmuskeldurchblutung. Arch. Kreisl. Forsch. 49, 36–49 (1966).Google Scholar
  176. Scott, J. B., Rudko, M., Radawski, D., Haddy, F. J.: Role of osmolarity, K+, H+, Mg++, and 02 in local blood flow regulation. Amer. J. Physiol. 218, 338–345 (1970).PubMedGoogle Scholar
  177. Sejrsen, P., Tönnesen, K. H.: Inert gas diffusion method for measurement of blood flow using Saturation techniques. Comparison with directly measured blood flow in isolated gastrocnemius muscle of the cat. Circulat. Res. 22, 679–693 (1968).PubMedGoogle Scholar
  178. Seller, H., Langhorst, P., Polster, J., Koepchen, H. P.: Zeitliche Eigenschaften der Vasomotorik. II. Erscheinungsformen und Entstehung spontaner und nervös induzierter Gefäßrhythmen. Pflügers Arch. ges. Physiol. 296, 110–132 (1967).Google Scholar
  179. Shepherd, J. T.: Physiology of the circulation in human limbs in health and disease. Philadelphia-London: W. B. Saunders Comp. 1963.Google Scholar
  180. Skinner, N. S., Jr., Costin, J. C.: Role of 02 and K+ in abolition of sympathetic vasoconstriction in dog skeletal muscle. Amer. J. Physiol. 217, 438–444 (1969).PubMedGoogle Scholar
  181. Skinner, N. S., Jr., Interactions between oxygen, potassium, and osmolality in regulation of skeletal muscle blood flow. Circulat. Res. 28, Suppl. 1, 73–85 (1971).Google Scholar
  182. Stainsby, W. N., Renkin, E. M.: Autoregulation of blood flow in resting skeletal muscle. Amer. J. Physiol. 201, 117–122 (1961).Google Scholar
  183. Strandell, T., Shepherd, J. T.: The effect in humans of exercise on relationship between simultaneously measured 133Xe and 24Na clearances. Scand. J. clin. Lab. Invest. 21, 99–107 (1968).PubMedGoogle Scholar
  184. Tönnesen, K. H.: Blood flow through muscle during rhythmic contraction measured by 133Xenon. Scand. J. clin. Lab. Invest. 16, 646–654 (1964).PubMedGoogle Scholar
  185. Tönnesen, K. H.: Simultaneous measurement of the calf blood flow by strain-gauge plethysmography and the calf muscle blood flow measured by 133Xenon clearance. Scand. J. clin. Lab. Invest. 21, 65 (1968).PubMedGoogle Scholar
  186. Tönnesen, K. H.: Sejrsen, P.: Washout of 133Xenon after intramuscular injection and direct measurement of blood flow in skeletal muscle. Scand. J. clin. Lab. Invest. 25, 71 (1970).Google Scholar
  187. Treumann, F., Scroeder, W.: Trainingseinfluß auf Muskeldurchblutung und Herzfrequenz. Z. Kreisl.-Forsch. 57, 1024–1033 (1968).Google Scholar
  188. Uvnäs, B.: Sympathetic vasodilator outflow. Physiol. Rev. 34, 608–618 (1954).PubMedGoogle Scholar
  189. Uvnäs, B.: Sympathetic vasodilator system and blood flow. Physiol. Rev. 40, Suppl. 4, 69–76 (1960).Google Scholar
  190. Viveros, 0. H., Garlick, D. G., Renkin, E. M.: Sympathetic beta adrenergic Vasodilatation in skeletal muscle of the dog. Amer. J. Physiol. 215, 1218–1225 (1968).Google Scholar
  191. Wahren, J.: Quantitative aspects of blood flow and oxygen uptake in the human forearm during rhythmie exercise. Acta physiol. scand. 67, Suppl. 269 (1966).Google Scholar
  192. Whalen, W. J., Nair, P.: Skeletal muscle P02: effect of inhaled and topieally applied O2 and CO2. Amer. J. Physiol. 218, 973–980 (1970).PubMedGoogle Scholar
  193. Whelan, R. F.: The effect of adrenaline and noradrenaline on the blood flow through human skeletal muscle, p. 75–81. London: Ciba Symp., J. & A. Churchill Ltd. 1954.Google Scholar
  194. Whelan, R. F.: Mechanism of action of catecholamines on peripheral blood vessels in man. Circulat. Res. 21, Suppl. 3, 173–176 (1967).Google Scholar
  195. Wolstenholme, G. E. W., Freeman, J. S., Etherington, J. (Ed.): Peripheral circulation in man. London: Ciba Found. Symp., Churchill 1954.Google Scholar
  196. Yonce, L. R., Hamilton, W. F.: Oxygen consumption in skeletal muscle during reactive hyperemia. Amer. J. Physiol. 197, 190–192 (1959).PubMedGoogle Scholar
  197. Zimmerman, B. G.: Comparison of sympathetic vasodilator innervation of hindlimb of the dog and cat. Amer. J. Physiol. 214, 62–66 (1968).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1971

Authors and Affiliations

  • K. Golenhofen

There are no affiliations available

Personalised recommendations