Mechanisms of Induction of Drug Metabolism Enzymes

  • Harry V. Gelboin
Part of the Handbook of Experimental Pharmacology / Handbuch der experimentellen Pharmakologie book series (HEP, volume 28 / 2)


A large segment of this review concerns the changes induced by polycyclic hydrocarbons and drugs on the level of certain enzyme activities and the mechanism of these changes. It is, therefore, important to summarize briefly some of the factors which may affect the observed activity of an enzyme system.


Enzyme Induction Microsomal Protein Polycyclic Hydrocarbon Aryl Hydrocarbon Hydroxylase Amino Acid Incorporation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfred, L.J., Gelboin, H.V.: Benzpyrene hydroxylase induction by polycyclic hydrocarbons in hamster embryonic cells grown in vitro. Science 157, 75–76 (1967).PubMedCrossRefGoogle Scholar
  2. Alvares, A.P., Schilling, G.R., Kuntzman, R.: Differences in the kinetics of benzpyrene hydroxylation by hepatic drug-metabolizing enzymes from phenobarbital and 3-methylcholanthrene-treated rats. Biochem. biophys. Res. Commun. 30, 588–593 (1968).PubMedCrossRefGoogle Scholar
  3. Arcos, J.S., Conney, A.H., Buu-Hoi, N.P.: Induction of microsomal enzyme synthesis by polycyclic aromatic hydrocarbons of different molecular sizes. J. biol. Chem. 236, 1291 to 1296 (1961).PubMedGoogle Scholar
  4. Berlin, C.M., Schimke, R.T.: Influence of turnover rates on the responses of enzymes to cortisone. Molec. Pharmacol. 1, 149–156 (1965).Google Scholar
  5. Bojarski, T.B., Hiatt, H.H.: Stabilization of thymidylate kinase activity by thymidylate and by thymidine. Nature (Lond.) 188, 1112–1114 (1960).CrossRefGoogle Scholar
  6. Bresnick, E., Brand, R., Knight, J.A.: Ribonucleic acid biosynthesis in methylcholanthrene-treated rats. Biochim. biophys. Acta (Amst.) 114, 227–233 (1966).Google Scholar
  7. Bresnick, E., Synerholm, M.E., Tizard, G.T.: Changes in liver cytoplasmic RNA after administration of 3-methylcholanthrene. Molec. Pharmacol. 4, 218–223 (1968).Google Scholar
  8. Conney, A.H.: Enzyme induction and drug toxicity. In: Proc. 2nd Intl. Pharmacol. Mtg, Vol. 4, pp. 277–297, Prague. New York: Pergamon Press 1965.Google Scholar
  9. Conney, A.H.: Pharmacological implications of microsomal enzyme induction. Pharmacol. Rev. 19, 317–366 (1967).PubMedGoogle Scholar
  10. Conney, A.H., Davison, C., Gastel, R., Burns, J.J.: Adaptive increases in drug-metabolizing enzymes induced by phenobarbital and other drugs. J. Pharmacol. exp. Ther. 130, 1–8 (1960).PubMedGoogle Scholar
  11. Conney, A.H., Gilman, A.G.: Puromycin inhibition of enzyme induction by 3-methylcholanthrene and phenobarbital. J. biol. Chem. 238, 3682–3685 (1963).PubMedGoogle Scholar
  12. Decken, A., von der Hultin, T.: Inductive effects of 3-methylcholanthrene on enzyme activities and amino acid incorporation capacity of rat liver microsomes. Arch. Biochem. Biophys. 90, 201–207 (1960).PubMedCrossRefGoogle Scholar
  13. Diamond, L., Gelboin, H.V.: Alpha-naphthoflavone: an inhibitor of hydrocarbon cytotoxicity and microsomal hydroxylase. Science 166, 1023–1025 (1969).PubMedCrossRefGoogle Scholar
  14. Ernster, L., Orrenius, S.: Substrate-induced synthesis of the hydroxylating enzyme system of liver microsomes. Fed. Proc. 24, 1190–1199 (1965).PubMedGoogle Scholar
