Skip to main content
  • 56 Accesses

Abstract

This paper will attempt to summarize some of the neurophysiological findings judged to be pertinent to the problem of pattern recognition in the auditory system. The field will be restricted to single neurone (micro-electrode) studies in the mammalian nervous system, and will concentrate on those neural mechanisms central to the cochlear nerve, extending to the primary auditory cortex (Fig. 1). The vast majority of the data are from the cat unless otherwise specified. More complete reviews of auditory physiology are to be found elsewhere (e.g. [80; 68]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, M., Goldstein, M. H. Jr.: Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J. Neurophysiol. 33,172–187 (1970).

    PubMed  Google Scholar 

  2. Ades, H. W.: Central auditory mechanisms. In: Handbook of physiology, Vol. 1., Sect. 1., Chap. 24. American Physiological Society 1959.

    Google Scholar 

  3. Adrian, H. O., Lifshitz, W. M., Tavitas, R. J., Galli, F. P.: Activity of neural units in medial geniculate body of cat and rabbit. J. Neurophysiol. 29, 1046–1060 (1966).

    PubMed  Google Scholar 

  4. Aitkin, L. M., Dunlop, C. W.: Inhibition in the medial geniculate body of the cat. Exp. Brain Res. 7, 68–83 (1969).

    Article  PubMed  Google Scholar 

  5. Altman, J. A.: Are there neurones detecting direction of sound source motion ? Exp. Neurol. 22,13–25 (1968).

    PubMed  Google Scholar 

  6. Altman, J. A Syka, J., Shmigidina, G. N.: Neuronal activity in the medial geniculate body of the cat during monaural and binaural stimulation. Exp. Brain Res. 10, 81–93 (1970).

    Article  PubMed  Google Scholar 

  7. Bekesy, G. von: Hearing theories and complex sounds. J. acoust. Soc. Amer. 35, 588–601 (1963).

    Google Scholar 

  8. Boer, E. de.: Reverse correlation II. Initiation of nerve impulses in the inner ear. Proc. Konikl. Nederl. Akad. v. Wetenschap. 72, 129–151 (1969).

    Google Scholar 

  9. Bogdanski, D. F., Galambos, R.: Studies of the auditory system with implanted electrodes. In: Neural mechanisms of auditory and vestibular systems, Chap. 10, (Rasmussen, G. L., Windle, W. F., Eds.) (1960).

    Google Scholar 

  10. Brugge, J. F., Anderson, D. J., Hind, J. E., Rose, J. E.: Time structure of discharges in single auditory nerve fibres of the squirrel monkey in response to complex periodic sounds. J. Neurophysiol. 32, 386–407 (1969).

    Google Scholar 

  11. Campbell, F. W., Robson, J. G.: Applications of fourier analysis to the visibility of gratings. J. Physiol. (Lond.) 197, 551–556 (1968).

    Google Scholar 

  12. Capps, M. J., Ades, H. W.: Auditory frequency discrimination after transection of olivocochlear bundle in squirrel monkeys. Exp. Neurol. 21, 147–158 (1968).

    Article  PubMed  Google Scholar 

  13. Cherry, C.: On human communication: a review, a survey and a criticism. New York: MIT Press and John Wiley. 1957.

    Google Scholar 

  14. Comis, S. D., Whitfield, I. C.: Influence of centrifugal pathways on unit activity in the cochlear nucleus. J. Neurophysiol. 31, 62–68 (1968).

    PubMed  Google Scholar 

  15. David, E., Finkenzeller, P., Kallert, S., Keidel, W. D.: Reizfrequenzborrelierte “untersetzte” neuronale Entladungsperiodizitat im colliculus inferior und iin corpus geniculatum mediale. Pfliigers Arch. 309 (1969).

    Google Scholar 

  16. Dewson, J. H. III., Pribram, K. H., Lynch, J. C.: Effects of ablation of temporal cortex upon speech sound discrimination in the monkey. Exp. Neurol. 24, 579–591 (1969).

