Advertisement

Zusammenfassung

Bei der Darstellung der Hämodynamik der Niere befindet man sich in zunehmendem Maβe in einer schwierigen Situation: Die Funktionen der Niere, d. h. ihre Filtrations-, Resorptions- und Sekretionseigenschaften sind aufs Innigste an die Durchblutung gekoppelt. Dabei ist besonders gravierend, daβ nicht nur diese Funktionen von der Höhe der Durchblutung abhängen, sondern daβ umgekehrt auch die tubulären Funktionen die Höhe der Durchblutung bestimmen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Astrom, A., Crafoord, J., Samelius-Broberg, U.: Vasoconstrictor action of acetylcholine on kidney blood vessels. Acta physiol. scand. 61, 159 (1964).Google Scholar
  2. Aukland, K.: Study of renal circulation with inert gas, measurements in tissue. Proc. 3rd Int. Congr. Nephrol. vol. 1, p. 188. Washington 1966.Google Scholar
  3. Aukland, K.: Vasopressin and intrarenal blood flow distribution. Acta physiol. scand. 74, 173 (1968).PubMedGoogle Scholar
  4. Aukland, K., Berliner, R. W.: Renal medullary countercurrent system studied with hydrogen gas. Circulat. Res. 15, 430 (1964).PubMedGoogle Scholar
  5. Aukland, K., Krog, J.: Renal oxygen tension. Nature (Lond.) 188, 671 (1960).Google Scholar
  6. Aukland, K., Wolgast, M.: Effect of hemorrhage and retransfusion on intrarenal distribution of blood flow in dogs. J. olin. Invest. 47, 488 (1968).Google Scholar
  7. Balint, P., Fekete, A.: Das Verhalten des Minutenvolumens und der Nierendurchblutung bei stagnierender Hypoxia. Pflügers Arch. ges. Physiol. 270, 575 (1960).Google Scholar
  8. Balint, P., Fekete, A., Forgacs, I.: Quantitative considerations on the storage of clearance substances in the kidney. Olin. Sci. 26, 345 (1964).Google Scholar
  9. Balint, P., Forgacs, I.: Natriumreabsorption und Sauerstoffverbrauch der Niere bei osmotischer Belastung. Pflugers Arch. ges. Physiol. 288, 332 (1966).Google Scholar
  10. Barajas, L., Latta, H.: A three-dimensional study of the juxtaglomerular apparatus in the rat. Lab. Invest. 12, 257 (1963).PubMedGoogle Scholar
  11. Barclay, J. A., Cooke, W. T., Kenney, R. A.: Observations on the effects of adrenaline on renal function and circulation in man. Amer. J. Physiol. 151, 621 (1947).PubMedGoogle Scholar
  12. Barer, G. R.: The action of vasopressin, a vasopressin analogue (PLV 2) oxytocin, angiotensin, bradykinin and theophylline ethylene diamine on renal blood flow in unaesthetized cat. J. Physiol. (Lond.) 169, 62 (1963).Google Scholar
  13. Basar, E., Tischner, H., Weiss, Ch.: Untersuchungen zur Dynamik druckinduzierter Anderungen des Stromungswiderstandes der autoregulierenden, isolierten Rattenniere. Pflügers Arch. ges. Physiol. 299, 191 (1968).Google Scholar
  14. Berliner, R. W., Bennett, C. M.: Concentration of urine in the mammalian kidney. Amer. J. Med. 42, 777 (1967).PubMedGoogle Scholar
  15. Berliner, R. W., Levinsky, N. G., Davidson, D. G., Eden, M.: Dilution and concentration of the urine and the action of antidiuretic hormone. Amer. J. Med. 24, 730 (1958).PubMedGoogle Scholar
  16. Berne, R. M.: Hemodynamics and sodium excretion of denervated kidney in anaestetized and unanaestetized dogs. Amer. J. Physiol. 171, 148 (1952).PubMedGoogle Scholar
  17. Bethge, H. B., Ochwadt, B., Weber, R.: Der scheinbare Verteilungsraum von 131-J Albumin in verschiedenen Schichten der Niere bei Diurese und Antidiurese. Pflügers Arch. ges. Physiol. 276, 236 (1962).Google Scholar
  18. Birkeland, S., Vogt, A., Krog, J., Semb, C.: Renal circulatory occlusion and local cooling. J. appl. Physiol. 14, 227 (1959).PubMedGoogle Scholar
  19. Blackmore, W. P.: Effect of serotonin on renal hemodynamics and sodium excretion in the dog. Amer. J. Physiol. 193, 639 (1958).PubMedGoogle Scholar
  20. Blake, W. D., Wegria, R., Keating, R. P., Ward, H. P.: Effect of increased renal venous pressure on renal function. Amer. J. Physiol. 157, 1 (1949).PubMedGoogle Scholar
  21. Block, M.A., Wakim, K. G., Mann, F. C.: Circulation through the kidney during stimulation of the renal nerves. Amer. J. Physiol. 169, 659 (1952).PubMedGoogle Scholar
  22. Bock, K. D., Krecke, H. J.: Die Wirkung von synthetischem Hypertensin II auf die PAH-und Inulin-Clearance, die renale Hamodynamik und die Diurese beim Menschen. Klin. Wschr. 36, 69 (1958).PubMedGoogle Scholar
  23. Bohle, A.: Kritischer Beitrag zur Morphologie einer endokrinen Nierenfunktion und deren Bedeutung für den Hochdruck. Arch. Kreisl.-Forsch. 20, 193 (1954).Google Scholar
  24. Bricker, N. S., Guild, W. R., Reardan, J. B., Merrill, J. P.: Studies of the functional capacity of a denervated homotransplanted kidney in an identical twin with parallel observation in the donor. J. clin. Invest. 30, 1354 (1956).Google Scholar
  25. Brun, C., Crone, C., Davidsen, H. G., Fabricius, J., Hansen, A. T., Lassen, N.A., Munck, O.: Renal interstitial pressure in normal and anuric man: based on wedged renal vein pressure. Proc. Soc. exp. Biol. (N.Y.) 91, 199 (1956).Google Scholar