  15. Feigelson, P., Greengard, O.: Regulation of liver tryptophan pyrrolase activity. J. biol. Chem. 237, 1908–1913 (1962).PubMedGoogle Scholar
  16. Fouts, J.R., Rogers, L.A.: Morphological changes in the liver accompanying stimulation of microsomal drug metabolizing enzyme activity by phenobarbital, chlordane, benzpyrene or methylcholanthrene in rats. J. Pharmacol. exp. Ther. 147, 112–119 (1965).PubMedGoogle Scholar
  17. Gelboin, H.V.: Studies on the mechanism of methylcholanthrene induction of enzyme activities. II. Stimulation of microsomal and ribosomal amino acid incorporation: The effects of polyuridylic acid and actinomycin D. Biochim. biophys. Acta (Amst.) 91, 130 to 144 (1964).Google Scholar
  18. Gelboin, H.V.: Carcinogens, enzyme induction and gene action. Advanc. Cancer Res. 10, 1–81 (1967).CrossRefGoogle Scholar
  19. Gelboin, H.V.: Effect of carcinogens on gene action. Monograph of 22nd Annual Symp. on Fundamental Cancer Research, Univ. of Texas, M.D. Anderson Hosp., Houston, Texas (March 1968).Google Scholar
  20. Gelboin, H.V., Blackburn, N.: Stimulatory effect of 3-methylcholanthrene on microsomal amino acid incorporation and benzpyrene hydroxylase activity and its inhibition of actinomycin D. Biochim. biophys. Acta (Amst.) 72, 657–660 (1963).CrossRefGoogle Scholar
  21. Gelboin, H.V., Sokoloff, L.: The effects of 3-methylcholanthrene and phenobarbital on amino acid incorporation into protein. Science 134, 611–612 (1961).PubMedCrossRefGoogle Scholar
  22. Gelboin, H.V., Sokoloff, L.: Studies on the mechanism of methylcholanthrene induction of enzyme activities of rat liver. Biochim. biophys. Acta (Amst.) 91, 122–129 (1964).Google Scholar
  23. Gelboin, H.V., Wortham, J.J., Wilson, R.G.: 3-methylcholanthrene and phenobarbital stimulation of rat liver RNA polymerase. Nature (Lond.) 214, 281–283 (1967).CrossRefGoogle Scholar
  24. Gillette, J.R.: Metabolism of drugs and other foreign compounds by enzymatic mechanisms. Progr. Drug. Res. 6, 11–73 (1963).Google Scholar
  25. Granick, S.: Induction of the synthesis of δ-aminolevulinic acid synthetase in liver parenchyma cells in culture by chemicals that induce acute porphyria. J. biol. Chem. 238, PC 2247–2249 (1963).PubMedGoogle Scholar
  26. Granick, S.: The induction in vitro of the synthesis of δ-aminolevulinic acid synthetase in chemical porphyria: A response to certain drugs, sex hormones, and foreign chemicals. J. biol. Chem. 241, 1359–1375 (1966).PubMedGoogle Scholar
  27. Granick, S., Urata, G.: Increase in activity of δ-aminolevulinic acid synthetase in liver mitochondria induced by feeding of 3,5-dicarbethoxy-1,4-dihydrocollidine. J. biol. Chem. 238, 821–827 (1963).PubMedGoogle Scholar
  28. Gurtoo, H.L., Campbell, T.C., Webb, R.E., Plowman, K.M.: Effect of aflatoxin and benzpyrene pretreatment upon the kinetics of benzpyrene hydroxylase. Biochem. biophys. Res. Commun. 31, 588–595 (1968).PubMedCrossRefGoogle Scholar
  29. Hildebrandt, A., Remmer, H., Estabrook, R.W.: Cytochrome P-450 of liver microsomes — one pigment or many. Biochem. biophys. Res. Commun. 30, 607–612 (1968).PubMedCrossRefGoogle Scholar
  30. Hishizawa, T., Otsuka, H., Terayama, H.: Metabolic behavior of nucleic acids in subcellular fractions from liver of rats treated with methylcholanthrene. J. Biochem. (Tokyo) 56, 97–100 (1964).Google Scholar
  31. Holland, J.J., Clayton, A.B., McCarthy, B.J.: Stimulation of protein synthesis in vitro by partially degraded ribosomal ribonucleic acid and transfer ribonucleic acid. Biochem. J. 5, 358–365 (1966).CrossRefGoogle Scholar
  32. Holtzman, J.L., Gillette, J.R.: The effect of phenobarbital on the turnover of microsomal phospholipid in male and female rats. J. biol. Chem. 243, 3020–3028 (1968).PubMedGoogle Scholar
  33. Jervell, K.F., Christoffersen, T., Morland, J.: Studies on the 3-methylcholanthrene induction and carbohydrate repression of rat liver dimethylaminoazobenzene reductase. Arch. Biochem. 111, 15–22 (1965).PubMedCrossRefGoogle Scholar
  34. Jick, H., Shuster, L.: The turnover of microsomal reduced nicotinamide adenine dinucleotide phosphatecytochrome c reductase in the livers of mice treated with phenobarbital. J. biol. Chem. 241, 5366–5369 (1966).PubMedGoogle Scholar
  35. Juchau, M.R., Cram, R.L., Plaa, G.L., Fouts, J.R.: The induction of benzpyrene hydroxylase in the isolated perfused rat liver. Biochem. Pharmacol. 14, 473–482 (1965).CrossRefGoogle Scholar
  36. Kato, R., Jondorf, W.R., Loeb, L.A., Ben, T., Gelboin, H.V.: Studies on the mechanism of drug induced microsomal enzyme activities. V. Phenobarbital stimulation of endogenous messenger RNA and polyuridylic acid-directed L-[14C]-phenylalanine incorporation. Molec. Pharmacol. 2, 171–186 (1966).Google Scholar
  37. Kato, R., Loeb, L., Gelboin, H.V.: Microsome-specific stimulation by phenobarbital of amino acid incorporation in vivo. Biochem. Pharmacol. 14, 1164–1166 (1965).PubMedCrossRefGoogle Scholar
  38. Korner, A., Munro, A.: Actinomycin inhibition of in vitro protein synthesis in rat liver. Biochem. biophys. Res. Commun. 11, 235–238 (1963).CrossRefGoogle Scholar
  39. Kuntzman, R., Levin, W., Jacobson, M., Conney, A.H.: Studies on microsomal hydroxylation and the demonstration of a new carbon monoxide binding pigment in liver microsomes. Life Sci. 7, 215–224 (1968).CrossRefGoogle Scholar
  40. Kuriyama, Y., Omura, T., Siekevttz, P., Palade, G.E.: Effect of phenobarbital on the synthesis and degradation of the protein components of rat liver microsomal membranes. J. biol. Chem. 244, 2017–2026 (1969).PubMedGoogle Scholar
  41. Levin, W., Kuntzman, R.: Studies on the incorporation of δ-aminolevulinic acid into microsomal hemoprotein: Effect of 3-methylcholanthrene and phenobarbital. Life Sci. 8, 305 to 311 (1969).PubMedCrossRefGoogle Scholar
  42. Loeb, L.A., Gelboin, H.V.: Stimulation of aminoacid incorporation by nuclear ribonucleic acid from normal and methylcholanthrene-treated rats. Nature (Lond.) 199, 809–810 (1963).CrossRefGoogle Scholar
  43. Loeb, L.A., Gelboin, H.V.: Methylcholanthreneinduced changes in rat liver nuclear RNA. Proc. nat. Acad. Sci. (Wash.) 52, 1219–1226 (1964).CrossRefGoogle Scholar
  44. Madix, J.C., Bresnick, E.: Increased efficacy of liver chromatin as a template for RNA synthesis after administration of 3-methylcholanthrene. Biochem. biophys. Res. Commun. 28, 445–452 (1967).PubMedCrossRefGoogle Scholar
  45. Marver, H.S.: The role of heme in the synthesis and repression of microsomal protein. Proc. Mtg. of Intl. Symposium on Microsomes and Drug Oxidation, Bethesda, Md., Feb. 1968.Google Scholar