    Article  PubMed  Google Scholar 

  17. Erulkar, S. D.: The responses of single units of the inferior colliculus of the cat to acoustic stimulation. Proc. roy. Soc. B. 150, 336–355 (1959).

    Article  Google Scholar 

  18. Erulkar, S. D Butler, R. A., Gerstein, G. L.: Excitation and inhibition in cochlear nucleus. II. Frequency-modulated tones. J. Neurophysiol. 31, 537–548 (1968).

    PubMed  Google Scholar 

  19. Evans, E. F.: Behaviour of neurones in the auditory cortex. Ph. D. Thesis, University of Birmingham 1965.

    Google Scholar 

  20. Evans, E. F. (1) Upper and lower levels of the auditory system: a contrast of structure and function. In: Neural networks, pp. 24–33, (Caianiello, E. R., Ed.). Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  21. Evans, E. F. (2) Cortical representation. In: Hearing mechanisms in vertebrates, pp. 272–287. (de Reuck, A. V. S., Knight, J., Eds.). London: Churchill Ltd. 1968.

    Google Scholar 

  22. Evans, E. F. Narrow ‘tuning’ of cochlear nerve fibre responses in the guinea pig. J. Physiol. (Lond.) 206,14–15 P (1970).

    Google Scholar 

  23. Evans, E. F. Nelson, P. G.: (1) Behaviour of neurones in cochlear nucleus under steady and modulated tonal stimulation. Fed. Proc. 25, 463 (1966).

    Google Scholar 

  24. Evans, E. F. Nelson, P. G. (2) Responses of neurones in cat cochlear nucleus to modulated tonal stimuli. J. acoust. Soc. Amer. 40, 1275–1276 (1966).

    Article  Google Scholar 

  25. Evans, E. F. Nelson, P. G. An intranuclear pathway to the dorsal division of the cochlear nucleus of the cat. J. Physiol. (Lond.) 196, 76–78P (1968).

    Google Scholar 

  26. In preparation.

    Google Scholar 

  27. Evans, E. F Ross, H. F., Whitfield, I. C.: The spatial distribution of unit characteristic frequency in the primary auditory cortex of the cat. J. Physiol. (Lond.) 179, 238–247 (1965).

    Google Scholar 

  28. Evans, E. F Whitfield, I. C.: Classification of unit responses in the auditory cortex of the un- anaesthetized and unrestrained cat. J. Physiol. (Lond.) 171, 476–493 (1964).

    Google Scholar 

  29. Evans, E. F Wilson, J. P., Rosenberg, J.: The effective bandwidth of cochlear nerve fibres. J. Physiol. (Lond.) 207, 62–63P (1970).

    Google Scholar 

  30. Unpublished data.

    Google Scholar 

  31. Feher, O., Whitfield, I. C.: Auditory cortical units which respond to complex tonal stimuli. J. Physiol. (Lond.) 182, 39P (1966).

    Google Scholar 

  32. Fex. J.: Auditory activity in centrifugal and centripetal cochlear fibres in cat. Acta, physiol. scand. 55, (Suppl. 189), 1–68 (1962).

    Google Scholar 

  33. Galambos, R., Schwartzkopff, J., Rupert, A.: Microelectrode study of superior olivary nuclei. Amer. J. Physiol. 197, 527–536 (1959).

    PubMed  Google Scholar 

  34. Glattke, T. J.: Unit responses of the cat cochlear nucleus to amplitude-modulated stimuli. J. acoust. Soc. Amer. 45, 419–425 (1969).

    Article  Google Scholar 

  35. Goldstein, J. L., Kiang, N.Y-S.: Neural correlates of the aural combination tone 2fx—f2. Proc. I.E.E.E. 56, 981–992 (1968).