  26. Buchborn, E.: Zur Abgrenzung des Begriffes der „Schockniere“ im Rahmen des akuten Nierenversagens. In: Akutes Nierenversagen. Stuttgart: Thieme 1962.Google Scholar
  27. Bucher, O., Reale, E.: Zur elektronenmikroskopischen Untersuchung der juxtaglomerularen Spezialeinrichtungen der Niere. II. Über die Macula densa des Mittelstücks. Z. mikr.-anat. Forsch. 67, 514 (1961).Google Scholar
  28. Carriere, S., Thornburn, G. D., O’Morchoe, C. C. C., Barger, C. A.: Intrarenal distribution of blood flow in dogs during hemorrhagic hypotension. Circulat. Res. 19, 167 (1966).Google Scholar
  29. Castenfors, J.: Renal function during exercise. Acta physiol. scand. 70, Suppl. 293 (1967).Google Scholar
  30. Celander, O.: Range of control exercised by the sympathico-adrenal system. Acta physiol. scand. 32, 116 (1954).Google Scholar
  31. Chinard, F. P., Enns, T., Nolan, M. F.: Arterial hematocrit and separation of cells and plasma in the dog kidney. Amer. J. Physiol. 207, 128 (1964).PubMedGoogle Scholar
  32. Cook, W. F.: The detection of renin in juxtaglomerular cells. J. Physiol. (Lond.) 194, 73 (1968).Google Scholar
  33. Corcoran, A. C., Page, I. H.: The effect of renin, pitressin, and pitressin and atropine on renal blood flow and clearance. Amer. J. Physiol. 126, 354 (1939).Google Scholar
  34. Corcoran, A. C., Page, I. H.: Renal hemodynamic effects of adrenaline and isuprel. Proc. Soc. exp. Biol. (N.Y.) 66, 148 (1947).Google Scholar
  35. Cortney, M.A., Nagel, W., Thurau, K.: A micropuncture study of the relationship between flow-rate through the loop of Henle and sodium concentration in the distal tubule. Pflügers Arch. ges. Physiol. 287, 286 (1966).Google Scholar
  36. Dahlheim, H., Granger, P., Thurau, K.: A sensitive method for determination of renin activity in the single juxtaglomerular apparatus of the rat kidney. Pflügers Arch. 321, 303 (1970).PubMedGoogle Scholar
  37. Deetjen, P.: Normal and critical oxygen supply of the kidney. Oxygen transport in blood and tissue. Stuttgart: G. Thieme 1968.Google Scholar
  38. Deetjen, P., Brechtelsbauer, H., Kramer, K.: Hamodynamik des Nierenmarks. III. Mitteilung: Farbstoffpassagezeiten in auBerer Markzone und V. renalis. Die Durchblutungsverteilung in der Niere. Pflügers Arch. ges. Physiol. 279, 281 (1964).Google Scholar
  39. Deetjen, P., Kramer, K.: Die Abhangigkeit des 0 2-Verbrauchs der Niere von der Na-Rückresorption. Pflügers Arch. ges. Physiol. 273, 636 (1961).Google Scholar
  40. Dietrich, H. J.: Die Ultrastruktur der Gefäßbündel im Mark der Rattenniere. Z. Zellforsch. 84, 350 (1968).Google Scholar
  41. Dunihue, F. W.: Effect of cellophane perinephritis on the granular oells of the juxtaglome· rular apparatus. Aroh. Path. 32, 2ll (1941).Google Scholar
  42. Dutz, H., Kretzschmar, G.: Die Veranderungen in der Funktion beider Nieren naoh einseitiger vollstandiger Isohümie. Z. exp. Med. 123, 497 (1954).Google Scholar
  43. Edelman, R., Hartroft, P. M.: Localization of renin in juxtaglomerular oells of rabbit and dog through the use of the fluorescent antibody techniques. Ciroulat. Res. 9, 1069 (1961).Google Scholar
  44. Eggleton, M.G., Pappenheimer, J. R., Winton, F. R.: The influence of diuretics on the osmotic work done and on the effioienoy of the isolated kidney of the dog. J. Physiol. (Lond.) 97, 363 (1940).Google Scholar
  45. Eisner, G. M., Slotkoff, L. M., Lilienfield, L. S.: Sodium reabsorption and oxygen consumption in the human kidney. Proo. II. Intern. Congr. Nephrol., Exoerpta Med. Fd. 118 (1964).Google Scholar
  46. Emanuel, D. A., Scottt, J., Collins, R., Haddy, F. J.: Looal effeot of serotonin on renal vascular resistance and urine flow rate. Amer. J. Physiol. 196, 1122 (1959).PubMedGoogle Scholar
  47. Emery, E. W., Gowenlock, A.M., Riddel, A. G., Black, D. A. K.: Intrarenal variations in haematoorit. Clin. Soi. 18, 205 (1959).Google Scholar
  48. Engelhorn, R.: Aktionspotentiale der Nierennerven. Naunyn-Sohmiedebergs Aroh. exp. Path. Pharmak. 231, 219 (1957).Google Scholar
  49. Enger, R., Gerstner, H., Sarre, H.: Die Abhangigkeit der Nierendurohblutung vom Ureterendruok. Zbl. inn. Med. 58, 865 (1937).Google Scholar
  50. Faarup, P.: On the morphology of the juxtaglomerular apparatus. Aota anat. (Basel) 60, 20 (1965).Google Scholar
  51. Fajers, C. M.: On the effeot of brief unilateral renal ischemia. Acta path. microbiol. scand., Suppl. 106 (1955).Google Scholar
  52. Folk Ow, B., Langstone, J.: The interrelationship of some factors influencing renal blood flow autoregulation. Aota physiol. soand. 61, 165 (1964).Google Scholar
  53. Forster, R. P., Maes, J. P.: Effects of experimental neurogenic hypertension on renal blood flow and glomerular filtration rates in intaot denervated kidneys of unanesthetized rabbits with adrenal glands demedullated. Amer. J. Physiol. 150, 534 (1947).PubMedGoogle Scholar
  54. Fourman, J., Kennedy, G. C.: An effeot of antidiuretic hormone on the flow of blood through the vasa reota of the rat kidney. J. Endoor. 35, 173 (1966).Google Scholar