  46. Marver, H.S., Collins, A., Tschudy, D.P., Rechcigl, M., Jr.: δ-aminolevulinic acid synthetase. J. biol. Chem. 241, 4323–4329 (1966).PubMedGoogle Scholar
  47. Matthaei, J.H., Nirenberg, M.W.: Characteristics and stabilization of DNAase-sensitive protein synthesis in E.coli extracts. Proc. nat. Acad. Sci. (Wash.) 47, 1580–1588 (1961).CrossRefGoogle Scholar
  48. McAuslan, B.R.: The induction and repression of thymidine kinase in the poxvirus-infected HeLa cell. Virology 21, 383–389 (1963).PubMedCrossRefGoogle Scholar
  49. Merits, I.: Actinomycin inhibition of RNA synthesis in rat liver. Biochem. biophys. Res. Commun. 10, 254–259 (1963).PubMedCrossRefGoogle Scholar
  50. Miller, J., Gelboin, H.V.: Unpublished observations.Google Scholar
  51. Monod, J., Jacob, F.: Teleonomic mechanism in cellular metabolism, growth and differentiation. Cold Spr. Harb. Symp. quant. Biol. 28, 389–401 (1961).Google Scholar
  52. Nebert, D.W., Gelboin, H.V.: Substrate-inducible aryl hydroxylase in mammalian cell cultures: I. Assay and properties of induced enzyme. J. biol. Chem. 243, 6242–6249 (1968a).PubMedGoogle Scholar
  53. Nebert, D.W., Gelboin, H.V.: Substrate-inducible microsomal aryl hydroxylase in mammalian cell culture. II. Cellular responses during enzyme induction. J. biol. Chem. 243, 6250–6261 (1968b).Google Scholar
  54. Nebert, D.W., Gelboin, H.V.: The role of RNA and protein synthesis in microsomal aryl hydrocarbon hydroxylase induction in cell culture: The independence of transcription and translation. J. biol. Chem. 245, 160–168 (1970).PubMedGoogle Scholar
  55. Neurath, H., Dixon, G.H.: Structure and activation of trypsinogen and chymotrypsinogen. Fed. Proc. 16, 791–801 (1957).PubMedGoogle Scholar
  56. Omura, T., Siekevttz, P., Palade, G.E.: Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J. biol. Chem. 242, 2389–2396 (1967).PubMedGoogle Scholar
  57. Orrentus, S., Ericsson, J.L.E.: Enzyme-membrane relationship in phenobarbital induction of synthesis of drug-metabolizing enzyme system and proliferation of endoplasmic membranes. J. Cell. Biol. 28, 181–198 (1966).CrossRefGoogle Scholar
  58. Orrentus, S., Ericsson, J.L.E., Ernster, L.: Phenobarbital-induced synthesis of the microsomal drug-metabolizing enzyme system and its relationship to the proliferation of endoplasmic membranes. A morphological and biochemical study. J. Cell. Biol. 25, 627–639 (1965).CrossRefGoogle Scholar
  59. Peterkofsky, B., Tomkins, G.M.: Effect of inhibitors of nucleic acid synthesis on steroid-mediated induction of tyrosine aminotransferase in hepatoma cell cultures. J. molec. Biol. 30, 49–61 (1967).PubMedCrossRefGoogle Scholar
  60. Reich, E., Franklin, R.M., Shatkin, A.J., Tatum, E.L.: Effect of actinomycin D on cellular nucleic acid synthesis and virus production. Science 134, 556–557 (1961).PubMedCrossRefGoogle Scholar
  61. Remmer, H., Merker, H.J.: Drug-induced changes in the liver endoplasmic reticulum: Association with drugmetabolizing enzymes. Science 142, 1657–1658 (1963).PubMedCrossRefGoogle Scholar
  62. Schenkman, J.B., Grain, H., Zange, M., Remmer, H.: On the problem of possible other forms of cytochrome P450 in liver microsomes. Biochim. biophys. Acta (Amst.) 171, 23–31 (1969).Google Scholar