    Google Scholar 

  36. Goldstein, M. H. Jr.: Single unit studies of cortical coding of simple acoustic stimuli. In: Physiological and biochemical aspects of nervous integration, p. 131–151. (Carlson, F. D., Prentice-Hall Inc.) 1968.

    Google Scholar 

  37. Goldstein, M. H. Jr. Daly, R. L., Abeles, M., Mcintosh, J.: Functional architecture in cat primary auditory cortex: Tonotopic organization. J. Neurophysiol. 33, 188–197 (1970).

    PubMed  Google Scholar 

  38. Goldstein, M. H. Jr. Hall, J. L. II., Butterfield, B. 0.: Single unit activity in primary auditory cortex of unanaesthetized cats. J. acoust. Soc. Amer. 43, 444–455 (1968).

    Article  Google Scholar 

  39. Greenwood, D. D., Maruyama, N.: Excitatory and inhibitory response areas of auditory neurones in the cochlear nucleus. J. Neurophysiol. 28, 863–892 (1965).

    PubMed  Google Scholar 

  40. Hall, J. L. II: Binaural interaction in the accessory superior olivary nucleus of the cat. J. acoust. Soc. Amer. 37, 814–823 (1965).

    Article  Google Scholar 

  41. Hall, J. L. II Goldstein, M. H. Jr.: Representation of binaural stimuli by single units in primary auditory cortex of unanaesthetized cats. J. acoust. Soc. Am. 43, 456–461 (1968).

    Article  PubMed  Google Scholar 

  42. Held, R., Ingle, D., Schneider, G. E., Trevarthen, C. B.: Locating and identifying: two modes of visual processing. A symposium. Psychol. Forsch. 31, 44–51, 52–62, 299–337, 338–348 (1967/68).

    Google Scholar 

  43. Hind, J. E., Rose, J. E., Brugge, J. F., Anderson, D. J.: Two-tone masking effects in squirrel monkey auditory nerve fibres. In: Frequency analysis and periodicity detection in hearing, 1970.

    Google Scholar 

  44. Hubel, D. H.: Integration processes in central visual pathways of the cat. J. Opt. Soc. Amer. 53, 58–66 (1963).

    Google Scholar 

  45. Kallert, S., David, E., Finkenzeller, P., Keidel, W. D.: Two different neuronal discharge periodicities in the acoustical channel. In: Frequency analysis and periodicity detection in hearing, 1970.

    Google Scholar 

  46. Katsuki, Y.: Neural machanisms of auditory sensation in cats. In: Sensory communication, pp. 561–583. (Rosenblith, W. A., Ed.). New York: M.I.T. Press and Wiley and Sons 1961.

    Google Scholar 

  47. Kiang, N. Y-s., Sachs, M. B., Peake, W. T.: Shapes of tuning curves for single auditory nerve fibres. J. acoust. Soc. Amer. 42, 1341–1342 (1967).

    Google Scholar 

  48. Hall, J. L. II Watenabe, T., Thomas, E. C., Clark, L. F.: Discharge patterns of single fibres in the cat’s auditory nerve. Cambridge, Mass.: M.I.T.Press 1965.

    Google Scholar 

  49. Klinke, R., Boerger, G., Gruber, J.: Studies on the functional significance of efferent innervation in the auditory system. Pfliigers Arch. 306, 165–175 (1969).

    Google Scholar 

  50. Mast, T. E.: Binaural interaction and contralateral inhibition in dorsal cochlear nucleus of chinchilla. J. Neurophysiol. 33, 108–115 (1970).

    PubMed  Google Scholar 

  51. Maturana, H. R., Lettvin, J. Y., McCulloch, W. S., Pitts, W. H.: Anatomy and physiology of vision in the frog (Rana pipiens). J. gen. Physiol. 43, 129–175 (1960).

    Article  PubMed  Google Scholar 

  52. Miller, G. A., Taylor, W. G.: The perception of repeated bursts of noise. J. acoust. Soc. Amer. 20, 171–181 (1947).

    Google Scholar 

  53. Moller, A. R.: Unit responses in the cat cochlear nucleus to repetitive transient sounds. Acta physiol. scand. 75, 542–551 (1969).