  55. Franklin, K. J., Mcgee, L. E., Ullmann, E. A.: Effects of severe asphyxia on the kidney and urine flow. J. Physiol. (Lond.) 112, 43 (1951).Google Scholar
  56. Freeman, O. W., Mitchell, G. W., Wilson, J. S., Fitzhugh, F. W., Merrill, A. J.: Renal hemodynamics, sodium and water excretion in supine exercising normal and cardiac patients. J. colin. Invest. 34, 1109 (1955).Google Scholar
  57. Friedman, L. M., Johnson, R. L., Friedman, C. L.: The pattern of recovery of renal function following renal artery ooolusion in the dog. Ciroulat. Res. 2, 231 (1954).Google Scholar
  58. Gartner, K.: Das Volumen der interstitiellen Flüssigkeit der Niere bei Anderungen ihres hamodynamisohen Widerstandes; Untersuchungen am Kaninohen. Pflügers Aroh. ges. Physiol. 292, 1 (1966).Google Scholar
  59. Gertz, K. H., Brandis, M., Braun-Schubert, G., Boylan, J. W.: The effeot of saline infusion and hemorrhage on glomerular filtration pressure and single nephron filtration rate. Pflügers Aroh. 310, 193 (1969).Google Scholar
  60. Gertz, K. H., Mangos, J. A., Braun, G., Pagel, H. D.: Pressure in the glomerular capillaries of the rat kidney and its relation to arterial blood pressure. Pflügers Aroh. ges. Physiol. 288, 369 (1966).Google Scholar
  61. Gilmore, J. P.: Influence of tissue pressure on renal blood flow autoregulation. Amer. J. Physiol. 206, 707 (1964a).PubMedGoogle Scholar
  62. Gilmore, J. P.: Renal vascular resistance during elevated ureteral pressure. Circulat. Res.14/15, Suppl. I, 148 (1964b).Google Scholar
  63. Gilmore, J. P.: Contribution of baroreoeptors to the control of renal function. Ciroulat. Res. 14, 301 (1964a).Google Scholar
  64. Girndt, J., Ochwadt, B.: Durohblutung des Nierenmarks, Gesamtnierendurohblutung und cortico-medullare Gradienten beim experimentellen renalen Hochdruok der Ratte. Pflügers Aroh. 313, 30 (1969).Google Scholar
  65. Goodyer, A. V. N., Glenn, W. W. L.: Relation of arterial pulse pressure to renal function. Amer. J. Physiol. 167, 689 (1951).PubMedGoogle Scholar
  66. Goormaghtigh, N.: Lappareil neuromyoarteriel juxtaglomerulaire du rein: ses reactions en pathologie et ses rapports aveo le tube urinifere. C. R. Soc. Biol. (Paris) 124, 293 (1937).Google Scholar
  67. Goormaghtigh, N.: Facts in favour of an endocrine function of the renal arterioles. J. Path. Bact. 57, 392 (1945).Google Scholar
  68. Gottschalk, C. W.: A comparative study of renal interstitial pressure. Amer. J. Physiol. 169, 180 (1952).PubMedGoogle Scholar
  69. Gottschalk, C. W., Lassiter, W. E., Mylle, M.: Studies of the composition of vasa recta plasma in the hamster kidney. Excerpta med. (Arnst.) Sect. 2, 47, 375 (1962).Google Scholar
  70. Gottschalk, C. W., Leyssac, P. P.: Proximal tubular function in rats with low inulin clearance. Acta physiol. scand. 74, 453 (1968).PubMedGoogle Scholar
  71. Gottschalk, C. W., Mylle, M.: Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and venous pressures. Amer. J. Physiol. 185, 430 (1956).PubMedGoogle Scholar
  72. Gregg, D. E.: Hemodynamic factors in shock. In: Shock-Pathogenesis and Therapy. BerlinGottingen- Heidelberg: Springer 1962.Google Scholar
  73. Gross, F., Schaechtelin, G., Brunner, H., Peters, G.: The role of the renin-angiotensin system in blood pressure regulation and kidney function. Canad. med. Ass. J. 90, 258 (1963).Google Scholar
  74. Grupp, G., Heimpel, H.: Zum Problem der,reaktiven Hyperamie" der Niere. Pflügers Arch. ges. Physiol. 267, 426 (1958).Google Scholar
  75. Grupp, G., Heimpel, H., Hierholzer, K.: Vber die Autoregulation der Nierendurchblutung. Pflügers Arch. ges. Physiol. 269, 149 (1959).Google Scholar
  76. Guyton, A. C., Langstone, J. B., Navar, G.: Theory for renal autoregulation by feedback of the juxtaglomerular apparatus. Circulat. Res. 14/15, Suppl. I, 187 (1964).Google Scholar
  77. Haddy, F. J., Scott, J. B.: Role of transmural pressure in local regulation of blood flow through kidney. Amer. J. Physiol. 208, 825 (1965).PubMedGoogle Scholar
  78. Haining, J. L., Turner, M.D.: Tissue blood flow in rat kidneys by hydrogen desaturation. J. appl. Physiol. 21, 1705 (1966).PubMedGoogle Scholar
  79. Handbuch J. L.: der experimentellen Pharmakologie, Bd. XXIV, Diuretica (Hrsg. H. HERKEN ). Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  80. Hanssen, O. E.: The relationship between glomerular filtration and length of proximal convoluted tubules in mice. Acta path. microbiol. scand. 53, 265 (1961).PubMedGoogle Scholar
  81. Harsing, L., Pessey, K.: Die Bestimmung der Nierenmarkdurchblutung auf Grund der Ablagerung und Verteilung von 86Rb. Pflügers Arch. ges. Physiol. 285, 302 (1965).Google Scholar
  82. Hartroft, P.M.: Juxtaglomerular cells. Circulat. Res. 12, 525 (1963).Google Scholar
  83. Hatt, P. Y.: L’appareil juxtaglomerulaire. Presse Med. 74, 2269 (1966).PubMedGoogle Scholar
  84. Heidenreich, O., Keller, P., Kook, Y.: Die Wirkungen von Bradykinin und Kallidin auf die Nierenfunktion des Hundes. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 247, 243 (1964).Google Scholar