  63. Schenkman, J.B., Sato, R.: The relationship between the pH-induced spectral change in ferriprotoheme and the substrate-induced spectral change of the microsomal mixed-function oxidase. Molec. Pharmacol. 4, 613–620 (1968).Google Scholar
  64. Schimke, R.T.: The importance of both synthesis and degradation in the control of arginase levels in rat liver. J. biol. Chem. 239, 3808–3817 (1964).PubMedGoogle Scholar
  65. Schimke, R.T., Sweeney, E.W., Berlin, C.M.: An analysis of the kinetics of rat liver tryptophan pyrrolase induction: The significance of both enzyme synthesis and degradation. Biochem. biophys. Res. Commun. 15, 214–219 (1964).PubMedCrossRefGoogle Scholar
  66. Siefert, J. von, Greim, H., Chandra, P.: Die Wirkung von Phenobarbital auf die Ribosomenfraktionen der Rattenleber. Hoppe-Seylers Z. physiol. Chem. 349, 1179–1184 (1968).CrossRefGoogle Scholar
  67. Sladek, N.E., Mannering, G.J.: Induction of drug metabolism. I. Differences in the mechanisms by which polycyclic hydrocarbons and phenobarbital produce their inductive effects on microsomal N-demethylating systems. Molec. Pharmacol. 5, 174–185 (1969a).Google Scholar
  68. Sladek, N.E., Mannering, G.J.: Induction of drug metabolism. II. Qualitative differences in the microsomal N-demethylating systems stimulated by polycyclic hydrocarbons and by phenobarbital. Molec. Pharmacol. 5, 186–199 (1969b).Google Scholar
  69. Stephen, J.M.L., Waterlow, J.C.: Use of carbon-14-labelled arginine to measure the catabolic rate of serum and liver proteins and the extent of amino-acid recycling. Nature (Lond.) 211, 978–980 (1966).CrossRefGoogle Scholar
  70. Swick, R.W.: Measurement of protein turnover in rat liver. J. biol. Chem. 231, 751–764 (1958).PubMedGoogle Scholar
  71. Swick, R.W., Hande, D.T.: The distribution of fixed carbon in amino acids. J. biol. Chem. 218, 577–585 (1956).PubMedGoogle Scholar
  72. Tamaoki, T., Mueller, G.C.: Synthesis of nuclear and cytoplasmic RNA of HeLa cells and the effect of actinomycin D. Biochem. biophys. Res. Commun. 9, 451–454 (1962).PubMedCrossRefGoogle Scholar
  73. Tatibana, M., Cohen, P.P.: Formation and conversion of macromolecular precursor(s) in the biosynthesis of carbamyl phosphate synthetase. Proc. nat. Acad. Sci. (Wash.) 53, 104–111 (1965).CrossRefGoogle Scholar
  74. Thompson, E.B., Tomkins, G.M., Curran, J.F.: Induction of tyrosine α-ketoglutarate transaminase by steroid hormones in a newly established tissue culture cell line. Proc. nat. Acad. Sci. (Wash.) 56, 296–303 (1966).CrossRefGoogle Scholar
  75. Tomkins, G.M., Garren, L.D., Howell, R.R., Peterkofsky, B.: The regulation of enzyme synthesis by steroid hormones: The role of translation. J. cell. comp. Physiol. 66, 137–151 (1965).CrossRefGoogle Scholar
  76. Tschudy, D.P., Perlroth, M.G., Marver, H.S., Collins, A., Hunter, G., Jr.: Acute intermittent porphyria: The first “overproduction disease” localized to a specific enzyme. Proc. nat. Acad. Sci. (Wash.) 53, 841–847 (1965).CrossRefGoogle Scholar
  77. Yarmolinsky, M.B., de la Haba, G.L.: Inhibition by puromycin of amino acid incorporation into protein. Proc. nat. Acad. Sci. (Wash.) 45, 1721–1729 (1959).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

  • Harry V. Gelboin

There are no affiliations available

Personalised recommendations