    Article  PubMed  Google Scholar 

  54. Moller, A. R Unit responses in the cochlear nucleus of the rat to sweep tones. Acta physiol. scand. 76, 503–512 (1969).

    PubMed  Google Scholar 

  55. Moushegian, G., Rupert, A., Whitcomb, M. A.: Brain stem neuronal response patterns to monaural and binaural tones. J. Neurophysiol. 27, 1174–1191 (1964).

    PubMed  Google Scholar 

  56. Neff, W. D.: Behavioural studies of auditory discrimination: localization of the sound source in space. In: Hearing mechanisms in vertebrates, pp. 207–231. (de Reuck, A. V. S., Knight, J., Eds.) 1968.

    Google Scholar 

  57. Nelson, P. G., Erulkar, S. D., Bryan, J. S.: Responses of units of the inferior colliculus to time-varying acoustic stimuli. J. Neurophysiol. 29, 834–860 (1966).

    PubMed  Google Scholar 

  58. Oonishi, S., Katsuki, Y.: Functional organization and integrative mechanism on the auditory cortex of the cat. Jap. J. Physiol. 15, 342–365 (1965).

    Article  Google Scholar 

  59. Pfalz, R. K. J.: Centrifugal inhibition of afferent secondary neurones in the cochlear nucleus by sound. J. acoust. Soc. Amer. 34, 1472–1477 (1962).

    Article  Google Scholar 

  60. Pfeiffer, R. R.: Classification of response patterns of spike discharges for units in the cochlear nucleus: Tone-burst stimulation. Exp. Brain. Res. 1, 220–235 (1966).

    Article  PubMed  Google Scholar 

  61. Poliak, S.: The connections of the acoustic nerve. J. Anat. (Lond.) 60, 465–469 (1926).

    Google Scholar 

  62. Rose, J. E., Brugge, J. F., Anderson, D. J., Hind, J. E.: Patterns of activity in single auditory nerve fibres of the squirrel monkey. In: Hearing mechanisms in vertebrates, pp. 144–157. (de Reuck, A. V. S., Knight, J., Eds.). London: Churchill 1968.

    Google Scholar 

  63. Rose, J. E., Galambos, R., Hughes, J. R.: Microelectrode studies of the cochlear nuclei of the cat. Johns Hopk. Hosp. Bull. 104, 211–251 (1959).

    Google Scholar 

  64. Rose, J. E., Greenwood, D. D., Goldberg, J. M., Hind, J. E.: Some discharge characteristics of single neurones in the inferior colliculus of the cat. I. Tonotopic organization, relation of spike counts to tone intensity, and firing patterns of single elements. J. Neurophysiol. 26, 294–320 (1963).

    Google Scholar 

  65. Rose, J. E., Gross, N. B., Geisler, C. D., Hind, J. E.: Some neural mechanisms in the inferior colliculus of the cat which may be relevant to localization of a sound source. J. Neurophysiol. 29, 288–314 (1966).

    PubMed  Google Scholar 

  66. Sa, G. de.: Audiologic findings in central nerve deafness. (St. Louis) Laryngoscope 68, 309–317 (1958).

    Article  Google Scholar 

  67. Sachs, M. B., Kiang, N. Y-s.: Two-tone inhibition in auditory nerve fibres. J. acoust. Soc. Amer. 43, 1120–1128 (1968).

    Article  Google Scholar 

  68. Schwartzkopff, J.: Hearing. Ann. Rev. Physiol. 29, 485–512 (1967).

    Article  Google Scholar 

  69. Siebert, W. M.: Stimulus transformations in the peripheral auditory system. In: Recognizing patterns, pp. 104–133. (Kolers, P. A., Eden, M., Eds.). Cambridge: M.I.T. Press 1968.

