The Metabolism of Analogs of Endogenous Substrates: Wider Application of a Limited Concept

  • H. George Mandel
Part of the Handbook of Experimental Pharmacology / Handbuch der experimentellen Pharmakologie book series (HEP, volume 28 / 2)


Substrate analogs may be defined as compounds which bear a close chemical and/or physical resemblance to a constituent of normal tissue and which may replace the latter in one or more of its normal reactions, usually leading to a metabolic block. The substrate analogs, or antimetabolites, usually compete with the natural substrate at the same site on an enzyme. Actually, only a portion of the antimetabolite molecule must be analogous for competition.


Xanthine Oxidase Endogenous Substrate Cytosine Arabinoside Substrate Analog Thymidylate Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andoh, T., Chargaff, E.: Formation and fate of abnormal ribosomes of E. coli cells treated with 5-fluorouracil. Proc. nat. Acad. Sci. (Wash.) 54, 1181–1189 (1965).Google Scholar
  2. Ansfield, F.J., Curreri, A.R.: Further clinical comparison between 5-fluorouracil (5-FU) and 5-fluoro-2′-deoxyuridine (5-FUDR). Cancer Chemother. Reports 32, 101–105 (1963).Google Scholar
  3. Baker, B.R.: Design of active-site-directed irreversible enzyme inhibitors. New York: John Wiley & Sons 1967.Google Scholar
  4. Baker, B.R., Wood, W.: Irreversible enzyme inhibitors, CXLVIII. Active-site-directed irreversible inhibitors of guanine deaminase derived from 9-phenyl-guanine bearing a terminal sulfonyl fluoride. J. Med. Chem. 12, 216–220 (1969).PubMedGoogle Scholar
  5. Balis, M.E.: Antagonists and nucleic acids. New York: John Wiley & Sons 1968.Google Scholar
  6. Bennett, L.L., Brockman, R.W., Schnebli, H.P., Chumley, S., Dixon, G.J., Schabel, F.M., Dulmadge, E.A., Skipper, H.E., Montgomery, J.A., Thomas, H.J.: Activity and mechanism of action of 6-methylthiopurine ribonucleoside in cancer cells resistant to 6-mercaptopurine. Nature (Lond.) 205, 1276–1279 (1965).Google Scholar
  7. Bieber, S., Dietrich, L.S., Elion, G.B., Hitchings, G.H., Martin, D.S.: The incorporation of 6-mercaptopurine-S35 into the nucleic acids of sensitive and non-sensitive transplantable mouse tumors. Cancer Res. 21, 228–231 (1961).Google Scholar
  8. Borstrum, H.: Sulfate conjugation and conjugated sulfates. (Review). Scand. J. clin. Lab. Invest. 86, Suppl. 17, 33–52 (1965).Google Scholar
  9. Bosch, L., Harbers, E., Heidelberger, C.: Studies on fluorinated pyrimidines. V. Effects on nucleic acid metabolism in vitro. Cancer Res. 18, 335–343 (1958).PubMedGoogle Scholar
  10. Bresnick, E.: Feedback inhibition of aspartate transcarbamylase in liver and in hepatoma. Cancer Res. 22, 1246–1251 (1962).PubMedGoogle Scholar
  11. Bridges, J.W., Kibby, M.R., Williams, R.T.: The nature of the glucuronide of Madribon formed in man. Biochem. J. 91, 12P (1964).Google Scholar
  12. Bridges, J.W., Kibby, M.R., Williams, R.T.: The structure of the glucuronide of sulfadimethoxine formed in man. Biochem. J. 96, 829–836 (1965).PubMedGoogle Scholar
  13. Bridges, J.W., Williams, R.T.: The metabolism of 5-p-aminobenzenesulphonamido-3-methylisothiazole (sulphasomizole). J. Pharm. Pharmacol. 15, 565–573 (1963).PubMedGoogle Scholar
  14. Brock, N., Hohorst, H.-J.: Metabolism of cyclophosphamide. Cancer 20, 900–904 (1967).PubMedGoogle Scholar
  15. Brockman, R.W., Anderson, E.P.: Biochemistry of cancer (metabolic aspects). Ann. Rev. Biochem. 32, 463–512 (1963).PubMedGoogle Scholar
  16. Brockman, R.W., Davis, J.M., Stutts, P.: Metabolism of uracil and 5-fluorouracil by drug-sensitive and by drug-resistant bacteria. Biochim. biophys. Acta (Amst.) 40, 22–32 (1960).Google Scholar