  85. Hierholzer, K., Wiederholt, M., Holzgreve, H., Giebisch, G., Klose, R. M., Windhager, E. E.: Micropuncture study of renal transtubular concentration gradients of sodium and potassium in adrenalectomized rats. Pflügers Arch. ges. Physiol. 285, 193 (1965).Google Scholar
  86. Horster, M., Schnermann, J., Thurau, K.: Die Funktion der juxtamedullaren Nephrone in Wasserdiurese und ADH-induzierter Antidiurese. 4. Symp. Ges. Nephrol., Wien 1968. Verlag der Wiener Med. Akademie 1969.Google Scholar
  87. Horster, M., Thurau, K.: Micropuncture studies on the filtration rate of single superficial and juxtamedullary glomeruli in the rat kidney. Pflügers Arch. ges. Physiol. 301, 162 (1968).Google Scholar
  88. Houck, C. R.: Alteration of renal hemodynamics and function in separate kidneys during stimulation of the renal artery nerves in dogs. Amer. J. Physiol. 167, 523 (1951).PubMedGoogle Scholar
  89. Kelman, R. B., Marsh, D. J., Howard, H. C.: Nonmonotonicity of solutions of linear differential equations occurring in the theory of urine formation. SIAM Review 8, 463 (1966).Google Scholar
  90. Kiil, F., Aukland, K.: Renal concentration mechanism and hemodynamics at increased ureteral pressure during osmotic and saline diuresis. Scand. J. clin. Lab. Invest. 13, 276 (1961).PubMedGoogle Scholar
  91. Kiil, F., Aukland, K., Refsum, H. E.: Renal sodium transport and oxygen consumption. Amer. J. Physiol. 201, 511 (1961).PubMedGoogle Scholar
  92. Koch, K. M., Aynedjian, H. S., Bank, N.: Effect of acute hypertension on sodium reabsorption by the proximal tubule. J. clin. Invest. 47, 1696 (1968).PubMedGoogle Scholar
  93. Korner, P. I.: Renal blood flow, glomerular filtration rate, renal PAH extraction ratio, and the role of the renal vasomotor nerves in the unanesthetized rabbit. Circulat. Res. 12, 353 (1963a).PubMedGoogle Scholar
  94. Korner, P.I.: Effects of low oxygen and of carbon monoxide on the renal circulation in unanesthetized rabbits. Circulat. Res. 12, 361 (1963b).PubMedGoogle Scholar
  95. Kramer, K.: Zur Vasomotorik des intrarenalen Kreislaufs. Marburger Sitzungsberichte 75, 26 (1952).Google Scholar
  96. Kramer, K.: Die Stellung der Niere im Gesamtkreislauf. Verh. dtsch. Ges. inn. Med. 65, 225 (1959).PubMedGoogle Scholar
  97. Kramer, K.: Das akute Nierenversagen im Schock. In: Schock, Pathogenese und Therapie. Berlin Gottingen-Heidelberg: Springer 1962.Google Scholar
  98. Kramer, K., Deetjen, P.: Beziehungen des 0 2-Verbrauchs der Niere zu Durchblutung und Glomerulumfiltrat bei Anderung des arteriellen Druckes. Pflügers Arch. ges. Physiol. 271, 782 (1960).Google Scholar
  99. Kramer, K., Deetjen, P., Neil, E.: Symposion on oxygen, p. 425. London: Pergamon Press 1963.Google Scholar
  100. Kramer, K., Thurau, K., Deetjen, P.: Hämodynamik des Nierenmarks. I. Mitteilung: Capilläre Passagezeit, Durchblutung, Gewebshämatokrit und 0 2-Verbrauch des Nierenmarks, in situ. Pflügers Arch. ges. Physiol. 270, 251 (1960).Google Scholar
  101. Kramer, K., Winton, F. R.: The influence of urea and of change in arterial pressure on the 0 2 consumption of the isolated kidney of the dog. J. Physiol. (Lond.) 96, 87 (1939).Google Scholar
  102. Kriz, W.: Der architektonische und funktionelle Aufbau der Rattenniere. Z. Zellforsch. 82, 495 (1967).PubMedGoogle Scholar
  103. Kramer, K., Dieterioh, H. J.: The supplying and draining vessels of the renal medulla in mammals. Proc. IV Intern. Congr. Nephrol., Stockholm 1969, vol. 1, p. 138. Basel-München-New York: Karger 1970.Google Scholar
  104. Kubicek, W. G., Kottke, F. J., Laker, D. J., Visscher, M. B.: Renal function during arterial hypertension produced by chronic splanchnic nerve stimulation in the dog. Amer. J. Physiol. 174, 397 (1953).Google Scholar
  105. Kugelgen, A. V., Braunger, B.: Quantitative Untersuchungen über Kapillaren und Tubuli der Hundeniere. Z. Zellforsch. 57, 766 (1962).Google Scholar
  106. Kuhn, W., Ramel, A.: Aktiver Salztransport als moglicher (und wahrscheinlicher) Einzeleffekt bei der Harnkonzentrierung in der Niere. Helv. chim. Acta 42, 628 (1959).Google Scholar
  107. Lassen, N. A., Longley, J. B., Lilienfield, L. S.: Concentration of albumin in renal papilla. Science 128, 720 (1958).PubMedGoogle Scholar
  108. Lassen, N. A., Munck, O., Thaysen, J. H.: Oxygen consumption and sodium reabsorption in the kidney. Acta physiol. scand. 51, 371 (1961).PubMedGoogle Scholar
  109. Lever, A. F.: The vasa recta and countercurrent multiplication. Acta med. scand. 178, Suppl. 434, 1 (1965).Google Scholar
  110. Lassen, N. A., Peart, W. S.: Renin and angiotensin-like activity in renal lymph. J. Physiol. (Lond.) 160, 548 (1962).Google Scholar
  111. Liebau, G., Levine, D. Z., Thurau, K.: Micro puncture studies on the dog kidney. I. The response of the proximal tubule to changes in systemic blood pressure within and below the autoregulatory range. Pflügers Arch. 304, 57 (1968).PubMedGoogle Scholar
  112. Lilienfield, L. S., Maganzini, H. C., Bauer, M. H.: Blood flow in the renal medulla. Circulat. Res. 9, 614 (1961).PubMedGoogle Scholar
  113. Lilienfield, L. S., Rose, J. C.: Effect of blood pressure alterations on intrarenal red cell-plasma separation. J. clin. Invest. 37, 1106 (1958).PubMedGoogle Scholar
  114. Ljungqvist, A.: Structure of the arteriolo-glomerular units in different zones of the kidney. Micro-angiographic and histologic evidence of an extraglomerular medullary circulation. Nephron 1, 329 (1964).PubMedGoogle Scholar
  115. Lochner, W., Ochw Adt, B.: Vber die Beziehung zwischen arteriellem Druck, Durchblutung, DurchfluBzeit und Blutfüllung an der isolierten Hundeniere. Pflügers Arch. ges. Physiol. 258, 275 (1954).Google Scholar
  116. Longley, J. B., Banfield, W. G., Brindley, D. C.: Structure of the rete mirabile in the kidney of the rat as seen with the electron microscope. J. biophys. biochem. Cytol. 7, 103 (1960).PubMedGoogle Scholar
  117. Malmo, G., Klose, R. M., Giebisoh, G.: Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Amer. J. Physiol. 211, 529 (1966).Google Scholar
  118. Mehrizi, A., Hamilton, W. F.: Effect of levarterenol on renal blood flow and vascular volume in dogs. Amer. J. Physiol. 197, 1115 (1959).Google Scholar
  119. Meier, M., Brechtelsbauer, H., Kramer, K.: Hämodynamik des Nierenmarks. IV. Mitteilung: Farbstoffverdünnungskurven in verschiedenen Abschnitten des Nierenmarks. Pflügers Arch. ges. Physiol. 279, 294 (1964).Google Scholar
  120. Mertz, D.P.: Renotrope Wirkungen von synthetischem Bradykinin. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 244, 405 (1963).Google Scholar
  121. Micchailowitsch, V.: Wie verhält sich der aufsteigende Schenkel der Henle'schen Schleife zum Corpusculum renis. Dissertation Bern. Unpublished (1918).Google Scholar
  122. Miles, B. W., Venton, M.G., De Wardener, H. E.: Observations on the mechanism of circulatory autoregulation in the perfused dog's kidney. J. Physiol. (Lond.) 123, 143 (1954).Google Scholar
  123. Miles, G. E., Dew Ardener, H. E.: Intrarenal pressure. J. Physiol. (Lond.) 123, 131 (1954).Google Scholar
  124. Mollendorff, W. V.: Handbuch der mikroskopischen Anatomie des Menschen, Bd. 7, I. Berlin: Springer 1930.Google Scholar
  125. Moffat, D. B.: The fine structure of the blood vessels of the renal medulla with particular reference to the control of the medullary circulation. J. Ultrastruct. Res. 19, 532 (1967).PubMedGoogle Scholar
  126. Moffat, D. B., Fourman, J.: The vascular pattern of the rat kidney. J. Anat. (Lond.) 97, 543 (1963).Google Scholar
  127. Morel, F. F., Guinnebault, M., Amiel, C.: Mise en evidence d'un processus d'echange d’eaupar contrecourant dans les regions profondes du rein de hamster. Helv. physiol. pharmacol. Acta 18, 183 (1960).Google Scholar
  128. Morgan, T., Berliner, R. W.: A study by continuous microperfusion of water and electrolyte movement in the loop of Henle and distal tubule of the rat. Nephron 6, 388 (1969).PubMedGoogle Scholar
  129. Nahmod, V. E., Lanari, A.: Abolition of autoregulation of renal blood flow by acetylcholine. Amer. J. Physiol. 207, 123 (1964).PubMedGoogle Scholar
  130. Nash, F. D., Selkurt, E. E.: Effects of elevated ureteral pressure on renal blood flow. Circulat. Res. 14/15, Suppl. I, 142 (1964).Google Scholar
  131. Neely, W. A., Turner, M. D.: The effect of arterial, venous and arterio-venous occlusion on renal blood flow. Surg. Gynec. Obstet. 108, 669 (1959).PubMedGoogle Scholar
  132. Ng, K. K. F., Vane, F. R.: Conversion of angiotensin I to angiotensin II. Nature (Lond.) 216, 762 (1967).Google Scholar
  133. Ochwadt, B.: Zur Selbststeuerung des Nierenkreislaufes. Pflügers Arch. ges. Physiol. 262, 207 (1956).Google Scholar
  134. Ochwadt, B.: Durchflullzeiten von Plasma und Erythrocyten, intrarenaler Hamatokrit und Widerstandsregulation der isolierten Niere. Pflügers Arch. ges. Physiol. 265, 122 (1957).Google Scholar
  135. Ochwadt, B.: The measurement of intrarenal blood flow distribution by wash-out technique. Proc. II Congr. Nephrol., p. 62. Amsterdam-New York-London-Milano-Tokyo: Excerpta Medica Found. 1964.Google Scholar
  136. Okino, H., Spencer, M.P.: Analysis of the dynamic pressure flow relationship in renal artery. Fed. Proc. 20, 109 (1961).Google Scholar
  137. Pappenheimer, J. R.: Blood flow, arterial oxygen saturation, and oxygen consumption in the isolated perfused hindlimb of the dog. J. Physiol. (Lond.) 99, 283 (1941).Google Scholar
  138. Ochwadt, B.: Über die Permeabilität der Glomerulummembranen in der Niere. Klin.Wschr. 33, 362 (1955).Google Scholar
  139. Ochwadt, B., Kinter, W. B.: Hematocrit ratio of blood within mammalian kidney and its significance for renal hemodynamics. Amer. J. Physiol. 181, 377 (1956).Google Scholar
  140. Passow, H., Schniewind, H., Weiss, C.: Die Wirkung von 5-Hydroxytryptamin auf das Gefallsystem der isolierten Rattennieren. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 240, 179 (1960).Google Scholar