    Google Scholar 

  70. Suga, N.: Analysis of frequency-modulated and complex sounds by single auditory neurones of bats. J. Physiol. (Lond.) 198, 51–80 (1968).

    Google Scholar 

  71. Rose, J. E., Classification of inferior collicular neurones of bat in terms of responses to pure tones, F. M. sounds and noise bursts. J. Physiol. (Lond.) 200, 555–574 (1969).

    Google Scholar 

  72. Tsuchitani, C., Boudreau, J. C.: Single unit analysis of cat superior olive S-segment with tonal stimuli. J. Neurophysiol. 29, 684–699 (1966).

    Google Scholar 

  73. Tsuchitani, C., Boudreau, J. C. Encoding of stimulus frequency and intensity by cat superior olive S-segment cells. J. acoust. Soc. Amer. 42, 794–805 (1967).

    Article  Google Scholar 

  74. Tsuchitani, C., Boudreau, J. C. Stimulus level of dichotically presented tones and cat superior olive S-segment cell discharge. J. acoust. Soc. Amer. 46, 979–988 (1969).

    Article  Google Scholar 

  75. Watenabe, T., Liao, T., Katsuki, Y.: Neuronal response patterns in the superior olivary complex of the cat to sound stimulation. Jap. J. Physiol. 18, 267–287 (1968).

    Google Scholar 

  76. Watenabe, T., Ohgushi, K.: F. M. sensitive auditory neuron. Proc. Jap. Acad. 44, 968–973 (1968).

    Google Scholar 

  77. Weiss, T. F.: A model of the peripheral auditory system. Kybernetik 3, 153–175 (1966).

    Article  PubMed  Google Scholar 

  78. Whitfield, I. C.: Electrophysiology of the central auditory pathway. Brit. med. Bull. 12, 105–109 (1956).

    Google Scholar 

  79. Whitfield, I. C. Evans, E.F.: Responses of auditory cortical neurons to stimuli of changing frequency. J. Neurophysiol. 28, 655–672 (1965).

    PubMed  Google Scholar 

  80. Whitfield, I. C. (1) The auditory pathway. London: Arnold 1967.

    Google Scholar 

  81. Whitfield, I. C. (2) Coding in the auditory nervous system. Nature (Lond.) 213, 756–760 (1967).

    Article  Google Scholar 

  82. Whitfield, I. C. Central nervous processing in relation to spatio-temporal discrimination of auditory patterns. In: Frequency analysis and periodicity detection in hearing, (Plomp, R., Smoorenburg, G. F., Eds.). Leiden: Sijthoff 1971.

    Google Scholar 

  83. Wilson, J. P.: Obstacle detection using ambient or self-generated noise. Nature (Lond.) 211, 218 (1966).

    Article  CAS  Google Scholar 

  84. Wilson, J. P. An auditory after-image. In: Frequency analysis and periodicity detection in hearing, p 304. (Plomp, R., Smoorenburg, G. F., Eds.). Leiden: Sijthoff 1971.

    Google Scholar 

  85. Wilson, J. P. Evans, E. F., Rosenberg, J.: In preparation.

    Google Scholar 

  86. Winter, P., Ploog, D., Latte, J.: Vocal repertoire of the squirrel monkey (Saimiri sciureus), its analysis and significance. Expl. Brain Res. 1, 359–384 (1966).

    Article  Google Scholar 

  87. Zwicker, E., Flottorp, G., Stevens, S. S.: Critical band-width in loudness summation. J. acoust. Soc. Amer. 29, 548–557 (1957).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Evans, E.F. (1971). Central Mechanisms Relevant to the Neural Analysis of Simple and Complex Sounds. In: Grüsser, OJ., Klinke, R. (eds) Zeichenerkennung durch biologische und technische Systeme / Pattern Recognition in Biological and Technical Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65175-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65175-5_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65176-2

  • Online ISBN: 978-3-642-65175-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics