Advertisement

Organisation und Funktion der terminalen Strombahn

  • G. Hauck

Zusammenfassung

Die Bedeutung der terminalen Strombahn resultiert aus ihrer besonderen Situation im Gesamtgefüge der phylogenetisch notwendig gewordenen konvektiven Transportsysteme im tierischen Organismus. Sie beruht auf der Erfüllung einer biologischen Schrankenfunktion zwischen den angrenzenden Flüssigkeits-Compartments Blut und Gewebe und gründet sich in erster Unie auf die Ermöglichung des Stoffaustausches, ferner aber auch auf die Erhaltung der Zellkontinenz der Gefäβwand, insbesondere für Erythrocyten. Capillarpermeabilität und Capillarresistenz charakterisieren diese heiden Grundfunktionen der terminalen Strombahn.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abramson, D. T.: Blood vessels and lymphatics. New York-London: Academic Press 1962.Google Scholar
  2. Algire, G. H.: An adaption of the transparent chamber technique to the mouse. J. nat. Cancer Inst. 4, 1 (1943).Google Scholar
  3. Arendt, J., Shulman, M. H., Fulton, G. P., Lutz, B. R.: Post-irradiation petechiae and the mechanism of formation with snake venom. Anat. Rec. 117, 595 (1953).Google Scholar
  4. Asano, M., Yoshida, K., Tat Ai, K.: Blood flow rate in the microcirculation as measured by photoelectric microscopy. Bull. Inst. publ. Hlth (Tokyo) 13, 201 (1964).Google Scholar
  5. Baez, S., Lamport, H., Baez, A.: Pressure effects in living microscopic vessels. In: Flow properties of blood, p. 122 (eds. A. L. CoPLEY and G. STEINSBY). Oxford: Pergamon Press 1960.Google Scholar
  6. Baltzer, A., WÜThrich, H., Schmutziger, P., Wrlbrandt, P. W.: Über eine Registriermethode zum Studium der Capillarpermeabilitat. Helv. physiol. pharmacol. Acta 15, 450 (1957).Google Scholar
  7. Bargmann, W.: Über die Struktur der Blutkapillaren. Dtsch. med. Wschr. 83, 1704 (1958).Google Scholar
  8. Bartelheimer, H.: Die fraktionierte Gewebesaftuntersuchung extrazellulärer Stoffwechselabläufe. In: Kapillaren und Interstitium (Hrsg. H. BARTELHEIMER und H. KUCHMEISTER. Stuttgart: Thieme 1955.Google Scholar
  9. Bartelheimer, H., Kuchmeister, H.: Kapillaren und Interstitium. Stuttgart: Thieme 1955.Google Scholar
  10. Bennett, St.: The concepts of membran flow and membran vesiculation as mechanisms for active transport and ion pumping. J. biophys. biochem. Cytol. 2, 99 (1956).PubMedGoogle Scholar
  11. Bennhold, H.: Blutkreislauf und Transportvorgange im menschlichen Körper. Klin. Wschr. 41, 109 (1963).PubMedGoogle Scholar
  12. Bloch, E. H.:The in vivo microscopic vascular anatomy and physiology of the liver as determined with the quartz rod method of transillumination. Angiology 6, 340 (1955).PubMedGoogle Scholar
  13. Bloch, E. H.: Microscopic observations of the circulating blood in the bulbar conjunctiva in an in health and disease. Ergebn. Anat. Entwickl.-Gesch. 35, 1 (1956).Google Scholar
  14. Bloch, E. H.: A quantitative study of the hemodynamics in the living microvascular system. Amer. J. Anat. 110, 125 (1962).PubMedGoogle Scholar
  15. Bloch, E. H.: A method for studying the dynamics of transcapillary transfer quantitatively of the microscopic level in situ in living organs. Angiology 14, 97 (1963).Google Scholar
  16. Bloch, E. H., Coyas, S. I.: The transit of large molecules and particulate matter across individual endothelial cells analyzed in living animal with television microphotometry. Angiology 15, 353 (1964).PubMedGoogle Scholar
  17. Braasch, D., Hennig, W.: Erythrocytenflexibilitat und Strömung. Widerstand in Capillaren mit einem Durchmesser unter 20 µ. Pflügers Arch. ges. Physiol. 287, 76 (1965).Google Scholar
  18. Braasch, D., Hennig, W.: JENETT, W.: Erythrozytenflexibilität, Hamokonzentration und Reibungswiderstand in Glaskapillaren mit Durchmessern zwischen 6 his 50 µ. Pflügers Arch. 202, 245 (1968).Google Scholar
  19. BrÅNemark, P. I.: Vital microscopy of bone marrow in rabbit. Scand. J. clin. Lab. Invest. 11, Suppl. Nr. 38 (1958/59).Google Scholar
  20. BrÅNemark, P. I.: Consideration on new fields and new methods of vital microscopy. Bibl. anat. 1, 38 (1961).Google Scholar
  21. BrÅNemark, P. I.: Intercapillary behaviour of the blood. Bibl. anat. 4, 491 (1964).Google Scholar
  22. BrÅNemark, P. I., Aspegren, K., Breine, U.: Microcirculatory studies in man by high resolution vital microscopy. Angiology 15, 329 (1964).Google Scholar
  23. BrÅNemark, P. I., Jonsson, J.: Determination of the velocity of corpuscles in blood capillaries. Biorheology 1, 143 (1963).Google Scholar
  24. Bugliarello, G., Hayden, J. W.: High speed microcinematographic studies of blood flow in vitro. Science 138, 981 (1962).PubMedGoogle Scholar
  25. Burton, A. C.: On the physical equilibrium of small blood vessels. Amer. J. Physiol. 164, 319 (1951).PubMedGoogle Scholar
  26. Burton, A. C.: Role of geometry of size and shape in the microcirculation. Fed. Proc. 25, 1753 (1966).PubMedGoogle Scholar
  27. Canham, P. B., Burton, A. C.: Distribution of size and shape in population of normal human red cells. Circulat. Res. 22, 405 (1968).PubMedGoogle Scholar
  28. Casley-Smith, J. R.: The functioning of endothelial fenestrae on the arterial and venous limbs of capillaries, as indicated by the differing directions of passage of proteins. Experientia 26, 852 (1970).Google Scholar
  29. Casson, H.: A flow equation for pigment-oil suspensions of the printing ink type. In: Rheology of disperse systems (ed. C. E. MILLS ). New York: Pergamon Press 1959.Google Scholar
  30. Castenholz, A.: Vitalmikroskopische Untersuchungen am vorderen Bulbusabschnitt kleiner Nager. Grundlagen der Methode und Beschreibung der apparativen Anordnung. Z. wiss. Mikr. 67, 78 (1966).Google Scholar
  31. Castenholz, A.: Micromymograph and its application in microcirculatory investigations. Advanc. Microcirc. 2, 24 (1969).Google Scholar
  32. Chambers, R., Zweifach, B. W.: Capillary endothelial cement in relation to permeability. J. cell. comp. Physiol. 15, 255 (1940).Google Scholar
  33. Chambers, R., Zweifach, B. W.: Topography and function of the mesenteric capillary circulation. Amer. J. Anat. 75, 173 (1944).Google Scholar
  34. Chambers, R., Zweifach, B. W.: Functional activity of the blood capillary bed, with special reference to visceral tissue. Ann. N.Y. Acad. Sci. 46, 683 (1946).Google Scholar