  141. Perlmutt, J. H.: Reflex antidiuresis after occlusion of common carotid arteries in hydrated dogs. Amer. J. Physiol. 204, 197 (1963).PubMedGoogle Scholar
  142. Peter, K.: Untersuchungen über Bau und Entwicklung der Niere. Jena 1909 und 1927.Google Scholar
  143. Phillips, R. A., Hamilton, P. B.: Effect of 20, 60 and 120 minutes of renal ischemia on glomerular and tubular function. Amer. J. Physiol. 152, 523 (1948).Google Scholar
  144. Pinter, G. G., O'morchoe, C. C. C., Sikand, R. S.: Effect of acetylcholine on urinary electrolyte excretion. Amer. J. Physiol. 207, 979 (1964).Google Scholar
  145. Placke, R. K., Pfeiffer, E. W.: Blood vessels of the mammalian renal medulla. Science 146, 1683 (1964).Google Scholar
  146. Rein, H.: Vasomotorische Regulationen. Ergebn. Physiol. 32, 28 (1931).Google Scholar
  147. Reubi, F. C., Gossweiler, N., Giffitler, R.: Renal circulation in man studied by means of a dye-dilution method. Circulation 33, 426 (1966).Google Scholar
  148. Riedel, B., Bucher, O.: Die Ultrastruktur des juxtaglomerularen Apparates des Meerschweinchens. Z. Zellforsch. 79, 244 (1967).PubMedGoogle Scholar
  149. Ritter, E. R.: Pressure flow relations in the kidney. Alleged effects of pulse pressure. Amer. J. Physiol. 168, 480 (1952).PubMedGoogle Scholar
  150. Rollhxauser, H., Iunz, W., Heinke, W.: Das GefäBsystem der Rattenniere. Z. Zellforsch. 64, 381 (1964).Google Scholar
  151. Roof, B. S., Lauson, H. D., Bella, S. T., Eder, H. A.: Recovering of glomerular and tubular function, including P AH-extraction, following two hours of renal artery occlusion in the dog. Amer. J. Physiol. 166, 666 (1951).PubMedGoogle Scholar
  152. Sarre, H., Ansorge, H.: Über die reaktive Hyperamie der Niere. Pflügers Arch. ges. Physiol. 242, 79 (1939).Google Scholar
  153. Schirmeister, J., Schmidt, L., Soling, H. D.: Über die Autoregulation des Glomerulumfiltrates bei intratubularem Druckanstieg am Hund. Klin. Wschr. 40, 884 (1962).Google Scholar
  154. Schloss, G.: Der Regulationsapparat am Gefallpol des Nierenkürperchens in der normalen menschlichen Niere. Acta anat. (Basel) 1, 365 (1945/46).Google Scholar
  155. Schmid-Schonbein, H., Wells, R. E., Goldstone, J.: Influence of deformability of human red cells upon blood viscosity. Circulat. Res. 29, 131 (1969).Google Scholar
  156. Schnermann, J., Horster, M., Levine, D. Z.: The influence of sampling technique on the micropuncture determination of GFR and reabsorptive characteristics of single rat proximal tubules. Pflügers Arch. 309, 48 (1969).Google Scholar
  157. Schnermann, J., Nagel, W., Thurau, K.: Die frühdistale Natriumkonzentration in Rattennieren nach renaler Ischamie und hamorrhagischer Hypotension. Pflügers Arch. ges. Physiol. 287, 296 (1966).Google Scholar
  158. Schnermann, J., Wright, F. S., Davis, J. M., Stackelberg, W. V., Grill, G.: Regulation of superficial nephron filtration rate by tubulo-glomerular feedback. Pflügers Arch. 318, 147 (1970).PubMedGoogle Scholar
  159. Schroder, R.: Die Beeinflussung der Angiotensinwirkung auf die renale Elektrolyt- und Wasserausscheidung durch Aldosteronvorbehandlung. Klin. Wschr. 41, 620 (1963).PubMedGoogle Scholar
  160. Selkubt, E. E.: Renal blood flow and renal clearance during hemorrhagic shock. Amer. J. Physiol. 149, 699 (1946).Google Scholar
  161. Selkubt, E. E.: Effect of pulse pressure and mean arterial pressure modification on renal hemodynamics and electrolyte and water excretion. Circulation 4, 541 (1951).Google Scholar
  162. Selkubt, E. E.: Nierendurchblutung und renale Clearances bei Blutverlust und im hamorrhagischen Schock. In: Schock- Pathogenese und Therapie. Berlin-Güttingen-Heidelberg: Springer 1962.Google Scholar
  163. Selkubt, E. E., Elpers, M. J., Womack, 1., Dailey, W. N.: Effect of ureteral blockade on renal blood flow and urinary concentrating ability. Amer. J. Physiol. 209, 286 (1963).Google Scholar
  164. Selkubt, E. E., Hall, P. W., Spencer, M. P.: Influence of graded arterial pressure decrement on renal clearance of creatinine, p-aminohippurate and sodium. Amer. J. Physiol. 139, 369 (1949).Google Scholar
  165. Selkubt, E. E., Womack, 1., Dailey, W. N.: Mechanism of natriuresis and diuresis during elevated renal arterial pressure. Amer. J. Physiol. 209, 95 (1965).Google Scholar
  166. SEMPLE, S. J. G., WARDENER, H. E. DE: Effect of increased renal venous pressure on circulatory autoregulation of isolated dog kidneys. Circulat. Res. 7, 643 (1959).PubMedGoogle Scholar
  167. Shave, L.: Effect of increased ureteral pressure on renal function. Amer. J. Physiol. 168, 97 (1952).Google Scholar
  168. Shipley, R. E., Study, R. S.: Changes in renal blood flow, extraction of inulin, glomerular filtration rate, tissue pressure and urine flow with acute alterations of renal arterial blood pressure. Amer. J. Physiol. 167, 676 (1951).PubMedGoogle Scholar
  169. Slyke, D. D. Van, Rhoads, C. P., Miller, A., Alving, A. S.: Relationships between urea excretion, renal blood flow, renal oxygen consumption, and diuresis. Amer. J. Physiol. 109, 336 (1934).Google Scholar
  170. Smith, H. W.: The kidney. Structure and function in health and disease. New York: Oxford Univ. Press 1951.Google Scholar
  171. Somlay, L., Thron, H. L., Petran, K., Carl, G.: Die Nierenfunktion wahrend doppelseitiger Carotisabklemmung am wachen Hund. Pflügers Arch. ges. Physiol. 276, 117 (1962).Google Scholar
  172. Spencer, M.P.: The renal vascular response to vasodepressor sympathomimetics. J. Pharmacol. exp. Ther. 116, 237 (1956).PubMedGoogle Scholar
  173. Spencer, M.P., Denison, A. B., Green, H. D.: Direct renal vascular effects of epinephrine and norepinephrine before and after adrenergic blockade. Circulat. Res. 2, 537 (1954).PubMedGoogle Scholar
  174. Sperber, L.: Studies on the mammalian kidney. Zool. Bidrag (Uppsala) 22, 249 (1944).Google Scholar
  175. Spinazzola, A. J., Sherrod, T. R.: The effect of serotonin (5-dehydroxytryptamine) on renal hemodynamics. J. Pharmacol. exp. Ther. 119, 114 (1957).PubMedGoogle Scholar
  176. Stephenson, J. L.: Ability of counterflow systems to concentrate. Nature (Lond.) 206, 1215 (1965).Google Scholar
  177. Strauss, J., Beran, A. V., Brown, C. T., Katurich, N.: Renal oxygenation under normal conditions. Amer. J. Physiol. 215, I482 (1968).Google Scholar
  178. Study, R. S., Shipley, R. E.: Comparison of direct with indirect renal blood flow, extraction of inulin and Diodrast before and during acute renal nerve stimulation. Amer. J. Physiol. 163, 442 (1950).PubMedGoogle Scholar
  179. Swann, H. G.: In: Renal function. Josiah Macy Jr. Foundation, vol. 3. New York 1952.Google Scholar
  180. Swann, H. G.: Some aspects of renal blood flow and tissue pressure. Circulat. Res. 14 /15, I (1964).Google Scholar
  181. Takeucm, J., Kubo, T., Sawada, T., Funaki, E., Sanada, M., Kitagawa, T., Nakada, Y.: Autoregulation of renal circulation. Jap. Heart J. 6, 243 (1965).Google Scholar
  182. Thompson, D. D., Kavaler, F., Lozano, R., Pitts, R. F.: Evaluation of the cell separation hypothesis of autoregulation of renal blood flow and filtration rate. Amer. J. Physiol. 191, 493 (1957).Google Scholar
  183. Thorburn, G. D., Kopald, H. H., Herd, J. A., Hollenberg, M., O'morchoe, C. C. C., Barger, A. C.: Intrarenal distribution of nutrient blood flow determined with krypton 85 in the unanesthetized dog. Circulat. Res. 13, 290 (1963).Google Scholar
  184. Thorn, W., Lieman, F., Wichert, P. V.: Metabolitenkonzentration in der Niere und PARClearance nach akuter Ischamie und in der Erholung nach Ischamie. Pflügers Arch. ges. Physiol. 273, 528 (1963).Google Scholar
  185. Thurau, K.: Renal sodium reabsorption and 0 2 uptake in dogs during hypoxia and hydrochlorothiazide infusion. Proc. Soc. exp. Biol. (N.Y.) 106, 714 (1961).Google Scholar
  186. THURAU, K., In: Kreislaufmessungen, S. 182. München-Grafelfing: Werkverlag Dr. Edmund Banaschewski 1964a.Google Scholar
  187. Thurau, K.: Renal hemodynamics. Amer. J. Med. 36, 698 (1964b).PubMedGoogle Scholar
  188. Thurau, K.: Autoregulation of RBF and GFR including data on tubular and peritubular capillary pressure and vessel wall tension. Circulat. Res. 14/10, Suppl. I, 132 (1964c).Google Scholar
  189. THURAU, K. Fundamentals of renal circulation. Proc. II Intern. Congr. Nephrol., p. 51. AmsterdamNew York-London-Milano-Tokyo: Excerpta Medica Fd. 1964d.Google Scholar
  190. THURAU, K. The nature of autoregulation of renal blood flow. Proc. III Intern. Congr. Nephrology, vol. I, 62 (HANDLER, J. S., ed.). 288 pp. Basel-New York: Hans Huber 1967a.Google Scholar
  191. THURAU, K. Blutkreislauf der Niere. Verh. dtsch. ges. Kreisl.-Forsch. 33, 1 (1967b).Google Scholar
  192. THURAU, K. Haemodynamik des Nierenkreislaufes. In: Handbuch innere Medizin, Bd. VIII, 1. Teil (Hrsg. H. ScHWIEGK). Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  193. THURAU, K. Pathophysiologie des akuten Nierenversagens. Anaesthesiologie und Wiederbelebung, Bd. 49, S. 1. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  194. Thurau, K., Dahlheim, H., Granger, P.: On the local formation of angiotensin at the site of the juxtaglomerular apparatus. Proc. IV. Intern. Congr. Nephrol., Stockholm 1969, vol. 2, p. 24. Basel-München-New York: Karger 1970.Google Scholar
  195. Thurau, K., Deetjen, P.: Die Diurese bei arteriellen Drucksteigerungen. Bedeutung der Hamodynamik des Nierenmarkes für die Harnkonzentrierung. Mit einem theoretischen Beitrag von H. G"UNZLER:,Gegenstromsysteme mit Stoffzufuhr durch die Au.Benwande." Pflügers Arch. ges. Physiol. 274, 567 (1962).Google Scholar
  196. Thurau, K., Deetjen, P., Kramer, K.: Farbkonzentrationskurven, Erythrocytenpassage, kapillare 0 2-Sattigung im Nierenmark. Pflügers Arch. ges. Physiol. 270, 50 (1959a).Google Scholar
  197. Thurau, K., Deetjen, P., Kramer, K.: Hamodynamik des Nierenmarks. II. Mitteilung: Wechselbeziehung zwischen vascularem und tubularem Gegenstromsystem bei arteriellen Drucksteigerungen, Wasserdiurese und osmotischer Diurese. Pflügers Arch. ges. Physiol. 270, 270 (1960a).Google Scholar
