Advertisement

Radioactive Techniques: The Use of Labeled Drugs

  • R. P. Maickel
  • W. R. Snodgrass
  • R. Kuntzman
Part of the Handbook of Experimental Pharmacology / Handbuch der experimentellen Pharmakologie book series (HEP, volume 28 / 2)

Abstract

Hevesy (1923) opened broad new vistas of research when he reported the first use of radioactive substances in biological research — a study of the absorption and translocation of lead in plants. Ten years later, Gettler and Norms (1933) reported a death by radium poisoning, corroborating their findings with autoradiographic studies of human bone. Meanwhile, Urey et al. (1932) described the characteristics of a newly discovered isotope of hydrogen (2H) and named it deuterium. Within a few years, Schoenheimer and Rittenberg (1935) demonstrated the use of this stable isotope in tracing pathways of intermediary metabolism. The next major step forward in biomedical applications of isotopes awaited the isolation of small quantities of 13C by Hutchison et al. (1940). Rittenberg and Bloch (1944) then used 2H and 13C to demonstrate the successive condensations of two-carbon units during the normal biosynthesis of long chain fatty acids.

Keywords

Methyl Orange Hydrogen Isotope Hippuric Acid Label Compound Muconic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson, R.H., Ague, S.L., Hess, S.M., Davidson, J.D.: The distribution, excretion and metabolism of hydroxyurea-14C. J. Pharmacol. exp. Ther. 150, 322–327 (1965).PubMedGoogle Scholar
  2. Angelucci, R., Arttni, D., Cresseri, A., Giraldi, P.N., Logemann, W., Nannini, G., Valzelu, G.: Some aspects of the metabolism of triazine derivatives active in experimentally induced virus infections. Brit. J. Pharmacol. 24, 274–281 (1965).PubMedGoogle Scholar
  3. Axelrod, J.: Studies on symptomimetic amines. II. The biotransformation and physiological disposition of D-amphetamine, D-p-hydroxyamphetamine and D-methamphetamine. J. Pharmacol. exp. Ther. 110, 315–326 (1954).PubMedGoogle Scholar
  4. Barker, H.A., Kamen, M.D.: Carbon dioxide utilization in the synthesis of acetic acid by Clostridium thermoaceticum. Proc. nat. Acad. Sci. (Wash.) 31, 219–225 (1945).Google Scholar
  5. Barman, T.E., Parke, D.V., Williams, R.T.: The metabolism of dehydroacetic acid (DHA). Toxicol. appl. Pharmacol. 5, 545–568 (1963).PubMedGoogle Scholar
  6. Baxter, G.E., Lindall, A.W., Lazarow, A.: The biosynthesis of [14C-] and [3H-] labeled insulin. In: Advances in Tracer Methodology, Vol. 2, pp. 73–81. Ed. by S. Rothchild. New York: Plenum Press 1965.Google Scholar
  7. Bayly, R.J., Evans, E.A.: Stability and storage of compounds labeled with radioisotopes. J. labld Compds 2, 1–34 (1966).Google Scholar
  8. Bayly, R.J., Evans, E.A.: Storage and stability of compounds labeled with radioisotopes. Part II. J. labld Compds 3, 349–374 (1967).Google Scholar
  9. Birtley R.D.N., Roberts, J.B., Thomas, B.H., Wilson, A.: Excretion and metabolism of 14C-pyridostigmine in the rat. Brit. J. Pharmacol. 26, 393–402 (1966).PubMedGoogle Scholar
  10. Blane, G.F., Dobbs, H.E.: Distribution of tritium-labeled etorphine (M99) and dihydromorphine in pregnant rats at term. Brit. J. Pharmacol. 30, 166–172 (1967).PubMedGoogle Scholar
  11. van den Bosch, H., van Deenen, L.L.M.: Synthesis of 32P-, 14C-, and 3H-labeled lecithins and their use in studies on lipid metabolism. In: Advances in Tracer Methodology, vol. 3, pp. 61–67. Ed. by S. Rothchild. New York: Plenum Press 1966.Google Scholar
  12. Boyer, W.M., Bernstein, R.B., Brown, T.L., Dibeler, V.H.: Investigation of the deuterohaloform synthesis. A new preparation of chloroform-d. J. Amer. chem. Soc. 73, 770–772 (1951).Google Scholar
  13. Brodie, B.B., Burns, J.J., Mark, L.C., Lief, P.A., Bernstein, E., Papper, E.M.: The fate of pentobarbital in man and dog and a method for its estimation in biological material. J. Pharmacol. exp. Ther. 109, 26–34 (1953).PubMedGoogle Scholar
  14. Burton, M.: Development of current concepts of elementary processes in radiation chemistry. J. chem. Educ. 36, 273–278 (1959).Google Scholar
  15. Calf, G.E., Garnett, J.L., Sollich, W.A.: Recent developments in labeling by catalytic exchange — the application of π-complex theory to the prediction of isotopic hydrogen orientation in molecules labeled by heterogeneous techniques. In: Advances in Tracer Methodology, Vol. 4, pp. 11–27. Ed. by S. Rothchild. New York: Plenum Press 1968.Google Scholar
  16. Catch, J.R.: Carbon-14 compounds. London: Butterworth 1961.Google Scholar
  17. Charalampous, K.D., Tansey, L.W.: Metabolic fate of β-(3,4,dimethoxyphenyl)-ethylamine in man. J. Pharmacol. exp. Ther. 155, 318–329 (1967).PubMedGoogle Scholar
  18. Condon, F.E.: Synthesis and mass spectra of some hexa-, hepta-and octadeuterated derivatives of propane. J. Amer. chem. Soc. 73, 4675–4678 (1951).Google Scholar
  19. Cresseri, A., Giraldi, P.N., Logemann, W., Tosolini, G., Valzelli, G.: Some aspects of the metabolism of triazine derivatives active in experimentally induced virus infections. Brit. J. Pharmacol. 27, 486–490 (1966).PubMedGoogle Scholar
  20. Dacre, J.C., Scheline, R.R., Williams, R.T.: The role of the tissues and gut flora in the metabolism of [14C] homoprotocatechuic acid in the rat and rabbit. J. Pharm. Pharmacol. 20, 619–325 (1968).PubMedGoogle Scholar
  21. Dacre, J.C., Williams, R.T.: The role of the tissues and gut micro-organisms in the metabolism of [14C] protocatechuic acid in the rat. Aromatic dehydroxylation. J. Pharm. Pharmacol. 20, 610–618 (1968).PubMedGoogle Scholar
  22. Davison, C., Williams, R.T.: The metabolism of 5,5-methylene-disalicylic acid in various species. J. Pharm. Pharmacol. 20, 12–18 (1968).PubMedGoogle Scholar
  23. DiCarlo, F.J., Crew, M.C., Melgar, M.D., Haynes, L.J.: Prazepam metabolism by dogs. J. pharm. Sci. 58, 960–962 (1969).PubMedGoogle Scholar
  24. DiCarlo, F.J., Hartigan, J.M., Coutinho, C.B., Phillips, G.E.: Absorption, distribution and excretion of pentaerythritol and pentaerythritol tetranitrate by mice. Proc. Soc. exp. Biol. (N.Y.) 118, 311–315 (1965).Google Scholar
  25. Dreyfuss, J., Cohen, A.I., Hess, S.M.: Metabolism of thiazesim, 5-(2-dimethylaminoethyl)-2,3-dihydro-2-phenyl-1,5-benzothiazepin-4-(5H)-one, in the rat in vivo and in vitro. J. pharm. Sci. 57, 1505–1511 (1968b).Google Scholar
  26. Dreyfuss, J., Swoap, J.R., Chinn, C., Hess, S.M.: Excretion and distribution of thiazesim-14C with its biotransformation in vivo and in vitro. J. pharm. Sci. 57, 1497–1505 (1968a).PubMedGoogle Scholar
  27. du Vigneaud, V., Verly, W.G.L., Wilson, J.E., Rachele, J.R., Ressler, C., Kinney, J.M.: One-carbon compounds in the biosynthesis of the “biologically labile” methyl group. J. Amer. chem. Soc. 73, 2782–2785 (1951).Google Scholar
  28. Ebert, A.G., Schleifer, C.R., Hess, S.M.: Absorption, disposition and excretion of 3H-mineral oil in rats. J. pharm. Sci. 55, 923–929 (1966).PubMedGoogle Scholar
  29. Eidinoff, M.L., Knoll, J.E.: The introduction of isotopic hydrogen into purine ring systems by catalytic exchange. J. Amer. chem. Soc. 75, 1992–1993 (1953).Google Scholar
  30. Eidinoff, M.L., Perri, G.C., Knoll, J.E., Marano, B.J., Arnhetm, J.: The fractionation of hydrogen isotopes in biological systems. J. Amer. chem. Soc. 75, 248–249 (1953).Google Scholar
  31. Elliott, T.H., Hanam, J., Parke, D.V., Williams, R.T.: The metabolism of [14C]tetralin. Biochem. J. 92, 52P–53P (1964).Google Scholar
  32. Elliott, T.H., Parke, D.V., Williams, R.T.: The metabolism of cyclo [14C]hexane and its derivatives. Biochem. J. 72, 193–200 (1959).PubMedGoogle Scholar
  33. Ellison, T., Gutzait, L., van Loon, E.J.: The comparative metabolism of d-amphetamine-14C in the rat, dog and monkey. J. Pharmacol. exp. Ther. 152, 383–387 (1966).PubMedGoogle Scholar
  34. Emmerson, J.L., Welles, J.S., Anderson, R.C.: Studies on the tissue distribution of d-propoxyphene. Toxicol. appl. Pharmacol. 11, 482–488 (1967).PubMedGoogle Scholar
  35. Evans, E.A., Slotin, L.: The utilization of carbon dioxide in the synthesis of α-ketoglutaric acid. J. biol. Chem. 136, 301–302 (1940).Google Scholar
  36. Evans, E.A., Slotin, L.: Carbon dioxide utilization by pigeon liver. J. biol. Chem. 141, 439–450 (1941).Google Scholar
  37. Fitzgerald, P.J., Eidinoff, M.L., Knoll, J.E., Simmel, E.B.: Tritium in radioautography. Science 114, 494–498 (1951).PubMedGoogle Scholar
  38. Fukushima, D.K., Lieberman, S., Praetz, B.: Preparation of deuterated steroids. J. Amer. chem. Soc. 72, 5205–5211 (1950).Google Scholar
  39. Furst, C.J.: Studies on the distribution and excretion of a metabolite of guanethidine in the rat. Brit. J. Pharmacol. 32, 57–64 (1968).PubMedGoogle Scholar
  40. Garnett, J.L.: Catalytic tritium labeling attractive for organics. Nucleonics 20, 86–91 (1962).Google Scholar
  41. Garnett, J.L., Sollich, W.A.: Catalytic deuterium exchange reactions with organics. XII. Characteristic reactions of the Group VIII transition metals. Aust. J. Chem. 18, 1003–1008 (1965).Google Scholar
  42. Geiling, E.M.K., Kelsey, F.E., McIntosh, B.J., Ganz, A.: Biosynthesis of radioactive drugs using carbon 14. Science 108, 558–559 (1948).PubMedGoogle Scholar
  43. Gessner, P.K., Parke, D.V., Williams, R.T.: The metabolism of 14C-labeled ethylene glycol. Biochem. J. 79, 482–489 (1961).PubMedGoogle Scholar
  44. Gettler, A.O., Norris, C.: Poisoning from drinking radium water. J. Amer. med. Ass. 100, 400–402 (1933).Google Scholar
  45. Glascock, R.F., Duncombe, W.G.: Biological fractionation of hydrogen isotopes in mammary gland and other tissues. Biochem. J. 51, xl (1952).Google Scholar
  46. Gut, M., Hayano, M.: Some aspects of stereoselectivity in the introduction of tritium into steroids. In: Advances in Tracer Methodology, Vol. 1, pp. 60–63. Ed. by S. Rothchild. New York: Plenum Press 1962.Google Scholar
  47. Hague, D.E., Fabro, S., Smith, R.L.: The fate of [14C]thalidomide in the pregnant hamster. J. Pharm. Pharmacol. 19, 603–607 (1967).PubMedGoogle Scholar
  48. van Heyningen, W.E., Rittenberg, D. Schoenheimer, R.: The preparation of fatty acids containing deuterium. J. biol. Chem. 125, 495–500 (1938).Google Scholar
  49. Hevesy, G.: The absorption and translocation of lead by plants. A contribution to the application of the method of radioactive indicators in the investigation of the change of substance in plants. Biochem. J. 17, 439–445 (1923).PubMedGoogle Scholar
  50. Hucker, H.B., Ahmad, P.M., Miller, E.A.: Absorption, distribution and metabolism of dimethylsulfoxide in the rat, rabbit and guinea pig. J. Pharmacol. exp. Ther. 154, 176–184 (1966a).PubMedGoogle Scholar
  51. Hucker, H.B., Zacchei, A.G., Cox, S.V., Brodie, D.A., Cantwell, N.H.R.: Studies on the absorption, distribution and excretion of indomethacin in various species. J. Pharmacol. exp. Ther. 153, 237–249 (1966b)Google Scholar
  52. Hug, C.C., jr., Mellett, L.B.: Tritium-labeled dihydromorphine: Its metabolic fate and excretion in the rat. J. Pharmacol. exp. Ther. 149, 446–453 (1965).PubMedGoogle Scholar
  53. Hunter, C.G., Rosen, A., Williams, R.T., Reynolds, J.G., Worden, A.N.: Proc. 12th Int. Conf. World Crop Protection, pp. 1296–1303 (1960).Google Scholar
  54. Husain, M.A., Roberts, J.B., Thomas, B.H., Wilson, A.: Metabolism and excretion of 3-hydroxyphenyltrimethylammonium and neostigmine. Brit. J. Pharmacol. 35, 344–350 (1969).Google Scholar
  55. Hutchison, C.A., Stewart, D.W., Urey, H.C.: The concentration of 13C. J. chem. Phys. 8, 532–537 (1940).Google Scholar
  56. Jondorf, W.R., Parke, D.V., Williams, R.T.: The metabolism of [14C]hexachloroethane. Biochem. J. 65, 14P–15P (1957).Google Scholar
  57. Kaighen, M., Williams, R.T.: The metabolism of [3-14C]coumarin. J. med. pharm. Chem. 3, 25–43 (1961).Google Scholar
  58. Kamm, J.J., Taddeo, A.B., van Loon, E.J.: Metabolism and excretion of tritiated dextromethorphan by the rat. J. Pharmacol. exp. Ther. 158, 437–444 (1967).PubMedGoogle Scholar
  59. King, L.J., Parke, D.V., Williams, R.T.: The metabolism of [2-14C] indole. Biochem. J. 88, 66P (1963).Google Scholar
  60. Koechlin, B.A., Schwartz, M.A., Krol, G., Oberhansli, W.: The metabolic fate of 14C-labeled chlordiazepoxide in man, in the dog, and in the rat. J. Pharmacol. exp. Ther. 148, 399–411 (1965).PubMedGoogle Scholar
  61. Kuntzman, R.: Application of tracer techniques in drug metabolism. In: Fundamentals of Drug Metabolism and Disposition. Ed. by B. La Du. Baltimore: Williams and Wilkins 1969 [in press].Google Scholar
  62. Kurie, F.N.D.: A new mode of disintegration induced by neutrons. Phys. Rev. 45, 904–905 (1934a).Google Scholar
  63. Kurie, F.N.D.: Disintegration with the emission of protons induced by neutrons. Phys. Rev. 45, 330 (1934b).Google Scholar
  64. Larson, P.S., Harlow, E.S.: Some current applications of carbon-14 to animal and human physiological research. Studies with tobacco and its constituents. In: Radioisotopes in Scientific Research, vol. III, pp. 62–78. Ed. by R.C. Extermann. London: Pergamon Press 1958.Google Scholar
  65. Maickel, R.P., Cox, R.H., Miller, F.P., Segal, D.S., Russell, R.W.: Correlation of brain levels of drugs with behavioral effects. J. Pharmacol. exp. Ther. 165, 216–224 (1969).PubMedGoogle Scholar
  66. Maickel, R.P., Weissbach, H.: Recent developments in chemical and biochemical assay techniques applicable in pharmacology. Ann. Rev. Pharmacol. 2, 399–414 (1962).Google Scholar
  67. McIsaac, W.M., Parke, D.V., Williams, R.T.: The metabolism of phenylhydrazine and some phenylhydrazones. Biochem. J. 70, 688–697 (1958).PubMedGoogle Scholar
  68. McMahon, R.E., Culp, H.W., Marshall, F.J.: The metabolism of α-dl-acetylmethadol in the rat. The identification of the probable active metabolite. J. Pharmacol. exp. Ther. 149, 436–445 (1965).PubMedGoogle Scholar
  69. McMahon, R.E., Marshall, F.J.: The preparation of N-methyl 14C-labeled drugs. In: Advances in Tracer Methodology (S. Rothchild, ed.). Vol. 4, pp. 29–39. New York: Plenum Press 1968.Google Scholar
  70. McMahon, R.E., Marshall, F.J., Culp, H.W.: The nature of the metabolites of acetohexamide in the rat and in the human. J. Pharmacol. exp. Ther. 149, 272–279 (1965b).PubMedGoogle Scholar
  71. Misra, A.L., Jacoby, H.I., Woods, L.A.: The preparation of tritium-labeled normorphine and its physiological disposition in dog and monkey. J. Pharmacol. exp. Ther. 132, 311–316 (1961a).PubMedGoogle Scholar
  72. Misra, A.L., Mulé, S.J., Woods, L.A.: The preparation of tritium nuclear-labeled morphine and evidence for its in vivo biotransformation to normorphine in the rat. J. Pharmacol. exp. Ther. 132, 317–322 (1961b).PubMedGoogle Scholar
  73. Mulé, S.J., Clements, T.H., Gorodetzky, C.W.: The metabolic fate of 3H-cyclazocine in dogs. J. Pharmacol. exp. Ther. 160, 387–396 (1968).PubMedGoogle Scholar
  74. Mulé, S.J., Gorodetzky, C. W.: Physiologic disposition of 3H-cyclazocine in nontolerant, tolerant and abstinent dogs. J. Pharmacol. exp. Ther. 154, 632–645 (1966).PubMedGoogle Scholar
  75. Murphy, P.J., Wick, A.N.: Metabolism of β-phenethylbiguanide. J. pharm. Sci. 57, 1125–1127 (1968).PubMedGoogle Scholar
  76. Murray, A., Foreman, W.W., Langham, W.: The halogen-metal interconversion reaction and its application to the synthesis of nicotinic acid labeled with isotopic carbon. Science 106, 277 (1947).PubMedGoogle Scholar
  77. Murray, A., Williams, D.L.: Organic synthesis with isotopes. New York: Interscience 1958.Google Scholar
  78. Nicholls, P.J.: A note on the absorption and excretion of 14C-labelled thalidomide in pregnant mice. J. Pharm. Pharmacol. 18, 46–48 (1966).PubMedGoogle Scholar
  79. Ober, R.E., Fusari, S.A., Coffey, G.L., Gwynn, G.W., Glazko, A.J.: Preparation of tritium-labelled paromomycin (“Humatin”) by fermentation in a medium containing tritiated water. Nature (Lond.) 193, 1289–1290 (1962).Google Scholar
  80. Obianwu, H.O.: Disposition of epsilon-amino caproic-3H acid and its investigation with adrenergic neurones. Brit. J. Pharmacol. 31, 244–252 (1967).PubMedGoogle Scholar
  81. Okita, G.T., Kelsey, F.E., Walaszek, E.J., Geiling, E.M.K.: Biosynthesis and isolation of carbon-14 labelled digitoxin. J. Pharmacol. exp. Ther. 110, 244–250 (1954).PubMedGoogle Scholar
  82. Oliphant, M.L.E., Harteck, P., Rutherford, L.: Transmutation effects observed with heavy hydrogen. Proc. roy. Soc. B 144A, 692–703 (1934).Google Scholar
  83. Parke, D.V.: The metabolism of [14C] nitrobenzene in the rabbit and guinea pig. Biochem. J. 62, 339–346 (1956).PubMedGoogle Scholar
  84. Parke, D.V.: The metabolism of [14C]aniline in the rabbit and other animals. Biochem. J. 77, 493–503 (1960).PubMedGoogle Scholar
  85. Parke, D.V.: The metabolism of m-dinitro[14C]benzene in the rabbit. Biochem. J. 78, 262–271 (1961).PubMedGoogle Scholar
  86. Parke, D.V.: Radioisotopes in the study of the metabolism of foreign compounds. In: Isotopes in Experimental Pharmacology (L.J. Roth, ed.), pp. 315–342. Chicago: University of Chicago Press 1965.Google Scholar
  87. Parke, D.V., Williams, R. T.: The metabolism of benzene, (a) The determination of benzene, (b) The elimination of unchanged benzene by rabbits. Biochem. J. 46, 236–243 (1950).PubMedGoogle Scholar
  88. Parke, D.V., Williams, R. T.: The metabolism of benzene, (a) The determination of phenylmercapturic acid in urine. (b) Mercapturic acid excretion by rabbits receiving benzene. Biochem. J. 48, 624–629 (1951).PubMedGoogle Scholar
  89. Parke, D.V., Williams, R. T.: The metabolism of benzene. The muconic acid excreted by rabbits receiving benzene. Determination of the isomeric muconic acids. Biochem. J. 51, 339–348 (1952).PubMedGoogle Scholar
  90. Parke, D.V., Williams, R. T.: The metabolism of benzene containing [14C]benzene. Biochem. J. 54,231–238 (1953a).Google Scholar
  91. Parke, D.V., Williams, R. T.: The metabolism of benzene, (a) The formation of phenylglucuronide and phenylsulphuric acid from [14C]benzene. (b) The metabolism of [14C]phenol. Biochem. J. 55, 337–340 (1953b).PubMedGoogle Scholar
  92. Porteotjs J.W., Williams, R.T.: The metabolism of benzene. I (a) The determination of phenol in urine with 2:6-dichloroquinonechloroimide. (b) The excretion of phenol, glucuronic acid and ethereal sulphate by rabbits receiving benzene and phenol, (c) Observations on the determination of catechol, quinol, and muconic acid in urine. Biochem. J. 44, 46–55 (1949).Google Scholar
  93. Rittenberg, D., Bloch, K.: The utilization of acetic acid for fatty acid synthesis. J. biol. Chem. 154, 311–312 (1944).Google Scholar
  94. Roberts, J.B., Thomas, B.H., Wilson, A.: Metabolism of neostigmine-14C in the rat. Brit. J. Pharmacol. 25, 763–770 (1965a).Google Scholar
  95. Roberts, J.B., Thomas, B.H., Wilson, A.: Distribution and excretion of neostigmine-14C in the rat and hen. Brit. J. Pharmacol. 25, 234–242 (1965b).Google Scholar
  96. Rognstad, R., Kemp, R.G., Katz, J.: Enzymatic synthesis of glucose-4-tritium and glucose-3-tritium. Arch. Biochem. 109, 372–375 (1965).Google Scholar
  97. Rosenblum, C.: The chemistry and application of tritium labelling. Nucleonics 17, 80–83 (1959).Google Scholar
  98. Rosenblum, C., Meriwether, H.T.: Experiences with tritiated compounds produced by exposure to tritium gas. In: Advances in Tracer Methodology (S. Rothchild, ed.). Vol. 1, pp. 12–17. New York: Plenum Press 1963.Google Scholar
  99. Roth, L.J., Wilzbach, K.E., Heller, A., Kaplan, L.: Tritium-labelled meprobamate. J. Amer. pharm. Ass. 48, 415–416 (1959).Google Scholar
  100. Rothchild, S.: Chemical synthesis of isotopically labelled drugs. In: Isotopes in Experimental Pharmacology (L.J. Roth, ed.), pp. 12–22. Chicago: University of Chicago Press 1965.Google Scholar
  101. Ruben, S., Hassid, W.Z., Kamen, M.D.: Radioactive carbon in the study of photosynthesis. J. Amer. chem. Soc. 61, 661–663 (1939).Google Scholar
  102. Ruben, S., Kamen, M.D.: Radioactive carbon of long half-life. Phys. Rev. 57, 549 (1940).Google Scholar
  103. Sanner, J.H., Woods, L.A.: Comparative distribution of tritium-labeled dihydromorphine between maternal and fetal rats. J. Pharmacol. exp. Ther. 148, 176–184 (1965).PubMedGoogle Scholar
  104. Scheline, R.R., Williams, R.T., Wit, J.G.: Biological dehydroxylation. Nature (Lond.) 188, 849–850 (1960).Google Scholar
  105. Schoenheimer, R., Rittenberg, D.: Deuterium as an indicator in the study of intermediary metabolism. Science 82, 156–517 (1935).PubMedGoogle Scholar
  106. Schreiber, E.C., Min, B.H., Zeiger, A.V., Lang, J.F.: Metabolism of diethylpropion-l-14C hydrochloride by the human. J. Pharmacol. exp. Ther. 159, 372–378 (1968).Google Scholar
  107. Schwartz, M.A., Koechlin, B.A., Postma, E., Palmer, S., Krol, G.: Metabolism of diazepam in rat, dog, and man. J. Pharmacol. exp. Ther. 149, 423–435 (1965).PubMedGoogle Scholar
  108. Smith, D.L., Forist, A.A., Gerritsen, G.C.: Metabolism of 3,5-dimethylpyrazole-14C in the rat. J. Pharmacol. exp. Ther. 150, 316–321 (1965).PubMedGoogle Scholar
  109. Smith, D.L., Wagner, J.G., Gerritsen, G.C.: Absorption, metabolism, and excretion of 5-methylpyrazole-3-carboxylic acid in the rat, dog, and human. J. pharm. Sci. 56, 1150–1157 (1967).PubMedGoogle Scholar
  110. Smith, J.N., Williams, R.T.: The fate of aniline in the rabbit. Biochem. J. 44, 242–250 (1949).Google Scholar
  111. Smith, N.H., Wilzbach, K.E., Brown, W.G.: The synthesis of tritium-labelled methyl iodide and acrinavine. J. Amer. chem. Soc. 77, 1033–1035 (1955).Google Scholar
  112. Smith, R.L., Williams, R.T.: The metabolism of arylthioureas. V. The metabolism of 1-(p-butoxyphenyl)-3-(p-dimethylaminophenyl)-2-thiourea (Ciba-1906, thiambutosine). J. med. pharm. Chem. 4, 163–176 (1961).PubMedGoogle Scholar
  113. Spratt, J.L., Okita, G.T., Geeling, E.M.: In vivo radiotracer stability of a tritium “self-radiation”-labelled compound. Int. J. appl. Radiat. 2, 167–168 (1957).PubMedGoogle Scholar
  114. Stepka, W., Larson, P.S.: Biosynthesis of 14C-labelled compounds with higher plants. In: Isotopes in Experimental Pharmacology (L.J. Roth, ed.), pp. 7–13. Chicago: University of Chicago Press 1965.Google Scholar
  115. Stumpf, W.E., Roth, L.J.: Dry-mounting high-resolution autoradiography. In: Isotopes in Experimental Pharmacology (L.J. Roth, ed.), pp. 133–143. Chicago: University of Chicago Press 1965.Google Scholar
  116. Sturman, J.A., Dawkins, P.D., McArthur, N., Smith, M.J.H.: The distribution of salicylate in mouse tissues after intraperitoneal injection. J. Pharm. Pharmacol. 20, 58–63 (1968).PubMedGoogle Scholar
  117. Titus, E., Weiss, H.: The use of biologically prepared radioactive indicators in metabolic studies: metabolism of pentobarbital. J. biol. Chem. 214, 807–820 (1955).PubMedGoogle Scholar
  118. Tocco, D.J., Egerton, J.R., Bowers, W., Christensen, V.W., Rosenblum, C.: Absorption, metabolism and elimination of thiabendazole in farm animals and a method for its estimation in biological materials. J. Pharmacol. exp. Ther. 149, 263–271 (1965).PubMedGoogle Scholar
  119. Tocco, D.J., Rosenblum, C., Martin, C.M., Robinson, H.J.: Absorption, metabolism and excretion, of thiabendazole in man and laboratory animals. Toxicol. appl. Pharmacol. 9, 31–39 (1966).PubMedGoogle Scholar
  120. Tolbert, B.M.: Radiation self-decomposition of labelled compounds. In: Advances in Tracer Methodology (S. Rothchild, ed.). Vol. 1, pp. 64–68. New York: Plenum Press 1963.Google Scholar
  121. Ullberg, S.: Studies on distribution and fate of 35S-labelled benzylpenicillin in body. Acta radiol. (Stockh.), Suppl. 118, 1–110 (1954).Google Scholar
  122. Ullberg, S.: Autoradiographic localization in the tissues of drugs and metabolites. Biochem. Pharmacol. 9, 29–36 (1962).Google Scholar
  123. Urey, H.C., Brickwedde, F.G., Murphy, G.M.: A hydrogen isotope of mass 2. Phys. Rev. 39, 164–165 (1932).Google Scholar
  124. Verly, W.G., Rachele, J.R., Du Vigneaud, V., Eidinoff, M.L., Knoll, J.E.: A test of tritium as a labelling device in a biological study. J. Amer. chem. Soc. 74, 5941–5943 (1952).Google Scholar
  125. Wagner, C.D., Stevenson, D.P.: The preparation and purification of methane-d, ethane-d, propane-1-d, propane-2-d, n-butane-1-d, n-butane-2-d, isobutane-1-d′ and isobutane-2-d′. J. Amer. chem. Soc. 72, 5785 (1950).Google Scholar
  126. Williams, R.T.: Detoxication mechanisms. The mechanism and detoxication of drugs, toxic substances and other organic compounds. 2nd edition. New York: John Wiley and Sons, Inc., 1959.Google Scholar
  127. Williams, R.T.: The metabolism and toxicity of arylthioureas. Biochem. J. 80, IP–2P (1961).Google Scholar
  128. Williams, R.T.: Teratogenic effects of thalidomide and related substances. Lancet 1963 1, 723–724.PubMedGoogle Scholar
  129. Wilzbach, K.E.: Tritium-labelling by exposure of organic compounds to tritium gas. J. Amer. chem. Soc. 79, 1013 (1957).Google Scholar
  130. Yavorsky, P.M., Gorin, E.: New reagent for labelling organic compounds with tritium. J. Amer. chem. Soc. 84, 1071–1072 (1962).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

  • R. P. Maickel
  • W. R. Snodgrass
  • R. Kuntzman

There are no affiliations available

Personalised recommendations