  35. Chambers, R., Zweifach, B. W.: Intercellular cement and capillary permeability. Physiol. Rev. 27, 436 (1947).PubMedGoogle Scholar
  36. Chinard, F. P., Vosburgh, G. J., Ems, T.: Transcapillary exchange of water and other substances in certain organs of the dog. Amer. J. Physiol. 183, 221 (1955).PubMedGoogle Scholar
  37. Clara, M.: Die arterio-venösen Anastomosen, 2. Aufl. Wien: Springer 1956.Google Scholar
  38. Clark, E. R., Clark, E. L.: Observations on living arterio-venous anastomoses as seen in transparent chambers introduced into the rabbit’s ear. Amer. J. Anat. 54, 229 (1934).Google Scholar
  39. Clark, W. G., Jacobs, E.: Experimental nonthrombopenic vascular purpura. Blood 5, 320 (1950).PubMedGoogle Scholar
  40. Clementi, F., Palade, G. E.: Intestinal capillaries. I. Permeability to peroxydase and ferritin. J. Cell Bioi. 41, 33 (1969).Google Scholar
  41. Cobbold, A., Folkow, B., Kjellmerand, J., Mellander, S.: Nervous and local chemical control of pre-capillary sphincters in skeletal muscle as measured by changes in filtration coefficient. Acta physiol. scand. 57, 180 (1963).PubMedGoogle Scholar
  42. Cohn, E. J.: Chemical, physiological and immunological properties and clinical use of blood derivates. Experentia (Basel) 3, 123 (1947).Google Scholar
  43. Copley, A. L.: Neue Auffassungen über Haemorrhagie, Haemostase und Thrombose. Ärztl. Forsch. 11, I /114 (1957).Google Scholar
  44. Copley, A. L.: Capillary permeability versus fragility and the significance of fibrin as a physiologic cement of the blood vessel wall. Bibl. anat. 4, 3 (1964).Google Scholar
  45. Copley, A. L.: Capillary permeability, capillary incontinence, compaction stasis and basement membran breakdown. Bibl. anat. 7, 148 (1965).PubMedGoogle Scholar
  46. Copley, A. L. GÉLot, B.: Experimental production of vascular pupura in guinea-pigs by guinea pig antifibrin serum of rabbits. Amer. J. Physiol. 187, 593 (1956).Google Scholar
  47. Courtice, F. C., Garlick, D. G.: The permeability of the capillary wall to the different plasma lipoproteins of the hypercholesteraemic rabbit in relation to their size. Quart. J. exp. Physiol. 47, 221 (1962).PubMedGoogle Scholar
  48. Crone, C.: The permeability of capillary in various organs as determined by use of the „indication diffusion“method. Acta physiol. scand. 58, 292 (1963).PubMedGoogle Scholar
  49. Danielli, J. F.: Capillary permeability and oedema in the perfused frog. J. Physiol. (Lond.) 98, 109 (1940).Google Scholar
  50. Danielli, J. F., Stock, A.: The structure and permeability of blood capillaries. Bioi. Rev. 19, 81 (1944).Google Scholar
  51. Diemer, K.: Über die Sauerstoffdiffusion im Gehirn. Pfliigers Arch. ges. Physiol. 285, 99 (1965).Google Scholar
  52. Ditzel, J., Clair R. W. St.: Clinical method of photographing the smaller blood vessels and the circulating blood in the bulbar conjunctiva of human subjects. Circulation 10, 277 (1954).PubMedGoogle Scholar
  53. Dollery, C. T., Hodge, J. V., Engel, M.: Studies of the retinal circulation with fluorescein. Brit. med. J. 1962II, 1210.Google Scholar
  54. Drinker, C. K., Field, M. E.: Lymphatics, lymph and tissue fluid. Baltimore: Williams and Wilkins 1933.Google Scholar
  55. Ehring, F.: Über Mikroblutungen am Nagelwall. Habil.-Schrift, Münster 1956.Google Scholar
  56. Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Physik 17, 549 (1909).Google Scholar
  57. Ellinger, P., Hirt, A.: Mikroskopische Untersuchungen an lebenden Organen. IV. Mitt. Zur Funktion der Froschniere. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 159, 111 (1931).Google Scholar
  58. Fahraeus, R.: The suspensions-stability of the blood. Physiol. Rev. 9, 241 (1929).Google Scholar
  59. Fahraeus, R.: The resistance to flow of the blood in various parts of the vascular systems. Nord. Med. 4, 115 (1932).Google Scholar
  60. Fahraeus, R.: The influence of the rouleau formation of the erythrocytes on the rheology of the blood. Acta med. scand. 101, 151 (1958).Google Scholar
  61. Fahraeus, R.., Lindqvist, T.: The viscosity of the blood in narrow capillary tubes. Amer. J. physiol. 96, 562 (1931).Google Scholar
  62. Folkow, B., Fuxe, K., Sonnenschein, R.: Competition between vasoconstrictor fibres and vasodilator melabolites in exercising skeletal muscle-a comparison between diving and non-diving animals. In: Circulation in skeletal muscle. (ed. 0. HUDLICKA). LondonNew York-Paris: Pergamon Press 1968.Google Scholar
  63. Folkow, B., Fuxe, K., Sonnenschein, R., Hymans, C., Neil, E.: Integrated aspects of cardiovascular regulation. In: Handbook Physiologic, sect. 2, Circulation, vol. III, p. 1787. Washington, D.C.: Amer. Physiol. Soc. 1965.Google Scholar
  64. Lundgren, O., Wallentin, J.: Studies on the relationship between flow resistance, capillary filtration coefficient and regional blood volume in the intestine of the cat. Acta physiol. scand. 57, 270 (1963).PubMedGoogle Scholar
  65. Forbes, H. S.: Study of blood vessels on cortex of living mammalian brain-description of technique. Anat. Rec. 120, 309 (1954).PubMedGoogle Scholar
  66. Fulton, G. P., Lutz, B. R.: The neuro-motor mechanisms of the small blood vessels of the frog. Science 92, 223 (1940).PubMedGoogle Scholar
  67. Fung, Y. C., Zweifach, B. W., Intaglietta, M.: Elastic environment of the capillary bed. Circulat. Res. 19, 441 (1966).PubMedGoogle Scholar
  68. Gaethgens, P. A. L.: Pulsatile pressure and flow in the mesenteric vascular bed of the cat. Pflügers Arch. 316, 140 (1970).Google Scholar
  69. Gauer, 0. H.: Kreislauf des Blutes. In: Landois-Rosemann, Lehrbuch der Physiologie des Menschen, 28. Aufl, S. 64. München-Berlin: Urban and Schwarzenberg 1960.Google Scholar
  70. Gelin, L. E.: A method for studies of aggregation of blood cells, erythrostasis and plasma skimming in branching capillary tubes. Biorheology 1, 119 (1963).Google Scholar
  71. GemÄHlich, M.: Beitrag zur Technik der intravitalen Auflichtmikroskopie. Z. wiss. Mikr. 64, 1 (1958).Google Scholar
  72. Gersh, I., Catchpole, H. R.: The organization of ground substance and basement membrane and its significance in tissue injury disease and growth. Amer. J. Anat. 81, 457 (1949).Google Scholar
