Binding of Drugs to Supercoiled Circular DNA: Evidence for and against Intercalation

  • Michael Waring
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 2)


Outstanding among molecular models for interactions between drugs and DNA is the intercalation model, originally proposed by Lerman (1961) for the binding of acridines to DNA. A primary objective of this model was to suggest a plausible molecular basis for the ability of acridine dyes, especially proflavine, to induce frame shift mutations in microorganisms. The phenomenon of frame shift mutagenesis by acridines is now firmly established (Streisinger, Okada, Emrich, Newton, Tsugita, Terzaghi and Inouye, 1966), and several suggestions have been made to account for such mutations in terms of intercalation (Brenner, Barnett, Crick and Orgel, 1961; Lerman, 1963; Streisinger et al., 1966). However, in recent years the intercalation model has become increasingly important for a different reason — namely, that it seems to account satisfactorily for the interaction between DNA and many other drugs, most of which are of interest for biological effects other than mutagenesis. These drugs include several chemotherapeutic agents, such as the trypanocide ethidium bromide (Waring, 1965, 1966), the schistosomicide Miracil D (Lucanthone) (Hirschberg, Weinstein, Gersten, Marner, Finkelstein and Carchman, 1968), the antitumour antibiotics daunomycin and nogalamycin (Ward, Reich and Goldberg, 1965; Kersten, Kersten and Szybalski, 1966), and the antimalarial drug chloroquine (O’Brien, Allison and Hahn, 1966).


Closed Circle Binding Ratio Sedimentation Coefficient Aromatic Ring System Balsa Wood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauer, W., Vinograd, J.: The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye. J. molec. Biol. 33, 141 (1968).PubMedCrossRefGoogle Scholar
  2. Behr, W., Honikel, K., Hartmann, G.: Interaction of the RNA polymerase inhibitor chromomycin with DNA. Europ. J. Biochem. 9, 82 (1969).Google Scholar
  3. Brenner, S., Barnett, L., Crick, F. H. C, Orgel, A.: The theory of mutagenesis. J. molec. Biol. 3, 121 (1961).CrossRefGoogle Scholar
  4. Brock, T. D.: Streptomycin. Symp. Soc. Gen. Microbiol. 16, 131 (1966).Google Scholar
  5. Crawford, L. V., Waring, M. J.: (1) Supercoiling of polyoma virus DNA measured by its interaction with ethidium bromide. J. molec. Biol. 25, 23 (1967).PubMedCrossRefGoogle Scholar
  6. Crawford, L. V., Waring, M. J.: (2) The supercoiling of papilloma virus DNA. J. gen. Virol. 1, 387 (1967).PubMedCrossRefGoogle Scholar
  7. Fuller, W.: The molecular structures of the nucleic acids and their biological significance. Chapter in genetic elements (Symp. Federation of European Biochemical Societies), p. 17 (Shugar, D., Ed.). London: Academic Press 1966.Google Scholar
  8. Fuller, W., Waring, M. J.: A molecular model for the interaction of ethidium bromide with DNA. Ber. Bunsenges. Physik. Chem. 68, 805 (1964).Google Scholar
  9. Hamilton, L. D., Fuller, W., Reich, E.: AT-ray diffraction and molecular model building studies of the interaction of actinomycin with nucleic acids. Nature (Lond.) 198, 538 (1963).CrossRefGoogle Scholar
  10. Hirschberg, E., Weinstein, I. B., Gersten, N., Marner, E., Finkelstein, T., Carchman, R.: Structure-activity studies on the mechanism of action of Miracil D. Cancer Res. 28, 601 (1968).PubMedGoogle Scholar
  11. Hirschman, S. Z., Leng, M., Felsenfeld, G.: Interaction of spermine and DNA. Bio-polymers 5, 227 (1967).Google Scholar
  12. Hudson, B., Upholt, W. B., Devinny, J., Vinograd, J.: The use of an ethidium analogue in the dye-buoyant density procedure for the isolation of closed circular DNA: the variation of the superhelix density of mitochondrial DNA. Proc. nat. Acad. Sci. (Wash.) 62, 813 (1969).CrossRefGoogle Scholar
  13. Kersten, W., Kersten, H., Szybalski, W.: Physicochemical properties of complexes between DNA and antibiotics which affect RNA synthesis (actinomycin, daunomycin, cinerubin, nogalamycin, chromomycin, mithramycin, and olivomycin). Biochemistry 5, 236 (1966).PubMedCrossRefGoogle Scholar
  14. Lerman, L. S.: Structural considerations in the interaction of DNA and acridines. J. molec. Biol. 3, 18 (1961).PubMedCrossRefGoogle Scholar
  15. Lerman, L. S.: The structure of the DNA-acridine complex. Proc. nat. Acad. Sci. (Wash.) 49, 94 (1963).CrossRefGoogle Scholar
  16. Lerman, L. S.: Acridine mutagens and DNA structure. J. cell. comp. Physiol. 64, Suppl. 1, 1 (1964).Google Scholar
  17. Li, H. J., Crothers, D. M.: Relaxation studies of the proflavine-DNA complex: the kinetics of an intercalation reaction. J. molec. Biol. 39, 461 (1969).PubMedCrossRefGoogle Scholar
  18. Mahler, H. R., Green, G., Goutarel, R., Khuong-Huu, Q.: Nucleic acid-small molecule interactions. VII. Further characterisation of DNA-diamino steroid complexes. Biochemistry 7, 1568 (1968).PubMedCrossRefGoogle Scholar
  19. Müller, W., Crothers, D. M.: Studies of the binding of actinomycin and related compounds to DNA. J. molec. Biol. 35, 251 (1968).PubMedCrossRefGoogle Scholar
  20. Neville, D. M., Jr., Davies, D. R.: The interaction of acridine dyes with DNA: an X-ray diffraction and optical investigation. J. molec. Biol. 17, 57 (1966).PubMedCrossRefGoogle Scholar
  21. Newton, B. A.: Interaction of berenil with DNA and some characteristics of the berenil- DNA complex. Biochem. J. 105, 50 P (1967).Google Scholar
  22. O’Brien, R. L., Allison, J. L., Hahn, F. E.: Evidence for intercalation of chloroquine into DNA. Biochim. biophys. Acta (Amst.) 129, 622 (1966).Google Scholar
  23. Ohnishi, S., Mcconnell, H. M.: Interaction of the radical ion of chlorpromazine with DNA. J. Amer. chem. Soc. 87, 2293 (1965).CrossRefGoogle Scholar
  24. Rosi, D., Peruzzotti, G., Dennis, E. W., Berberian, D. A., Freele, H., Tullar, B. F., Archer, S.: Hycanthone, a new active metabolite of lucanthone. J. med. Chem. 10, 867 (1967).PubMedCrossRefGoogle Scholar
  25. Sartorelli, A. C., Iannotti, A. T., Booth, B. A., Schneider, F. H., Bertino, J. R., Johns, D. G.: Complex formation with DNA and inhibition of nucleic acid synthesis by methylglyoxal-fe-(guanylhydrazone). Biochim. biophys. Acta (Amst.) 103, 174 (1965).Google Scholar
  26. Streisinger, G., Okada, Y., Emrich, J., Newton, J., Tsugita, A., Terzaghi, E., Inouye, M.: Frameshift mutations and the genetic code. Cold Spr. Harb. Symp. quant. Biol. 31, 77 (1966).Google Scholar
  27. Suwalsky, M., Traub, W., Shmueli, U., Subirana, J. A.: An AT-ray study of the interaction of DNA with spermine. J. molec. Biol. 42, 363 (1969).PubMedCrossRefGoogle Scholar
  28. Wagner, T. E.: In vitro interaction of LSD with purified calf thymus DNA. Nature (Lond.) 222, 1170 (1969).CrossRefGoogle Scholar
  29. Wang, J. C.: Variation of the average rotation angle of the DNA helix and the superhelical turns of covalently closed cyclic X DNA. J. molec. Biol. 43, 25 (1969).PubMedCrossRefGoogle Scholar
  30. Ward, D. C., Reich, E., Goldberg, I. H.: Base specificity in the interaction of polynucleotides with antibiotic drugs. Science 149, 1259 (1965).PubMedCrossRefGoogle Scholar
  31. Waring, M. J.: Complex formation between ethidium bromide and nucleic acids. J. molec. Biol. 13, 269 (1965).PubMedCrossRefGoogle Scholar
  32. Waring, M. J.: Structural requirements for the binding of ethidium to nucleic acids. Biochim. biophys. Acta (Amst.) 114, 234 (1966).Google Scholar
  33. Waring, M. J.: Variation of the supercoils in closed circular DNA by binding of antibiotics and drugs: evidence for molecular models involving intercalation. J. molec. Biol. 54, 247 (1970).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

  • Michael Waring

There are no affiliations available

Personalised recommendations