  17. Calabresi, P.: Regional protection in cancer chemotherapy. I. Infusions of thymidine into external carotid artery of patients receiving systemic 5-iodo-2′-deoxyuridine. J. clin. Invest. 41, 1484–1491 (1962).PubMedGoogle Scholar
  18. Caldwell, I.C., Henderson, J.F., Paterson, A.R.P.: The enzymic formation of 6-(methylmercapto) purine ribonucleoside 5′-phosphate. Canad. J. Biochem. 44, 229–245 (1966).Google Scholar
  19. Calendar, R., Berg, P.: The catalytic properties of tyrosyl ribonucleic acid synthetases from Escherichia coli and Bacillus subtilis. Biochemistry 5, 1690–1695 (1966).PubMedGoogle Scholar
  20. Carló, P.-E., Mandel, H.G.: The effect of 4-amino-5-imidazolecarboxamide on the toxicity of 8-azaguanine. Cancer Res. 14, 459–462 (1954).PubMedGoogle Scholar
  21. Carlsson, A., Lindqvist, M.: In vivo decarboxylation of α-methylDOPA and α-methyl metatyrosine. Acta physiol. scand. 54, 87–94 (1962).PubMedGoogle Scholar
  22. Chadwick, M., Rogers, W.I.: The distribution of 5-fluoro-2′-deoxyuridine-5′-monophosphate in mice after 5-fluorouracil administration. Proc. Amer. Ass. Cancer Res. 11, 15 (1970).Google Scholar
  23. Chaudhuri, N.K., Montag, B.J., Heidelberger, C.: Studies on fluorinated pyrimidines. III. The metabolism of 5-fluorouracil-2-C14 and 5-fluoroorotic-2-C14 acid in vivo. Cancer Res. 18, 318–328 (1958).PubMedGoogle Scholar
  24. Chaudhuri, N.K., Mukherjee, K.L., Heidelberger, C.: Studies on fluorinated pyrimidines. VII. The degradative pathway. Biochem. Pharmacol. 1, 328–341 (1959).Google Scholar
  25. Chu, M.-Y., Fischer, G.A.: The incorporation of 3H-cytosine arabinoside and its effects on murine leukemic cells (L5178Y). Biochem. Pharmacol. 17, 753–767 (1968).PubMedGoogle Scholar
  26. Cohen, S.S., Barner, H.D.: Studies on unbalanced growth in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 40, 885–893 (1954).Google Scholar
  27. Cohen, S.S., Flaks, J.G., Barner, H.D., Loeb, M.R., Lichtenstein, J.: The mode of action of 5-fluorouracil and its derivatives. Proc. nat. Acad. Sci. (Wash.) 44, 1004–1112 (1958).Google Scholar
  28. Cooper, J.R., Kini, M.M.: Biochemical aspects of methanol poisoning-Editorial. Biochem. Pharmacol. 11, 405–416 (1962).PubMedGoogle Scholar
  29. Cornish, H.H., Christman, A.A.: A study of the metabolism of theobromine, theophylline, and caffeine in man. J. biol. Chem. 228, 315–323 (1957).PubMedGoogle Scholar
  30. Creasey, W.A., Fink, M.E., Handschumacher, R.E., Calabresi, P.: Clinical and pharmacological studies with 2′, 3′, 5′-triacetyl-6-azauridine. Cancer Res. 23, 444–453 (1963).PubMedGoogle Scholar
  31. Creveling, C.R., Daly, J.W., Witkop, B., Udenfriend, S.: Substrates and inhibitors of dopamine-β-oxidase. Biochim. biophys. Acta (Amst.) 64, 125–134 (1962).Google Scholar
  32. Crout, J.R., Alpers, H.S., Tatum, E.L., Shore, P.A.: Release of metaraminol (Aramine) from the heart by sympathetic nerve stimulation. Science 145, 828–829 (1964).PubMedGoogle Scholar
  33. Dunn, D.B., Smith, J.D.: Effect of 5-halogenated uracils on the growth of Escherichia coli and their incorporation into deoxyribonucleic acids. Biochem. J. 67, 494–506 (1957).PubMedGoogle Scholar
  34. Duschinsky, R., Gabriel, T., Tautz, W., Nussbaum, A., Hoffer, M., Grunberg, E.: Nucleosides. XXXVII. 5,6-Substituted 5-fluorodihydropyrimidines and their 2′-deoxyribonucleosides. J. Med. Chem. 10, 47–58 (1967).PubMedGoogle Scholar
  35. Elion, G.B.: Biochemistry and pharmacology of purine analogues. Fed. Proc. 26, 898–904 (1967).PubMedGoogle Scholar
  36. Elion, G.B.: Actions of purine analogs: enzyme specificity studies as a basis for interpretation and design. Cancer Res. 29, 2448–2453 (1969).PubMedGoogle Scholar
  37. Elion, G.B., Callahan, S., Bieber, S., Hitchings, G.H., Rundles, R.W.: A summary of investigations with [(1-methyl-4-nitro-5-imidazolyl)thio] purine (B.W. 57-322). Cancer Chemother. Reports 14, 93–98 (1961).Google Scholar
  38. Elion, G.B., Callahan, S.W., Hitchings, G.H., Rundles, R.W., Laszlo, J.: Experimental, clinical, and metabolic studies of thiopurines. Cancer Chemother. Reports 16, 197–202 (1962).Google Scholar
  39. Elion, G.B., Callahan, S., Nathan, H., Bieber, S., Rundles, R.W., Hitchings, G.H.: Potentiation by inhibition of drug degradation: 6-substituted purines and xanthine oxidase. Biochem. Pharmacol. 12, 85–93 (1963).Google Scholar
  40. Elion, G.B., Hitchtngs, G.H.: Metabolic basis for the actions of analogs of purines and pyrimidines. Advanc. Chemotherapy 2, 91–177 (1965).Google Scholar
  41. Elison, C., Rapoport, H., Laursen, R., Elliott, H.W.: Effect of deuteration of N-CH3 group on potency and enzymatic N-demethylation of morphine. Science 134, 1078–1079 (1961).PubMedGoogle Scholar
  42. Ellis, D.B., Le Page, G.A.: Biochemical studies of resistance to 6-thioguanine. Cancer Res. 23, 436–443 (1963).Google Scholar
  43. Ellis, D.B., Le Page, G.A.: Metabolic fate of 9-β-D-xylofuranosyladenine in mice bearing susceptible tumor cells. Canser Res. 26, 893–897 (1966).Google Scholar
  44. Farkas, V., Bauer, S., Zemek, J.: Metabolism of 2-deoxy-D-glucose in Baker’s yeast. III. Formation of 2,2′-dideoxy-α,α′-trehalose. Biochim. biophys. Acta (Amst.) 84, 77–82 (1969).Google Scholar
  45. Gilligan, D.R.: Comparative studies of the chemical changes occurring in sulfonamide drugs during therapy in man. J. clin. Invest. 24, 301–315 (1945).PubMedGoogle Scholar
  46. Goldin, A., Venditti, J.M., Humphreys, S.R., Mantel, N.: Modification of treatment schedules in the management of advanced mouse leukemia with amethopterin. J. nat. Cancer Inst. 17, 203–212 (1956).PubMedGoogle Scholar
  47. Goldin, A., Venditti, J.M., Kline, I., Mantel, N.: Eradication of leukaemic cells (L1210) by methotrexate and methotrexate plus citrovorum factor. Nature (Lond.) 212, 1548–1550 (1966).Google Scholar
  48. Goldman, P.: The carbon-fluorine bond in compounds of biological interest. Science 164, 1123–1130 (1969).PubMedGoogle Scholar
  49. Gross, D., Tarver, H.: Studies on ethionine. IV. The incorporation of ethionine into the proteins of tetrahymena. J. biol. Chem. 217, 169–182 (1955).PubMedGoogle Scholar
  50. Hahn, G.A., Mandel, H.G.: The effects of fluorourecil on RNA synthesis in Bacillus cereus. Biochem. Pharmacol., in press (1971).Google Scholar
  51. Hall, T.C., Kessel, D., Godsill, A., Roberts, D.: Uridine phosphorylation, an overlooked pathway ? 5-Fluorouridine, a neglected drug ? Proc. Amer. Ass. Cancer Res. 9, 27 (1968).Google Scholar
  52. Handschumacher, R.E.: Metabolites of 6-azauracil formed by Streptococcus faecalis. Fed. Proc. 16, 191 (1957).Google Scholar
  53. Hansen, H.J., Giles, W.G., Nadler, S.B.: Metabolism of 9-ethyl-6-MP-S35 and 9-butyl-6-MP-S35 in humans. Proc. Soc. exp. Biol. (N.Y.) 113, 163–165 (1963).Google Scholar
  54. Hartmann, K.-U., Heidelberger, C.: Studies on fluorinated pyrimidines. XIII. Inhibition of thymidylate synthetase. J. biol. Chem. 236, 3006–3013 (1961).PubMedGoogle Scholar
  55. Heidelberger, C.: Fluorinated pyrimidines. Progress in Nucleic Acid Research and Molecular Biology 4, 1–50 (1965).PubMedGoogle Scholar
  56. Heidelberger, C., Boohar, J., Kampschroer, B.: Fluorinated pyrimidines. XXIV. In vivo metabolism of 5-trifluoromethyluracil-2-C14 and 5-trifluoromethyl-2′-deoxyuridine-2-C14. Cancer Res. 25, 377–381 (1965).PubMedGoogle Scholar
  57. Heidelberger, C., Chaudhuri, N.K., Danneberg, P., Mooren, D., Griesbach, L., Duschinsky, R., Schnitzer, R.J., Pleven, E., Scheiner, J.: Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature (Lond.) 179, 663–666 (1957).Google Scholar
  58. Heidelberger, C., Griesbach, L., Cruz, O., Schnitzer, R.J., Grunberg, E.: Fluorinated pyrimidines. VI. Effects of 5-fluorouridine and 5-fluoro-2′-deoxyuridine on transplanted tumors. Proc. Soc. exp. Biol. (N.Y.) 97, 470–475 (1958).Google Scholar
  59. Henderson, E.S., Samaha, R.J.: Evidence that drugs in multiple combinations have materially advanced the treatment of human malignancies. Cancer Res. 29, 2272–2280 (1969).Google Scholar
  60. Henderson, J.F.: Variation in selective toxicity: Causes and consequences. Cancer Res. 29, 2404–2406 (1969).PubMedGoogle Scholar
  61. Henderson, J.F., Mandel, H.G.: Purine and pyrimidine antimetabolites in cancer chemotherapy. In: Advances in Pharmacology 2, 297–343 (1963).Google Scholar
  62. Henderson, J.F., Mazel, P.: Demethylation of purine analogs by microsomal enzymes from mouse liver. Biochem. Pharmacol. 13, 207–210 (1964a).PubMedGoogle Scholar
  63. Henderson, J.F., Mazel, P.: Studies on the induction of microsomal S-, N-and O-demethylases. Biochem. Pharmacol. 13, 1471–1474 (1964b).PubMedGoogle Scholar
  64. Hirschberg, E., Kream, J., Gellhorn, A.: Enzymatic deamination of 8-azaguanine in normal and neoplastic tissues. Cancer Res. 12, 524–528 (1952).PubMedGoogle Scholar
  65. Hitchings, G.H., Falco, E.A., Sherwood, M.B.: The effects of pyrimidines on the growth of Lactobacillus casei. Science 102, 251–252 (1945).PubMedGoogle Scholar
  66. Horowitz, J., Kohlmeier, V.: Formation of active β-galactosidase by Escherichia coli treated with 5-fluorouracil. Biochim. biophys. Acta (Amst.) 142, 208–218 (1967).Google Scholar
  67. Jacquez, J.A.: Permeability of Ehrlich cells of uracil, thymine and fluorouracil. Proc. Soc. exp. Biol. (N.Y.) 109, 132–135 (1962).Google Scholar
  68. Johnson, R.K., Mazel, P., Donahue, J.D., Jondorf, W.R.: Factors involved in the inhibition of drug metabolism by (—)-emetine. Biochem. Pharmacol. (in press).Google Scholar
  69. Kahan, F.M., Hurwitz, J.: The role of deoxyribonucleic acid in ribonucleic acid synthesis. IV. The incorporation of pyrimidine and purine analogues into ribonucleic acid. J. biol. Chem. 237, 3778–3785 (1962).Google Scholar
  70. Kaiser, I.I.: Studies on 5-fluorouracil-containing ribonucleic acid. I. Separation and partial characterization of fluorouracil-containing transfer ribonucleic acids from Escherichia coli. Biochemistry 8, 231–238 (1969).PubMedGoogle Scholar
  71. Kaplan, N.O., Ciotti, M.M.: Chemistry and properties of the 3-acetylpyridine analogue of diphosphopyridine nucleotide. J. biol. Chem. 221, 823–832 (1956).PubMedGoogle Scholar
  72. Kessel, D., Hall, T.C.: Studies on drug transport by normal human leukocytes. Biochem. Pharmacol. 16, 2395–2403 (1967).PubMedGoogle Scholar
  73. Kessel, D., Hall, T.C., Wodinsky, I.: Nucleotide formation as a determinant of 5-fluorouracil response in mouse leukemias. Science 154, 911–913 (1966).PubMedGoogle Scholar
  74. Kopin, I.J.: False adrenergic transmitters. Ann. Rev. Pharmacol. 8, 377–394 (1968).PubMedGoogle Scholar
  75. Krenitsky, T.A., Papaioannou, R., Elion, G.B.: Human hypoxanthine phosphoribosyltransferase. I. Purification, properties, and specificity. J. biol. Chem. 244, 1263–1270 (1969).PubMedGoogle Scholar
  76. Langen, P.: Antimetabolite des Nucleinsäure-Stoffwechsels. Berlin: Akademie-Verlag 1968.Google Scholar
  77. Lasnitzki, I., Matthews, R.E.F., Smith, J.D.: Incorporation of 8-azaguanine into nucleic acids. Nature (Lond.) 173, 346–349 (1954).Google Scholar
  78. Le Page, G.A.: Basic biochemical effects and mechanism of action of 6-thioguanine. Cancer Res. 23, 1202–1206 (1963).Google Scholar
  79. Le Page, G.A., Jones, M.: Further studies on the mechanism of action of 6-thioguanine. Cancer Res. 21, 1590–1594 (1961).Google Scholar
  80. Le Page, G.A., Kaneko, T.: Effective means of reducing toxicity without concomitant sacrifice of efficacy of carcinostatic therapy. Cancer Res. 29, 2314–2318 (1969).Google Scholar
  81. Lipmann, F.: Acetylation of sulfanilamide by liver homogenates and extracts. J. biol. Chem. 160, 173–190 (1945).Google Scholar
  82. Loo, T.L., Adamson, R.H.: The enzymic oxidation of certain folic acid antagonists. Biochem. Pharmacol. 11, 170–171 (1962).PubMedGoogle Scholar
  83. Lovenberg, W., Weissbach, H., Udenfriend, S.: Aromatic L-amino acid decarboxylase. J. biol. Chem. 237, 89–93 (1962).PubMedGoogle Scholar
  84. Lowrie, R.J., Bergquist, P.L.: Transfer ribonucleic acids from Escherichia coli treated with 5-fluorouracil. Biochemistry 7, 1761–1770 (1968).PubMedGoogle Scholar
  85. Maitre, L.: Presence of a-methyl-DOPA metabolites in heart and brain of guinea pigs treated with a-methyl-tyrosine. Life Sci. 4, 2249–2256 (1965).PubMedGoogle Scholar
  86. Mandel, H.G.: The physiological disposition of some anticancer agents. Pharmacol. Rev. II, 743–838 (1959).Google Scholar
  87. Mandel, H.G.: The incorporation of 5-fluorouracil into RNA and its molecular consequences. In: Progress in Molecular and Subcellular Biology, Vol. 1, pp. 82–135 (F.E. Hahn, ed.). Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  88. Mandel, H.G.: Pathways of drug biotransformation: biochemical conjugations. In: Fundamental of drug metabolism and disposition (B.N. La Du, H.G. Mandel and E.L. Way, eds.). Baltimore: Williams & Wilkins 1971.Google Scholar
  89. Mandel, H.G., Alpen, E.L., Winters, W.D., Smith, P.K.: The urinary metabolites of 8-azaguanine in the mouse and the monkey. J. biol. Chem. 193, 63–71 (1951).PubMedGoogle Scholar
  90. Mandel, H.G., Latimer, R.G., Riis, M.: The actions of thioguanine in Bacillus cereus. Biochem. Pharmacol. 14, 661–682 (1965).PubMedGoogle Scholar
  91. Mandel, H.G., Oliver, H.M., Riis, M.: Interference of barbiturates with pyrimidine incorporation. I. Amobarbital inhibition of orotate uptake in Bacillus cereus. Molec. Pharmacol. 3, 537–548 (1967).Google Scholar
  92. Mandel, H.G., Riis, M.: Interference of barbiturates with pyrimidine incorporation. II. Structural specificity of the inhibition of orotate uptake in Bacillus cereus. Biochem. Pharmacol 19, 1867–1877 (1970).PubMedGoogle Scholar
  93. Mandel, H.G., Triester, S.R., Szapary, D.: Interference of barbiturates with pyrimidine incorporation. III. Studies on the mechanism of the amobarbital-orotate relationship. Biochem. Pharmacol. 19, 1879–1892 (1970).PubMedGoogle Scholar
  94. Marchand, C., Fujimoto, J.M.: The enhancement of the action of 6-mercaptopurine (6MP) on leukemia L1210 by compounds which act on the liver. Fed. Proc. 21, 165 (1962).Google Scholar
  95. Markham, R.: Lethal synthesis. In: The strategy of chemotherapy. Eighth Symposium of the Society for Gen. Microbiology, pp. 163–177. London: Cambridge University Press 1958.Google Scholar
  96. Marsh, C.A.: Chemistry of D-glucuronic acid and its glycosides. In: Glucuronic acid — free and combined. Chemistry, Biochemistry, Pharmacology and Medicine, pp. 3–136. Ed. by G.J. Dutton. New York: Academic Press 1966.Google Scholar
  97. Matthews, R.E.F.: Biosynthetic incorporation of metabolite analogs. Pharmacol. Rev. 10, 359–406 (1958).PubMedGoogle Scholar
  98. Mazel, P., Henderson, J.F.: On the relationship between lipid solubility and microsomal metabolism of drugs. Biochem. Pharmacol. 14, 92–94 (1965).PubMedGoogle Scholar
  99. Mazel, P., Henderson, J.F., Axelrod, J.: S-Demethylation by microsomal enzymes. J. Pharmacol. exp. Ther. 143, 1–6 (1964).PubMedGoogle Scholar
  100. Mazel, P., Kerza-Kwiatecki, A., Simanis, J.: Studies on the demethylation of puromycin and related compounds by liver microsomal enzymes. Biochim. biophys. Acta (Amst.) 114, 72–82 (1966).Google Scholar
  101. Meloni, M.L., Rogers, W.I.: Enhancement of 6-thioinosine-5′-monophosphate synthesis in solid L-1210 lymphatic leukemia cells by prior exposure to 6-mercaptopurine. Biochem. Pharmacol. 18, 413–417 (1969).PubMedGoogle Scholar
  102. Mitchell, M.S., Wawro, N.W., De Conti, R.C., Kaplan, S.R., Papac, R., Bertino, J.R.: Effectiveness of high-dose infusions of methotrexate followed by leucovorin in carcinoma of the head and neck. Cancer Res. 28, 1088–1094 (1968).PubMedGoogle Scholar
  103. Montgomery, J.A., Dixon, G.J., Dulmage, E.A., Thomas, H.J., Brockman, R.W., Skipper, H.E.: Inhibition of 6-mercaptopurine-resistant cancer cells in culture by bis(thioinosine)-5′,5′″-phosphate. Nature (Lond.) 199, 769–772 (1963).Google Scholar
  104. Moore, E.C., Le Page, G.A.: The metabolism of 6-thioguanine in normal and neoplastic tissues. Cancer Res. 18, 1075–1083 (1958).PubMedGoogle Scholar
  105. Mudd, S.H., Cantoni, G.L.: Selenomethionine in enzymatic transmethylations. Nature (Lond.) 180, 1052 (1957).Google Scholar
  106. Mukherjee, K.L., Heidelberger, C.: Studies on fluorinated pyrimidines. IX. The degradation of 5-fluorouracil-6-C14. J. biol. Chem. 235, 433–437 (1960).PubMedGoogle Scholar
  107. Mukherjee, K.L., Heidelberger, C.: Studies on fluorinated pyrimidines. XV. Inhibition of the incorporation of formate-C14 into DNA thymine of Ehrlich ascites carcinoma cells by 5-fluoro-2′-deoxyuridine-5′-monophosphate and related compounds. Cancer Res. 22, 815–822 (1962).PubMedGoogle Scholar
  108. Muscholl, E.: Biosynthese (aus α-Methyldopa), Aufnahme und Freisetzung von α-Methyladrenalin. Arch. exp. Pathol. Pharmakol. 251, 162–163 (1965).Google Scholar
  109. Muscholl, E., Maitre, L.: Release by sympathetic stimulation of a-methyl-noradrenaline stored in the heart after administration of α-methyldopa. Experientia (Basel) 19, 658–660 (1963).Google Scholar
  110. Muscholl, E., Sprenger, E.: Vergleichende Untersuchung der Blutdruckwirkung, Aufnahme und Speicherung von Dihydroxyephedrin (α-Methyladrenalin) und Dihydroxypseudoephedrin. Arch. exp. Pathol. Pharmakol. 254, 109–124 (1966).Google Scholar
  111. Nathans, D.: Puromycin inhibition of protein synthesis: incorporation of puromycin into peptide chains. Proc. nat. Acad. Sci. (Wash.) 51, 585–592 (1964).Google Scholar
  112. Novelli, G.D.: Amino acid activation for protein synthesis. Annual Review of Biochemistry 36, 449–484 (1967).PubMedGoogle Scholar
  113. Oliverio, V.T., Davidson, J.D.: The physiological disposition of dichloromethotrexate-Cl36 in animals. J. Pharmacol. exp. Ther. 137, 76–83 (1962).PubMedGoogle Scholar
  114. Oliverio, V.T., Zubrod, C.G.: Clinical pharmacology of the effective anti-tumor drugs. Ann. Rev. Pharmacol. 5, 335–356 (1965).Google Scholar
  115. Pasternak, C.A., Handschumacher, R.E.: The biochemical activity of 6-azauridine. Interference with pyrimidine metabolism in transplantable mouse tumors. J. biol. Chem. 234, 2992–2997 (1959).PubMedGoogle Scholar
  116. Paterson, A.R.P.: The formation of 6-mercaptopurine riboside phosphate in ascites tumor cells. Canad. J. Biochem. 37, 1011–1023 (1959).PubMedGoogle Scholar
  117. Paterson, A.R.P., Moriwaki, A.: Combination therapy: Synergistic inhibition of lymphoma L5178Y cells in culture and in vivo with 6-mercaptopurine and 6-(methyl-mercapto)purine ribonucleoside. Cancer Res. 29, 681–686 (1969).PubMedGoogle Scholar
  118. Pattison, F.L.M., Hunt, S.B.D., Stothers, J.B.: Toxic fluorine compounds. IX. ω-Fluorocarboxylic esters and acids. J. Org. Chem. 21, 883–886 (1956).Google Scholar
  119. Peters, R.A.: Lethal synthesis. Proc. roy. Soc. B 139, 143–170 (1952).Google Scholar
  120. Reichard, P., Sköld, O.: Possible enzymic mechanism for the development of resistance against fluorouracil in ascites tumors. Nature (Lond.) 183, 939–941 (1959).Google Scholar
  121. Reyes, P.: Synthesis of 5-fluorouridine 5′-phosphate by pyrimidine phosphoribosyltransferase of mammalian origin. I. Some properties of the enzyme from P 1534J mouse leukemia cells. Biochemistry 8, 2057–2062 (1969).PubMedGoogle Scholar
  122. Richmond, M.H.: The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bact. Rev. 26, 398–420 (1962).PubMedGoogle Scholar
  123. Rogers, H.J., Perkins, H.R.: 5-Fluorouracil and mucopeptide biosynthesis by Staphylococcus aureus. Biochem. J. 77, 448–459 (1960).PubMedGoogle Scholar
  124. Rogers, W.I., Meloni, M.L., Wodinsky, I., Kensler, C.J.: Metabolic basis for enhanced chemotherapy of solid L-1210 with 6 MP. Proc. Amer. Ass. Cancer Res. 10, 74 (1969).Google Scholar
  125. Roush, A., Norris, E.R.: Deamination of 8-azaguanine by guanase. Arch. Biochem. 29, 124–129 (1950).PubMedGoogle Scholar
  126. Sartorelli, A.C., Le Page, G.A.: The development and biochemical characterization of resistance to azaserine in a TA-3 ascites carcinoma. Cancer Res. 18, 457–463 (1958).PubMedGoogle Scholar
  127. Sartorelli, A.C., Le Page, G.A., Moore, E.C.: Metabolic effects of 6-thioguanine. I. Studies on thioguanine-resistant and-sensitive Ehrlich ascites cells. Cancer Res. 18, 1232–1239 (1958).PubMedGoogle Scholar
  128. Scannell, J.P., Hitchings, G.H.: Thioguanine in deoxyribonucleic acid from tumors of 6-mercaptopurine-treated mice. Proc. Soc. exp. Biol. (N.Y.) 122, 627–629 (1966).Google Scholar
  129. Schabel, F.M., Jr., Laster, W.R., Jr., Skipper, H.E.: Chemotherapy of leukemia L-1210 by 6-mercaptopurine (NSC-755) in combination with 6-methylthiopurine ribonucleoside (NSC 40774). Cancer Chemother. Reports 51, 111–124 (1967).Google Scholar
  130. Schanker, L.S., Jeffrey, J.J.: Active transport of foreign pyrimidines across the intestinal epithelium. Nature (Lond.) 190, 727–728 (1961).Google Scholar
  131. Selawry, O.S., and Members of Acute Leukemia Group B.: New treatment schedule with improved survival in childhood leukemia. J. Amer. med. Ass. 194, 75–80 (1965).Google Scholar
  132. Skibba, J.L., Beal, D.D., Ramirez, G., Bryan, G.T.: N-Demethylation of the antineoplastic agent 4(5)-(3,3-dimethyl-1-triazeno) imidazole-5(4)-carboxamide by rats and man. Cancer Res. 30, 147–150 (1970).PubMedGoogle Scholar
  133. Skipper, H.E., Schabel, F.M., Jr., Wilcox, W.S.: Experimental evaluation of potential anticancer agents. XXI. Scheduling of arabinosylcytosine to take advantage of its S-phase specificity against leukemia cells. Cancer Chemother. Reports 51, 125–165 (1967).Google Scholar
  134. Sköld, O.: Enzymic ribosidation and ribotidation of 5-fluorouracil by extracts of the Ehrlichascites tumor. Biochim. biophys. Acta (Amst.) 29, 651 (1958).Google Scholar
  135. Stenram, U., Willén, R.: Radioautographic, ultrastructural and biochemical studies on the effect of fluorouracil on the RNA synthesis in the liver of rats. Z. Zellforsch. 82, 270–281 (1967).PubMedGoogle Scholar
  136. Stock, J.A.: Antimetabolites. In: Experimental Chemotherapy, Vol. IV, pp. 79–237, Part 1 (R.J. Schnitzer and F. Hawkins, eds.). New York: Academic Press 1966.Google Scholar
  137. Tomasz, A., Borek, E.: The mechanism of an osmotic instability induced in E. coli K-12 by 5-fluorouracil. Biochemistry 1, 543–552 (1962).PubMedGoogle Scholar
  138. Tomkins, G.M.: A mammalian 3 α-hydroxysteroid dehydrogenase. J. biol. Chem. 218, 437–447 (1956).PubMedGoogle Scholar
  139. Tooze, J., Weber, K.: Isolation and characterization of amber mutants of bacteriophage R 17. J. molec. Biol. 28, 311–330 (1967).PubMedGoogle Scholar
  140. Umbreit, W.W., Waddell, J.G.: Mode of action of desoxypyridoxine. Proc. Soc. exp. Biol. (N.Y.) 70, 293 (1949).Google Scholar
  141. Vadlamudi, S., Fields, L., Waravdekar, V.S., Kline, I., Goldin, A.: Influence of colcemid on therapeutic effectiveness of cytosine arabinoside. Proc. Amer. Ass. Cancer Res. 9, 73 (1968).Google Scholar
  142. Wacker, A., Ebert, M., Kolm, H.: Metabolism of p-aminosalicylic and salicylic acids by Enterococcus. Z. Naturforsch. 13b, 147–150 (1958).Google Scholar
  143. Wang, M.C., Simpson, A.I., Paterson, A.R.P.: Combinations of 6-mercaptopurine (NSC-755) and 6-(methylmercapto)purine ribonucleoside (NSC 40774) in the therapy of Ehrlich ascites carcinoma. Cancer Chemother. Reports 51, 101–109 (1967).Google Scholar
  144. Way, J.L., Parks, R.E., Jr.: Enzymatic synthesis of 5′-phosphate nucleotides of purine analogues. J. biol. Chem. 231, 467–480 (1958).PubMedGoogle Scholar
  145. Wells, W., Gaines, D., Koenig, H.: Studies of pyrimidine nucleotide metabolism in the central nervous system. I. Metabolic effects and metabolism of 6-azauridine. J. Neurochem. 10, 709–723 (1963).PubMedGoogle Scholar
  146. Weygand, F., Wacker, A., Dellweg, H.: Stoffwechseluntersuchungen bei Mikroorganismen mit Hilfe radioaktiver Isotope. II. Kompetitive und nicht-kompetitive Enthemmung von 5-82Br-Uracil. Z. Naturforsch. 7b, 19 (1952).Google Scholar
  147. Williams, R.T.: Detoxication mechanisms. The metabolism and detoxication of drugs, toxic substances and other organic compounds. New York: John Wiley & Sons 1959.Google Scholar
  148. Williams, R.T.: The biogenesis of conjugation and detoxication products. In: Biogenesis of natural compounds, 2nd ed., pp. 589–639 (P. Bernfeld, ed.). New York: Pergamon Press 1967.Google Scholar
  149. Wittmann-Liebold, B., Wittmann, H.G.: Lokalisierung von Aminosaureaustauschen bei Nitritmutanten des Tabakmosaikvirus. Z. Vererbungsl. 97, 305–326 (1965).PubMedGoogle Scholar
  150. Wolberg, W.H.: Determinants of human tumor sensitivity to fluorinated pyrimidine chemotherapy. Ann. Surg. 166, 609–623 (1967).PubMedGoogle Scholar
  151. Woodman, R.J.: Localized incorporation of iododeoxyuridine from poly cation-complexed iododeoxycytidylic acid into DNA of several murine and hamster tumors. Cancer Res. 28, 2007–2016 (1968).PubMedGoogle Scholar
  152. Woolley, D.W.: A study of antimetabolites. New York: John Wiley & Sons, Inc. 1952.Google Scholar
  153. Zatman, L.J., Kaplan, N.O., Colowick, S.P., Ciotti, M.M.: The isolation and properties of the isonicotinic acid hydrazide analogue of diphosphopyridine nucleotide. J. biol. Chem. 209, 467–484 (1954).PubMedGoogle Scholar
  154. Zubrod, C.G.: The limited usefulness of 5-fluorouracil (5-FU) and 5-fluorodeoxyuridine (5-FUDR) in the management of patients with adenocarcinoma. In: Controversy in internal medicine, pp. 591–600 (F.J. Ingelfinger, A.S. Relman and M. Finland, eds.). Philadelphia: W.B. Saunders Co. 1966.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

  • H. George Mandel

There are no affiliations available

Personalised recommendations