  73. Gierer, A., Wirtz, K.: Molekulare Theorie der Mikroreibung. Z. Naturforsch. Sa, 532 (1953).Google Scholar
  74. Goldsmith, H. L., Mason, S. G.: Some model experiments in haemodynamics. Bibl. anat. 4, 462 (1964).Google Scholar
  75. Goldsmith, H. L., Mason, S. G.: Model particles and red cells in flowing concentrated suspensions. Bibl. anat. 10, 1 (1969).PubMedGoogle Scholar
  76. Golenhofen, K.: Die Wirkung von Adrenalin auf die menschlichen Muskelgefäße. 25. Tagung der Dtsch. Ges. f. Kreisl.-Forsch., S. 96 (1959).Google Scholar
  77. Golenhofen, K.: Physiologische Bemerkungen zum peripheren Blutkreislauf unter besonderer Berücksichtigung der menschlichen Muskeldurchblutung. Hippokrates (Stuttg.) 37, 3 (1966).Google Scholar
  78. Golenhofen, K.: Physiologic der Kurzschlußdurchblutung. In: Die arterio-venösen Anastomosen (Anatomic, Physiologie, Pathologie, Klinik) (Hrsg. F. HAMMERSEN und D. GROSS ). BernStuttgart: Huber 1968.Google Scholar
  79. Golenhofen, K.., Hildebrandt, G.: Das Verfahren der Warmeleitmessung und seine Bedeutung für die Physiologic des menschlichen Muskelkreislaufes. Arch. Kreisl.-Forsch. 38, 23 (1962).Google Scholar
  80. Golenhofen, K.: Normale Funktion des Muskelkreislaufes beim Menschen. In: Probleme der Haut- und Muskeldurchblutung (Bad Oeynhausener Gesprache 1962) (Hrsg. L. DELIUS und E. WITZLEB ). Berlin-Güttingen-Heidelberg: Springer 1964.Google Scholar
  81. Gottschalk, C. W.: Hydrostatic pressures in individual tubules and capillaries of the rat kidney. III. Conference on microcirculatory physiology and pathology 1956. Physiol. Soc. 1958.Google Scholar
  82. Grafflin, A. L., Bagley, E. H.: Glomerular activity in the frog’s kidney. Bull. Johns Hopk. Hosp. 91, 306 (1952).Google Scholar
  83. Green, J.D., Harris, G. W.: Observation of the hypophysio-portal vessels of the living rat. J. Physiol. (Lond.) 108, 359 (1949).Google Scholar
  84. Gross, R., Illig, L., Macher, E.: Kombinierte Untersuchungen haemorrhagischer Diathesen (Blutgerinnung, Kapillarenfragilitat, Hautbiopsie). Thrombos. Diathes. haemorrh. (Stuttg.) 1, 55 (1957).Google Scholar
  85. Grotte, G.: Passage of dextran molecules across the blood lymph barrier. Acta chir. scand. 211, Suppl. (1956).Google Scholar
  86. Grunewald, W.: Theoretical analysis of the oxygen supply in tissue. In: Oxygentransport in blood and tissue (Eds. D. W. LÜBBERS, U. C. LUFT, G. THEWS U. E. WITZLEB ). Stuttgart: Thieme 1968.Google Scholar
  87. Guyton, A. C.: A concept of negative interstitial pressure based on pressure in implanted perforated capsules. Circulat. Res. 12, 399 (1963).PubMedGoogle Scholar
  88. Guyton, A. C.: Interstitial fluid pressure. IV. Its effect on fluid movement through the capillary wall. Circulat. Res. 19, 1022 (1966).PubMedGoogle Scholar
  89. Hammersen, F.: Das Gefäßmuster der Skeletmuskulatur. In: Probleme der Haut- und Muskeldurchblutung (Bad Oeynhausener Gespräche, 1962) (Eds. L. DELIUS und E. WITZLEB ). Berlin-Göttingen-Heidelberg: Springer 1964.Google Scholar
  90. Hammersen, F.: The pattern of the terminal vascular bed and the ultrastructure of capillaries in skeletal muscle. In: Oxygen transport in blood and tissue, p. 184 (Eds. D. W. LÜBBERS, U. C. LUFT, G. THEWS, E. WITZLEB ). Stuttgart: Thieme 1968.Google Scholar
  91. Harder, H.: Eine Apparatur zur Mikroskopie und Photographic der Gefäße und des zirkulierenden Blutes beim kranken Menschen. Med. Klin. 51, 1181 (1956).Google Scholar
  92. Habders, H.: Vitalmikroskopische Untersuchungen an den sogenannten arteriellen Spinnen der Haut mit der Cantharidenblasenmethode. Verh. dtsch. Ges. inn. Med. 69, 210 (1963).Google Scholar
  93. Habders, H.: Vitalhistologie der Zungenschleimhaut des Menschen. Bibl. anat. 4, 769 (1964).Google Scholar
  94. Habders, H., Bartelheimer, H., KÜChmeister, H.: Endstrombahn. In: Klinische Funktionsdiagnostik (Hrsg. H. BARTELHEIMER und A. JoRES), 3. Aufl. Stuttgart: Thieme 1967.Google Scholar
  95. Hauck, G.: Zur Frage der Existenz eines „gradient of vascular permeability“an der Endstrombahn. Arch. Kreisl.-Forsch. 19, 197 (1969).Google Scholar
  96. Hauck, G., Schroer, H.: Fluoreszenzmikroskopische Lebendbeobachtungen zur Frage einer Abhüngigkeit der Gefäßwandschrankenfunktion vom hamostatischen Gleichgewicht. Thrombos. Diathes. harmorrh. (Stuttg.) 8, 439 (1965).Google Scholar
  97. Hauck, G.: Vitalmikroskopische Untersuchungen zur Lokalisation der Eiweßpermeabilitat an der Endstrombahn von Warmblütern. Pflügers Arch. 312, 32 (1969).PubMedGoogle Scholar
  98. Haynes, R. H., Burton, A. C.: Role of the non-Newtonian behavior of blood in hemodynamics. Amer. J. Physiol. 197, 943 (1959).PubMedGoogle Scholar
  99. Heissig, N.: Functional analysis of the microcirculation in the exocrine pancreas. Advanc. Microcirc. 1, 65 (1968).Google Scholar
  100. Hensel, H.: Fortlaufende Warmeleitfähigkeits- und Durchblutungsmessung im Gewebe mit einer Differential-Calorimetersonde. Ber. ges. Physiol. 162, 360 (1954).Google Scholar
  101. Herrnring, G., KÜChmeister, H., Pirtkien, R.: Eine neue Methode der Capillarphotographie. Klin. Wschr. 30, 897 (1952).PubMedGoogle Scholar
  102. Hess, W. R.: Gehorcht das Blut dem allgemeinen Striimungsgesetz der Flüssigkeiten Pflügers Arch. ges. Physiol. 162, 187 (1915).Google Scholar
  103. Hilton, S. M.: Local mechanisms regulating peripheral blood flow. Physiol. Rev. 42, Suppl. 5, 265 (1962).Google Scholar
  104. Hochberger, A. I., Zweifach, B. W.: Analysis of critical closing pressure in the perfused rabbit ear. Amer. J. Physiol. 214, 962 (1968).PubMedGoogle Scholar
  105. Hyman, C., Rosell, S., Rosen, A., Sonnenschein, R., UvnÄS, B.: Effects of alternation of total muscular blood flow on local tissue clearance of radioiodide in the cat. Acta physiol. scand. 46, 358 (1959).PubMedGoogle Scholar
  106. Illig, L.: Die Kreislaufmikroskopie am Mesenterium und Pankreas des lebenden Kaninchens. Z. ges. exp. Med. 126, 249 (1955).Google Scholar
  107. Illig, L.: Kapillar-,Kontraktilitat“, Kapillar-,Sphinkter“und Zentralkanale“(„A.-V.-Bridges“). Klin. Wschr. 35, 7 (1957).PubMedGoogle Scholar
  108. Illig, L.: Die terminale Strombahn, Pathologie und Klinik in Einzeldarstellungen, Bd. X. BerlinGiittingen- Heidelberg: Springer 1961.Google Scholar
  109. Illig, L., Conraths, H.: Mikroskopische Lebendaufnahmen vom Kapillarbett des Tieres und des Menschen. Heft 2. Ingelheim: Firma C. H. Boehringer 1959.Google Scholar
  110. Intaglietta, M.: Evidence for a gradient of permeability in frog mesenteric capillaries. Bibl. anat. 9, 465 (1967).PubMedGoogle Scholar
  111. Irwin, J. W., Burrage, W. S.: Regulation of microscirculation in the rabbit’s lung. III. Conference on microcirculatory physiology and pathology, 1956, Factor regulating blood flow. Amer. Physiol. Soc. 1958.Google Scholar
  112. Irwin, J. W., Burrage, W. S.: MACDONALD, J.: Microscopic observations of the intrahepatic circulation of living guinea pigs. Anat. Rec. 117, 1 (1953).PubMedGoogle Scholar
  113. Johnson, P. C.: Myogenic nature of increase in intestinal vascular resistance with venous pressure elevation. Circulat. Res. 7, 992 (1959).PubMedGoogle Scholar
  114. Johnson, P. C.: Autoregulation of intestinal blood flow. Amer. J. Physiol. 199, 311 (1960).Google Scholar
  115. Johnson, P. C.: Origin, localization and homeostatic significance of autoregulation in the intestine. Circulat. Res. 15, Suppl. 1 - 225 (1964).Google Scholar
  116. Johnson, P. C.: Measurement of microvascular dimensions in vivo. J. appl. Physiol. 23, 593 (1967).PubMedGoogle Scholar
  117. Johnson, P. C., Wayland, H.: Regulation ob blood flow in single capillaries. Amer. J. Physiol. 212, 1405 (1967).PubMedGoogle Scholar
  118. Karnovsky, M. J.: The ultrastructure basis of capillary permeability studied with peroxidase as a tracer. J. Cell Res. 35, 213 (1967).Google Scholar
  119. Karnovsky, M. J.: The ultrastructure basis of transcapillary exchange. J. gen. Physiol. 52, Suppl. 64 (1968).Google Scholar
  120. Kedem, O., Katchalsky, A.: Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. biophys. Acta (Arnst.) 27, 229 (1958).Google Scholar
  121. Kessler, M.: Normal and critical 0 2-supply of the liver. In: Oxygen transport in blood and tissue (Eds. D. W. LÜBBERS, N.C. LUFT, G. THEWS, E. WITZLEB) Stuttgart: Thieme 1968.Google Scholar
  122. Kety, S. S., Smith, C. F.: The nitrous oxyd method for the quantitative determination of cerebral blood flow in man: theory, prodecure and normal values. J. cn. Invest. 27, 476 (1948).Google Scholar
  123. Kjellmer, I.: The effect of exercise on the vascular bed of skeletal muscle. Acta physiol. scand. 62, 18 (1964).PubMedGoogle Scholar
  124. Kjellmer, I., Oderlam, H.: The effect of some physiological vasodilators on the vascular bed of skeletal muscle. Acta physiol. scand. 63, 94 (1965).PubMedGoogle Scholar
  125. Knisely, M. H.: A method of illuminating living structures for microscopic study. Anat. Rec. 64, 499 (1936a).Google Scholar
  126. Knisely, M. H.: Spleen studies. I. Microscopic observations of the circulatory system of living instimulated mammalian spleens. Anat. Rec. 65, 23 (1936b)Google Scholar
  127. KramÁR, J.: The determination and evaluation of capillary resistance. A review of methotology. Blood 20, 83 (1962).PubMedGoogle Scholar
  128. Krogh, A.: Anatomie und Physiologie der Capillaren (deutsche Übersetzung von EBBECKE), 2. Aufl. Berlin: Springer 1924.Google Scholar
  129. Krogh, A.: The anatomy and physiology of capillaries. New Haven: Yale Univ. Press 1929.Google Scholar
  130. Krug, H., Schlicher, L.: Die Dynamik des venosen Rückstroms. Leipzig: G. Thieme 1960.Google Scholar
  131. KruhØFfer, P.: The significance of diffusion and convection for the distribution of solutes in the interstitial space. Acta physiol. scand. 11, 37 (1946).Google Scholar
  132. KÜChmeister, H.: Kapillarpermeabilitats- und resistenzprüfung in der Diagnostik und therapeutischen Erfolgsbeurteilung innerer Erkrankungen. Arch. Kreisl.-Forsch. 18, 395 (1952).Google Scholar
  133. KÜChmeister, H., Herrnring, G.: Eine neue Apparatur zur Kapillardruckmessung und ihre klinische Anwendung. Verh. dtsch. Ges. Kreisl.-Forsch. 16, 240 (1950).Google Scholar
  134. Landis, E. M.: The capillary pressure in frog mesentery as determined by micro-injection method. Amer. J. Physiol. 75, 549 (1925/26).Google Scholar
  135. Landis, E. M.: Micro-injection studies of capillary permeability. Amer. J. Physiol. 81, 124 (1927 a).Google Scholar
  136. Landis, E. M.: Micro-injection studies of capillary permeability. II. The relation between capillary pressure and the rate of which fluid passes through the wall of single capillaries. Amer. J. Physiol. 83, 528 (1927b).Google Scholar
  137. Landis, E. M.: Capillary pressure and capillary permeability. Physiol. Rev. 14, 404 (1934).Google Scholar
  138. Landis, E. M.: Capillary permeability and the factor affecting the composition of capillary filtrate. Ann. N.Y. Acad. Sci. 46, 713 (1946).Google Scholar
  139. Landis, E. M.: Heteroporosity of the capillary wall as indicated by cinematographic analysis of the passage of dyes. Ann. N.Y. Acad. Sci. 116, 765 (1964).PubMedGoogle Scholar
  140. Landis, E. M., Pappenheimer, J. R.: Exchange of substances through the capillary walls. In: Handbook Physiology, sect. 2, Circulation, vol. II. p. 961. Washington, D.C.: Amer. Physiol. Soc. 1963.Google Scholar
  141. Lasch, H. G., Roka, L.: Über den Bildungsmechanismus der Gerinnungsfaktoren Prothrombin und Faktor VII. Klin. Wschr. 32, 460 (1954).PubMedGoogle Scholar
  142. Laszt, L.: Kinematographische Bestimmung der Blutstromungsgeschwindigkeit in feinsten Gefäßen der Conjunktiva bulbi und Modellversuche zur Bestimmung der Grenzgeschwindigkeit, welche vom Auge noch als Bewegung wahrgenommen werden kann. Helv. physiol. pharmacal. Acta 7, 197 (1949).Google Scholar
  143. Lee, R. E.: Anatomical and physiological aspects of the capillary bed in the bulbar conjunctiva of man in health and disease. Angiology 6, 369 (1955).PubMedGoogle Scholar
  144. Lee, R. E., Holze, E. A.: Peripheral vascular system in bulbar conjunctiva of young normotensive adults at rest. J. clin. Invest. 29, 146 (1950).PubMedGoogle Scholar
  145. Leichtweiss, H.-P., LÜBbers, D. W., Weiss, Ch., BaumgÄRtl, H., Reschke, W.: The oxygen supply of the rat kidney: Measurement of intrarenal p02 • Pflügers Arch. 309, 328 (1969).Google Scholar
  146. Lemmingson, W.: Intravitalmikroskopie der Endstrombahn der Retina und ihre technischen Hilfsmittel. Leitz Mitteilungen Bd. III /2, 39 (1964).Google Scholar
  147. Long, Ch., Greenfield, S., Imamura, T.: The hypodermic microscope: A new instrument permitting visualization of deep circulation in vivo. Angiology 16, 478 (1965).PubMedGoogle Scholar
  148. Lovett Doust, J. W., Salna, M. E.: A stroboscopie method for estimating nailfold capillary blood flow in the skin of man. J. nerv. ment. Dis. 121, 511 (1955).Google Scholar
  149. Ludwig, C.: Lehrbuch der Physiologie des Menschen, 2. Auf!. Leipzig 1861.Google Scholar
  150. LÜBbers, D. W.: The oxygen pressure field of the brain and its significance for the normal and critical oxygen supply of the brain. In: Oxygen transport in blood and tissue. (eds. D. W.Google Scholar
  151. LÜBBERS, U. C. LUFT, G. THEWS, E. WITZLEB). Stuttgart: Thieme 1968.Google Scholar
  152. LÜBbers, D. W., Luft, U. C., Thews, G., Witzleb, E.: Oxygen transport in blood and tissue. Stuttgart: Thieme 1968.Google Scholar
  153. LÜScher, E. F.: Die physiologische Bedeutung der Thrombozyten. Schweiz. med. Wschr. 86, 345 (1956).Google Scholar
  154. Luft, J.: Fine structure of the diaphragma across capillary,pores" in mouse intestine. Anat. Rec. 148, 307 (1964).Google Scholar
  155. Lutz, B. R., Fulton, G. P.: The use of the hamster check pouch for the study of vascular changes at the microscopic level. Anat. Rec. 120, 293 (1954).Google Scholar
  156. Lutz, J.: Hamodynamische Eigenschaften und GefaBreaktionen der intestinalen Strombahn. Arch. Kreisl.-Forsch. 59, 99 (1969).Google Scholar
  157. Maggio, E.: Microhemocirculation. Springfield, III. ( U.S.A. ): Ch. C. Thomas 1965.Google Scholar
  158. Majno, G.: Ultrastructure of the vascular membrane. In: Handbook Physiology, sect. 2, Circulation, vol. III, p. 2293. Washington, D.C.: Amer. Physiol. Soc. 1965.Google Scholar
  159. Majno, G., Gilmore, V., Leventhal, M.: A technique for the microscopic study of blood vessels in living striated muscle (cremaster). Circulat. Res. 21, 823 (1967).PubMedGoogle Scholar
  160. Majno, G., Pallade, G. E., Schoeffl, G. I.: Studies on inflammation. II. The site of action of histamin and serotonin along the vascular tree: a topographic study. J. biophys. biochem. Cytol. 11, 607 (1961).PubMedGoogle Scholar
  161. Majno, G., Shea, St. M., Leventhal, M.: Endothelial contraction induced by histamintype mediators. An electronmicroscopic study. J. Cell Bioi. 41, 647 (1969).Google Scholar
  162. Manegold, E.: Über Kapillarsysteme. Die Durchlassigkeit kana!- und netzartiger Kapillarsysteme fiir Flüssigkeiten und Gase. Kolloid.-Z. 81, 164 (1937).Google Scholar
  163. Marx, R.: Was versteht man unter Hamostaseologie? Münch. med. Wschr. 110, 116 (1968).Google Scholar
  164. Matis, P.: Fibrinolyse und Vasoaktivitat. In: Experimentelle und therapeutische Fibrinolyse (Hrsg. L. ZuKSCHWERDT, H. A. THIES). Stuttgart: Schattauer 1963.Google Scholar
  165. Mayerson, H. S.: The physiologic importance of lymph. In: Handbook Physiology, sect. 2, Circulation, vol. II, p. 1035. Washington, D.C.: Amer. Physiol. Soc. 1963.Google Scholar
  166. Mayerson, H. S., Wolfram, C. G., Shirley, H. H., Jr., Wasserman, K.: Regional differences in capillary permeability. Amer. J. Physiol. 198, 155 (1960).Google Scholar
  167. Mcdonald, D. A.: Hemodynamics. Ann. Rev. Physiol. 30, 525 (1968).Google Scholar
  168. Mcdowall, R. J. S.: The response of the blood vessels of muscle with special reference to their central control. J. Physiol. (Lond.) 111, 1 (1950).Google Scholar
  169. Mcmaster, P. D.: The pressure and interstitial resistance prevailing in the normal and edematous skin of animals and man. J. exp. Med. 84, 473 (1946).Google Scholar
  170. Mcmaster, P. D., Hudack, St.: The vessels involved in hydrostatic transudation. J. exp. Med. 55, 417 (1932).Google Scholar
  171. Mcmaster, P. D., Rous, P.: The relation of hydrostatic pressure to the gradient of capillary permeability. J. exp. Med. 55, 203 (1932).Google Scholar
  172. Mellander, S.: Comparative studies on the adrenergic neurohormonal control of resistance and capacitance blood vessels in the cat. Acta physiol. scand. 50, Suppl. 176 (1960).Google Scholar
  173. Mellander, S., ÖBerg, B., Oderlam, H.: Vascular adjustments to increased transmural pressures in cat and man with special reference to shifts in capillary fluid transfer. Acta physiol. scand. 61, 34 (1964).PubMedGoogle Scholar
  174. Mercker, H., Schoedel, W.: Die Unterdrückung konstriktorischer Effekte im Gefäßgebiet des tätigen Muskels. Pflügers Arch. ges. Physiol. 250, 1 (1948).Google Scholar
  175. Merrill, E. W.: Rheology of blood. Physiol. Rev. 49, 863 (1969).Google Scholar
  176. Merrill, E. W., Gilliland, E. R., Cokelet, C., Skin, H., Briton, A., Wells, R. E., Jr.: Rheology of blood and flow in the microcirculation. J. appl. Physiol. 18, 255 (1963).PubMedGoogle Scholar
  177. Merrill, E. W., Lee, T. S., Salzman, E. W.: Blood rheology: effect of fibrinogen deduced by addition. Circulat. Res. 18, 437 (1966).PubMedGoogle Scholar
  178. Minard, D., Osserman, E. F., Howell, S. R.: The lucite calvarium for direct observation of the brain in monkeys. Anat. Rec. 120, 317 (1954).Google Scholar
  179. Monro, P. A. G.: Progressive deformation of blood cells with increasing velocity of flowing blood. Bibl. anat. 10, 99 (1969).PubMedGoogle Scholar
  180. Monro, P. A. G.: Visual particle velocity measurement: For fast particles and blood cells in vivo and in vitro. Bibl. anat. 4, 34 (1964).Google Scholar
  181. Moore, D. H., Ruska, H.: The fine structure of capillaries and small arteries. J. biophys. biochem. Cytol. 3, 457 (1957).PubMedGoogle Scholar
  182. MÜLler, Hk.: Wechselwirkungen zwischen Hamodynamik und Wandfilm. Bibl. anat. 10, 424 (1969).PubMedGoogle Scholar
  183. Nicoll, P. A., Webb, R. L.: Blood circulation in the subcutaneous of the living bat’s wing. Ann. N.Y. Acad. Sci. 46, 697 (1946).Google Scholar
  184. Niessing, K., Rollhauser, H.: Über den submikroskopischen Bau des Grundhäutchens der Hirnkapillaren. Z. Zellforsch. 39, 431 (1954).PubMedGoogle Scholar
  185. Nordmann, M.: Kreislaufstörungen und pathologische Hist,ologie. Dresden u. Leipzig: Steinkopff 1933.Google Scholar
  186. Nordmann, M., Lenz, E.: Der Flüssigkeitswechsel bei Kreislaufstörungen mit Lumineszenz an der Stromhahn des lebenden Saugetieres beobachtet. Verh. dtsch. path. Ges. 28, 294 (1934).Google Scholar
  187. Novotny, H. R., Denis, D. L.: A method of photographing fluorescence in circulating blood in the human retina. Circulation 24, 82 (1961).PubMedGoogle Scholar
  188. Oyvin, J. P., 0Yvin, V. I., Baluda, V. P.: Permanent fibrin film on the intima of the vessels. Nature (Lond.) 194, 686 (1962).Google Scholar
  189. P Alade, G. E.: Fine structure of blood capillaries. J. appl. Physiol. 24, 1424 (1953).Google Scholar
  190. Pappenheimer, J. R.: Passage of molecules through capillary walls. Physiol. Rev. 33, 387 (1953).PubMedGoogle Scholar
  191. Pappenheimer, J. R.: Über die Permeabilität der Glomerulummembran in der Niere. Klin. Wschr. 33, 362 (1955).PubMedGoogle Scholar
  192. Pappenheimer, J. R., Renkin, E. M., Borrero, L. M.: Filtration, diffusion and moleculare sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Amer. J. Physiol. 167, 13 (1951).PubMedGoogle Scholar
  193. Pappenheimer, J. R., Soto-Rivera, A.: Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hindlimbs of cats and dogs. Amer. J. Physiol. 192, 471 (1948).Google Scholar
  194. Parpat, A. K., Whipple, A. 0., Chang, J. J.: The microcirculation of the spleen of the mouse. Angiology 6, 350 (1955).Google Scholar
  195. Peck, H. M., Hoerr, N. L.: The intermediary circulation in the red pulp of the mouse spleen. Anat. Rec. 109, 447 (1951).PubMedGoogle Scholar
  196. Perlman, H. B., Kimura, R. S.: Physiology of the cochlear blood vessels. Angiology 6, 383 (1955).PubMedGoogle Scholar
  197. Peters, Th.: Apparatur und Technik zur Mikroskopie an lebenden Saugerorganen in situ in gewöhnlichem Licht und Fluoreszenzlicht. Z. wiss. Mikr. 67, 348 (1955).Google Scholar
  198. Pfaff, W., Herold, W.: Versuche am Mesenterium des lebenden Kaninchens. In: Grundlagen einer neuen Therapieforschung der Tuberkulose. Leipzig: Thieme 1937.Google Scholar
  199. Piper, J., Schoedel, W.: Untersuchungen über die Durchblutung der arteriovenosen Anastomosan in der hinteren Extremität des Hundes mit Hilfe von Kugeln verschiedener Größe. Pflügers Arch. ges. Physiol. 298, 489 (1954).Google Scholar
  200. Pollack, W. D., Woon, E. H.: Venous pressure in sapheneous vein at the ankle in man during exercise and changes in posture. J. appl. Physiol. 1, 649 (1949).PubMedGoogle Scholar
  201. Polliwoda, H., Schmidt-Matthiesen, H., Staubesand, J.: Pathogenesis and therapy of increased vascular fragility. Bibl. anat. 7, 235 (1965).Google Scholar
  202. Potho, M., Scheinin, A.: Microscopic observations on living dental pulp. Acta odont. scand. 16, 303 (1958).Google Scholar
  203. Rappaport, M. B., Bloch, E. H., Irwin, J. W.: A manometer for measuring dynamic pressures in the microvascular system. J. appl. Physiol. 14, 651 (1959).Google Scholar
  204. Renkin, E. M.: Capillary permeability to lipid soluble molecules. Amer. Physiol. 168, 538 (1952).Google Scholar
  205. Renkin, E. M.: Capillary and cellular permeability to some compounds related to antipyrine. Amer. J. Physiol. 173, 125 (1953).PubMedGoogle Scholar
  206. Renkin, E. M.: Filtration, diffusion and molecular sieving through porous cellular membranes. J. gen. Physiol. 38, 225 (1954).PubMedGoogle Scholar
  207. Renkin, E. M.: Effects of blood flow on diffusion kinetics in isolated perfused hindlegs of cats. Amer. J. Physiol. 183, 125 (1955).PubMedGoogle Scholar
  208. Renkin, E. M.: Transport of potassium from blood to tissue in isolated mammalian skeletal muscles. Amer. J. Physiol. 197, 1205 (1959).PubMedGoogle Scholar
  209. Renkin, E. M.: Transport of large molecules across capillary walls. Physiologist 7, 13 (1964).Google Scholar
  210. Renkin, E. M.: Blood flow and transcapillary exchange in skeletal muscle. In: Circulation in skeletal muscle, p. 83 (ed. 0. HUDLICKA). London-New York-Paris: Pergamon Press 1968.Google Scholar
  211. Renkin, E. M., Pappenheimer, J. R.: Wasserdurchlässigkeit und Permeabilität der Capillarwände. Ergebn. Physiol. 49, 59 (1956).Google Scholar
  212. Renkin, E. M., Rosell, S.: Effects of different types of vasodilator mechanisms on vascular tonus and on transcapillary exchange of diffusible material in sceletal muscle. Acta physiol. scand. M, 341 (1962).Google Scholar
  213. Ricker, G.: Pathologie als N aturwissenschaft. Berlin: Springer 1924.Google Scholar
  214. Rod Bard, S.: Local regulation of blood flow. Symposium, Duarte (Calif.) 1970, ed.: S. RONBARD. Circulat. Res. 28, Suppl. 1 (1971).Google Scholar
  215. Rous, P., Gilding, H. P., Smith, F.: The gradient of vascular permeability. J. exp. Med. 51, 807 (1930).PubMedGoogle Scholar
  216. Rusznyak, I., Foldi, M., Szabo, G.: Lymphatics and lymph circulation, II. edit. LondonNew York-Paris: Pergamon Press 1967.Google Scholar
  217. Sandison, J. C.: A new method for the study of living growing tissues by the introduction of a transparent chamber into a rabbit's ear. Anat. Rec. 28, 281 (1924).Google Scholar
  218. Sawyer, P. N., Deutsch, B., Pate, J. W.: The relationship of bio-electric phenomena and small electric currents to intravascular thrombosis. In: Proc. 1st Int. Con£. Thrombosis and Embolism. Basel, 1955. p. 415. Basel: Schwabe 1955.Google Scholar
  219. Sawyer, P. N., Srinivasan, S.: Dependence of thrombosis on the electrochemical characteristics of the blood vessels wall, blood cells and prosthetic materials. In: Proc. 5th Europ. Conf. Microscirculation, Gothenburg, 1968, p. 405. Basel-New York: Karger 1969 (Bibl. anat. 10).Google Scholar
  220. Schade, H., Claussen, F.: Der onkotische Druck des Blutplasmas und die Entstehung der renal bedingten Ödeme. Z. klin. Med. 100, 262 (1924).Google Scholar
  221. Schloerbs, P. E., Friis-Hansen, B. J., Edelmann, I. S., Solomon, A. K., Moore, F. D.: The measurement of total body water in the human subject by deuterium oxide dilution with a consideration of the dynamics deuterium distrubution. J. clin. Invest. 29, 1296 (1950).Google Scholar
  222. Schlosser, D., Heyse, E., Bartels, H.: Microcinematographic measurement of erythrocyte flow rate in lung capillaries. Bibl. anat. 7, 106 (1964).Google Scholar
  223. Schmidt-Schonbein, H., Gaethgens, P., Hirsch, H.: Eine neue Methode zur Untersuchung der rheologischen Eigenschaften von Erythrozyten-Aggregaten. Pfliigers Arch. ges. Physiol. 297, 107 (1967).Google Scholar
  224. Schmidt-Schonbein, H., Wells, R. E.: Fluid drop-like transition of erythrocytes under shear. Science 165, 288 (1969).Google Scholar
  225. Schmidt-Schonbein, H., Goldstone, J.: Influence of deformability of human red cells upon blood viscosity. Circulat. Res. 25, 131 (1969).Google Scholar
  226. Schmidt-Schonbein, H., Schildkraut, R.: Microscopy and viscometry of blood flowing under uniform shear rate (rheoscopy). J. appl. Physiol. 26, 674 (1969).Google Scholar
  227. Schroeder, W.: Eine einfache Methode zur fortlaufenden Registrierung von Anderungen der Haut- bzw. Muskeldurchblutung des Menschen und des wachen Hundes (Kapillardruckmessung). Z. ges. exp. Med. 130, 513 (1959).Google Scholar
  228. SCHMIDT-SCHONBEIN, H., Der Saftstrom (Kapillaraustausch) bei den hoheren Wirbeltieren. In: Medizinische Grundlagenforschung, Bd. III, S. 499 (Hrsg. K. FR. BAUER ). Stuttgart: Thieme 1960.Google Scholar
  229. SCHMIDT-SCHONBEIN, H., Nutritive und nicht nutritive Skelettmuskeldurchblutung. Arch. Kreisl.-Forsch. 49, 36 (1966).Google Scholar
  230. SchrÖEr, H.: Die Entwicklung der Hämostaseologie. In: Einführung in die Geschichte der Hamatologie (Hrsg. H. ScmPPER, E. SEIDLER U. K. G. BOROVICZENY). Stuttgart: Thieme i. Druck.Google Scholar
  231. Schmidt-Schonbein, H., Hauck, G.: Influence of the Blood Clotting Potential on the Barrier Function of the Vessel Wall. Bibliotheca Anatomica, No. 10, 418-423, 1969 (Karger, Basel/New York) 5th Europ. Conf. Microcircul. Gothenburg 1968.Google Scholar
  232. Seneviratne, R. D.: Physiological and pathological responses in the blood vessels of the liver. Quart. J. exp. Physiol. 35, 77 (1949/50).Google Scholar
  233. Shea, St., M., Karnovsky, M. J., Bossert, W. H.: Vesicular transport across endothelium: Simulation of a diffusion model. J. theor. Bioi. 24, 30 (1969).Google Scholar
  234. Shirley, H. H., Jr., Wolfram, C. G., Wasserman, K., Mayerson, H. S.: Capillary permeability to macromolecules stretched pore phenomenon. Amer. J. Physiol. 190, 189 (1957).Google Scholar
  235. Smaje, L., Zweifach, B. W., Intaglietta, M.: Micropressures and capillary filtration coefficients in single vessels of the cremaster muscle of the rat. Microvasc. Res. 2, 96 (1970).Google Scholar
  236. Smith, F., Dick, M.: The influence of the plasma colloids on the gradient of capillary permeability. J. exp. Med. 56, 371 (1932).PubMedGoogle Scholar
  237. Smith, F., Dick, M. Rous, P.: The gradient of vascular permeability. IV. The permeability of the cutaneous venules and its functional significance. J. exp. Med. 54, 499 (1931).PubMedGoogle Scholar
  238. Spaet, Th. H.: Vascular factors in the pathogenesis of haemorrhagic syndroms. Blood 7, 641 (1952b).PubMedGoogle Scholar
  239. Spaet, Th. H.: Microscopic studies on blood vessels of rats with experimental purpura. Amer. J. Physiol. 170, 333 (1952a).PubMedGoogle Scholar
  240. Starling, E. H.: On the absorption of fluids from the connective tissue spaces. J. Physiol. (Lond.) 19, 312 (1896).Google Scholar
  241. Staubesand, J.: Zur Orthologie der arterioveni:isen Anastomosen. In: Die arterio-venösen Anastomosen (Anatomie, Pathologie, Klinik) (Hrsg. F. HAMMERSEN und D. GROSS ). Bern· Stuttgart: Huber 1968.Google Scholar
  242. Staverman, E. J.: The theory of measurement of osmotic pressure. Rec. Trav. chim. PaysBas 70, 344 (1951).Google Scholar
  243. Steinhausen, M.: In vivo-Beobachtungen an der Nierenpapille von Goldhamstern nach Intravenöser Lissamingriin-Injektion. Pflügers Arch. ges. Physiol. 279, 195 (1964).Google Scholar
  244. Sterling, K.: The turnover rate of serum albumin in man as measured by J 131 taggedalbumin. J. clin. Invest. 30, 1228 (1951).Google Scholar
  245. Strohmaier, K.: Die photographische Darstellung des GefüBnetzes der Conjunctiva des menschlichen Auges. Z. wiss. Mikr. 64, 129 (1959).Google Scholar
  246. Sutherland, W. A.: A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. Phil. Mag. 9, 781 (1905).Google Scholar
  247. Tannenberg, J.: Bau und Funktion der Blutcapillaren. Frankfurt. Z. Path. 34, 1 (1926).Google Scholar
  248. Tannenberg, J., Fischer- W Asels, B.: Die lokalen Kreislaufsti:irungen. In: Handbuch der normal en und pathologischen Physiologie, Bd. VII/2, S. 1497. Berlin: Springer 1927.Google Scholar
  249. Teichmann, K.: Beobachtungen über Stoffaustausch im Kapillargebiet mit Hilfe der intravitalen Fluoreszenzmikroskopie. Z. ges. exp. Med. 110, 732 (1942).Google Scholar
  250. Thews, G.: Die theoretischen Grundlagen der Sauerstoffaufnahme in der Lunge. Ergebn. Physiol. 53, 42 (1963).PubMedGoogle Scholar
  251. Thron, H. L.: Das Verhalten peripherer Blutgefäße in vivo bei passiven und aktiven Weitenänderungen. Arch. Kreisl.-Forsch. 52, 1 (1967).Google Scholar
  252. Thuransky, K.: Der Blutkreislauf der Netzhaut. Budapest: Verlag d. Ung. Akad. d. Wissenschaft 1957.Google Scholar
  253. Tischendorf, F.: Vitalmikroskopie und terminale Strombahn. Mit Berücksichtigung der „transparent chamber“und „quartz rod illumination“-Methode. Z. wiss. Mikr. 64, 336 (1960).Google Scholar
  254. Tischendorf, F., Curri, S. B.: Experimentelle Untersuchungen zur Histophysiologie und Pathologie der arterioveni:isen Anastomosen (nach Lebendbeobachtungen am Kaninchenohr). Z. mikr.anat. Forsch. 62, 326 (1956).Google Scholar
  255. Ussing, H. H.: Transport through biological membranes. Ann. Rev. Physiol. 10, 1 (1953).Google Scholar
  256. Vogel, G. H., Stocker, H.: Regionale Unterschiede der Capillarpermeabilität. Untersuchungen über die Penetration von Polivinylpyrolidon und endogenen Proteinen aus dem Plasma in die Lymphe von Kaninchen. Pfliigers Arch. ges. Physiol. 249, ll9 (1967).Google Scholar
  257. Vogel, H.: Die Geschwindigkeit des Elutes in den Lungenkapillaren. Helv. physiol. Acta 5, 105 (1947).Google Scholar
  258. Wasserman, K., Mayerson, H. S.: Exchange of albumin between plasma and lymph. Amer. J. Physiol. 165, 15 (1951).PubMedGoogle Scholar
  259. Wayland, H., Johnson, P. C.: Erythrocyte velocity measurement in microvessels by a twoslit photometric method. J. appl. Physiol. 22, 333 (1967).PubMedGoogle Scholar
  260. Webb, R. L., Nicoll, P. A.: The bat wing as a subject for studies in homeostasies of capillary bed. Anat. Rec. 120, 253 (1954).PubMedGoogle Scholar
  261. Weille, F. L., Gargano, S. R., Pfister, R., Martinez, D., Irwin, J. W.: Circulation of the spiral ligament and stria vascularis of living guinea pig. Arch. Otolaryng. 59, 731 (1954).Google Scholar
  262. Weiss-Fogh, F.: Aggregation of erythrocytes in small blood vessels. Clinical and experimental studies. Scand. J. clin. Lab. Invest. 9, Suppl. 28 (1957).Google Scholar
  263. Wells, E. E., Jr., Merrill, E. W., Gabelnick, H.: Shear rate dependence of viscosity of blood: Interaction of red cells and plasma proteins. Trans. Soc. Rheol. 6, 19 (1962).Google Scholar
  264. Wells, R. E., Jr., Denton, R., Merrill, E. W.: Measurement of viscosity of biologic fluids by cone plate viscometer. J. Lab. clin. Med. 57, 646 (1961).Google Scholar
  265. Wessing, A.: Fluoreszenzangiographie der Retina. Stuttgart: Thieme 1968.Google Scholar
  266. Widmer, L. K.: Zur Stri:imungsgeschwindigkeit in kleinsten peripheren Arterien. Arch. Kreisl.-Forsch. 21, 54 (1957).Google Scholar
  267. Wiedeman, M.P.: Dimensions of blood vessels from distributing artery to cellecting vein. Circulat. Res. 12, 375 (1963).PubMedGoogle Scholar
  268. Wiedeman, M.P.: Response of subcutaneous vessels to venous distension. Circulat. Res. 7, 238 (1959).PubMedGoogle Scholar
  269. Wiedeman, M.P.: Reactivity of arterioles following denervation of subcutaneous areas of the bat wing. Amer. J. Physiol. 177, 309 (1954).Google Scholar
  270. Wiederidelm, C. A.: Continuous recording of arteriolar dimensions with a television microscope. J. appl. Physiol. 18, 1041 (1963).Google Scholar
  271. Wiederidelm, C. A.: Transcapillary and interstitial transport phenomena in the mesentery. Fed. Proc. 20, 1789 (1966a).Google Scholar
  272. Wiederidelm, C. A.: Photospectrum analysis technique. Meth. med. Res. 11, 212 (1966b).Google Scholar
  273. Wiederidelm, C. A.: Analysis of small vessel function. In: Physical basis of circulatory transport: Regulation and exchange (eds. E. B. REEVE and A. C. GuYTON ). Philadelphia London: Saunders Company 1967.Google Scholar
  274. Wiederidelm, C. A.: Dynamics of transcapillary fluid exchange. J. gen. Physiol. 52, Suppl. 29 (1968).Google Scholar
  275. Wiederidelm, C. A.: WOODBURY, J. W., KIRK, S., RUSHMER, R. F.: Pulsatile pressure in the microcirculation of frog’s mesentery. Amer. J. Physiol. 207, 173 (1964).Google Scholar
  276. Williams, R. G., Roberts, B.: An improved tantalum chamber for prolonged microscopic study of living cells in mammals. Anat. Rec. 107, 359 (1950).PubMedGoogle Scholar
  277. Willnow, R.: Besonderheiten im oberflachenmikroskopischen Bild der lebenden Igellunge. Z. mikr.-anat. Forsch. 64, 548 (1958).Google Scholar
  278. Winne, D.: Die Capillarpermeabilitat hochmolekularer Substanzen. Pfliigers Arch. ges. Physiol. 289, 119 (1965).Google Scholar
  279. Witte, S.: Eine neue Methode zur Untersuchung der Kapillarpermeabilitat. Z. ges. exp. Med. 129, 181 (1957 a).Google Scholar
  280. Witte, S.: Fluoreszenzmikroskopische Untersuchungen über die Kapillarpermeabilitat. Z. ges. exp. Med. 129, 358 (1957b).Google Scholar
  281. Witte, S.: Steigerung der Capillarpermeabilität durch Blutgerinnungsstörungen. Thrombos. Diathes. haemorrh. (Stuttg.) 2, 146 (1958).Google Scholar
  282. Witte, S.: Die biologische Bedeutung der Blutgerinnung beim Menschen. In: Medizinische Grundlagenforschung, Bd. III (Hrsg. K. FR. BAUER ). Stuttgart: Thieme 1960.Google Scholar
  283. Witte, S.: Investigations of transvascular plasma passage with fluorescent microscopic technique. Bibl. anat. 7, 218 (1964).Google Scholar
  284. Witte, S.: Vital microscopy with the ultraviolet microscop. Bibl. anat. 10, 557 (1969).PubMedGoogle Scholar
  285. Witte, S., Wilmes, K. W.: Die Wirkung von Rutin bei der experimentellen thrombopenischen Purpura der Ratte. Acta haemat. (Basel) 7, 89 (1952).Google Scholar
  286. Wolff, J.: On the meaning of vesiculation in capillary endothelium. Angiology 4, 64 (1967).Google Scholar
  287. Wolff, J., Merker, H. J.: Ultrastructur und Bildung von Poren im Endothel von porösen und geschlossenen Kapillaren. Z. Zellforsch. 73, 174 (1966).PubMedGoogle Scholar
  288. Worthington, W. C., Jr.: Some observations on the hypophyseal portal system in the living mouse. Bull. Johns Hopk. Hosp. 97, 343 (1955).Google Scholar
  289. Yoffey, J. M., Courtice, Fr. C.: Lymphatics, lymph and lymphoid tissue. London: Arnold 1956.Google Scholar
  290. Zweifach, B. W.: The character and distribution of the blood capillaries. Anat. Rec. 73, 475 (1939).Google Scholar
  291. Zweifach, B. W. Basic mechanisms in peripheral vascular homeostasis. In: Transactions of the Third Conference on Factors Regulating Blood Pressure, p. 13. (eds. B. W. ZWEIFACH and E. SCHORR ). New York: Josiah Macy, Inv. Foundation 1949.Google Scholar
  292. Zweifach, B. W. Direct observation of the mesenteric circulation in experimental animals. Anat. Rec. 120, 277 (1954).Google Scholar
  293. Zweifach, B. W. Functional behavior of the microcirculation. Springfield, III. ( U.S.A. ): Ch. C. Thomas 1961.Google Scholar
  294. Zweifach, B. W. Intaglietta, M.: Fluid exchange across the blood capillary interlace. Fed. Proc. 25, 1784 (1966).PubMedGoogle Scholar
  295. Zweifach, B. W. Mechanics of fluid movement across single capillaries in the rabbit. Microvasc. Res. 1, 83 (1968).Google Scholar
  296. Zweifach, B. W., Metz, D. B.: Regional difference in response of terminal vascular bed to vasoactive agents. Amer. J. Physiol. 182, 155 (1955a).PubMedGoogle Scholar
  297. ZWEIFACH, B. W., Selektive distribution of blood through the terminal vascular bed of mesenteric structures and skeletal muscle. Angiology 6, 282 (1955b).PubMedGoogle Scholar
  298. Zweifach, B. W. Nagler, A. L., Thomas, L.: The role of epinephrine in the reactions produced by the endotoxins of gram-negative bacteria. J. exp. Med. 104, 881 (1956).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1971

Authors and Affiliations

  • G. Hauck

There are no affiliations available

Personalised recommendations