  198. Thurau, K., Henne, G.: Die transmurale Druckdifferenz der Widerstandsgefa.Be als Parameter der Widerstandsregulation in der Niere. Pflügers Arch. ges. Physiol. 279, 156 (1964).Google Scholar
  199. Thurau, K., Kramer, K.: Weitere Untersuchungen zur myogenen Natur der Autoregulation des Nierenkreislaufes. Pflügers Arch. ges. Physiol. 269, 77 (1959).Google Scholar
  200. Thurau, K., Kramer, K., Brechtelsbauer, H.: Die Reaktionsweise der glatten Muskulatur der NierengefäBeauf Dehnungsreize und ihre Bedeutung für die Autoregulation des Nierenkreislaufes. Pflügers Arch. ges. Physiol. 268, 188 (1959b).Google Scholar
  201. Thurau, K., Schnermann, J.: Die Natriumkonzentration an den Macula densa-Zellen als regulierender Faktor für das Glomerulmnfiltrat. Klin. Wschr. 43, 410 (1965).PubMedGoogle Scholar
  202. Thurau, K., Sugiura, T., Lilienfield, L. S.: Micropuncture of renal vasa recta in hydropanic hamsters. Clin. Res. 8, 383 (1960b).Google Scholar
  203. Thurau, K., Wober, E.: Zur Lokalisation der autoregulativen Widerstandsünderungen in der Niere. Pflügers Arch. ges. Physiol. 274, 553 (1962).Google Scholar
  204. Tobian, L.: Interrelationship of electrolytes, juxtaglomerular cells and hypertension. Physiol. Rev. 40, 280 (1960).PubMedGoogle Scholar
  205. THURAU, K., Renin release and its role in renal function and control of salt balance and arterial pressure. Fed. Proc. 26, 48 (1967).Google Scholar
  206. Trueta, J., Barclay, A. E., Daniel, P.M., Franklin, J., Prichard, M. M. C.: Studies of the renal circulation. Oxford: Blackwell Sci. Publ. 1948.Google Scholar
  207. Tu, W. H.: Plasma renin activity in acute tubular necrosis and other renal diseases associated with hypertension. Circulation 20, 189 (1962).Google Scholar
  208. Ulfendahl, H. R.: Intrarenal oxygen tension. Acta Soc. Med. upsalien. 67, 95 (1962a).Google Scholar
  209. Ulfendahl, H. R.: Distribution of red cells and plasma in rabbit and cat kidneys. Acta physiol. scand. 52, 1 (1962b).Google Scholar
  210. Ullrich, K. J., Pehling, G., Espinar-Lafuente, M.: Wasser- und ElektrolytfluB im vasculüren Gegenstromsystem des Nierenmarks. Mit einem theoretischen Beitrag von R. SCHLOGL:,Salztransport durch ungeladene Porenmembranen." Pflügers Arch. ges. Physiol. 273, 562 (1961).Google Scholar
  211. Vander, A. J.: Effects of acetylcholine, atropine and physostigmine on renal function in the dog. Amer. J. Physiol. 206, 492 (1964).PubMedGoogle Scholar
  212. Vander, A. J.: Control of renin release. Physiol. Rev. 47, 359 (1967).PubMedGoogle Scholar
  213. Waugh, W. H.: Circulatory autoregulation in the fully isolated kidney and in the humorally supported, isolated kidney. Circulat. Res. 14/10, Suppl. I, 156 (1964).Google Scholar
  214. Waugh, W. H., Shanks, R. G.: Cause of genuine autoregulation of the renal circulation. Circulat. Res. 8, 871 (1960).PubMedGoogle Scholar
  215. Werko, L., Bucht, H., Josephson, B., Ek, J.: The effect of nor-adrenaline and adrenaline on renal hemodynamics and renal function in man. Scand. J. clin. Lab. Invest. 3, 255 (1951).PubMedGoogle Scholar
  216. Wilde, W. S., Thurau, K., Schnermann, J., Prchal, K.: Counter current multiplier for albumin in renal papilla. Pflügers Arch. ges. Physiol. 278, 43 (1963).Google Scholar
  217. Wilde, W. S., Vorburger, C.: Albumin multiplier in kidney vasa recta analyzed by microspectrophotometry of T-1824. Amer. J. Physiol. 213, 1233 (1967).PubMedGoogle Scholar
  218. Winton, F. R.: Hydrostatic pressures affecting the flow of the urine and blood in the kidney. Harvey Lect. 67 (1951/52).Google Scholar
  219. Wirz, H.: Druckmessung in Kapillaren und Tubuli der Niere durch Mikropunktion. Helv. physiol. pharmacal. Acta 13, 42 (1952).Google Scholar
  220. Wirz, H.: Der EinfluB des antidiuretischen Hormones auf den intratubulüren Druck der Rattenniere. Helv. physiol. pharmacal. Acta 13, 042 (1955).Google Scholar
  221. Wolgast, M.: Studies on the regional renal blood flow with P32-labelled red cells and small beta-sensitive semiconductor detectors. Acta physiol. scand., Suppl. 313 (1968).Google Scholar
  222. Wunderlich, P., Schnermann, J.: Fortlaufende Registrierung des hydrostatischen Drucks in Nierentubuli und Blutkapillaren. Pflügers Arch. 312, R 95 (1969).Google Scholar
  223. Young, D., Wissig, S. L.: A histologic description of certain epithelial and vascular structures in the kidney of the normal rat. Amer. J. Anat. 110, 43 (1964).Google Scholar
  224. Zerahn, K.: Oxygen consumption and active sodium transport in the isolated and short circuited frog skin. Acta physiol. scand. 36, 300 (1956).PubMedGoogle Scholar
  225. Zimmermann, B. G., Abboud, F. M., Eckstein, J. W.: Effects of norepinephrine and angiotensin on total and venous resistance in the kidney. Amer. J. Physiol. 206, 701 (1964).Google Scholar
  226. Zimmermann, K. W.: Über den Bau des Glomerulus der Süugerniere. Z. mikr.-anat. Forsch. 32, 176 (1933).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1971

Authors and Affiliations

  • K. Thurau

There are no affiliations available

Personalised recommendations