Skip to main content

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 2))

Abstract

Transfer RNA presents certain theoretical advantages over DNA for studies of selective effects of ligand binding. The number of unique ligand-binding sites in DNA is limited by the rarity of unusual bases and by the regular secondary structure. More-over, many intercalating drugs, such as chloroquine (O’Brien, Allison, and Hahn, 1966; Sutherland and Sutherland, 1969) bind rather nonspecifically to both purine and pyrimidine residues in DNA [Cohen and Yielding, 1965 (1); Blodgett and Yielding, 1968]. Finally, the enzymes most used in studies of ligand-treated DNA, for example DNA and RNA polymerases [Cohen and Yielding, 1965 (2); O’Brien, Olenick and Hahn, 1966), in order to act must move along DNA for hundreds of base pairs with consequently increased chance for collision with ligands and thus inhibition.

Markle Scholar in Academic Medicine. Supported by Grant NIH-AM-09001-06 from the National Institutes of Health, U.S. Public Health Service and Grant PRA-21 from the American Cancer Society.

Fellow of the Life Insurance Medical Research Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, A., Lindahl, T., Fresco, J. R.: Conformational differences between the biologically active and inactive forms of a transfer ribonucleic acid. Proc. nat. Acad. Sci. (Wash.) 57, 1684–1691 (1967).

    Article  CAS  Google Scholar 

  • Allison, J. L., O’brien, R. L., Hahn, F. E.: DNA: Reaction with chloroquine. Science 149, 1111–1113 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Bailey, D. M.: Quinoline antimalarials. Folded chloroquine. J. med. chem. 12, 184–185 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Blodgett, L. W., Yielding, K. L.: Comparison of chloroquine binding to DNA, and poly- adenylic and polyguanyHc acids. Biochim. biophys. Acta (Amst.) 169, 451–456 (1968).

    CAS  Google Scholar 

  • Cairns, J.: The application of autoradiography to the study of DNA viruses. Cold Spr. Harb. Symp. quant. Biol. 27, 311–318 (1962).

    CAS  Google Scholar 

  • Cohen, S. N., Yielding, K. L.: (1) Spectrophotometric studies of the interaction of chloroquine with deoxyribonucleic acid. J. biol. Chem. 240, 3123–3131 (1965).

    PubMed  CAS  Google Scholar 

  • Cohen, S. N., Yielding, K. L.: (2) Inhibition of DNA and RNA polymerase reactions by chloroquine. Proc. nat. Acad. Sci. (Wash.) 54, 521–527 (1965).

    Article  CAS  Google Scholar 

  • Cohen, S. S., Morgan, S., Streibel, E.: The polyamine content of the tRNA of E. coli. Proc. nat. Acad. Sci. (Wash.) 64, 669–676 (1969).

    Article  CAS  Google Scholar 

  • Dowd, J. E., Riggs, D. S.: A comparison of estimates of Michaelis-Menton kinetic constants from various linear transformations. J. biol. Chem. 240, 863–869 (1965).

    PubMed  CAS  Google Scholar 

  • Fresco, J. R., Adams, A., Ascione, R., Henley, D., Lindahl, T.: Tertiary structure in transfer ribonucleic acids. Cold Spr. Harb. Symp. quant. Biol. 31, 527–537 (1966).

    CAS  Google Scholar 

  • Gartland, W. J., Sueoka, N.: Two interconvertible forms of tryptophanyl sRNA in E. coli. Proc. nat. Acad. Sci. (Wash.) 55, 948–956 (1966).

    Article  CAS  Google Scholar 

  • Gartland, W. J., Ishida, T., Sueoka, N., Nirenberg, M. W.: Coding properties of two conformations of tryptophanyl-tRN A in Escherichia coli. J. molec. Biol. 44, 403–413 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Gillam, I., Millward, S., Blew, D., Von Tigerstrom, M., Wimmer, E., Tener, G. M.: the separation of soluble ribonucleic acids on benzoylated diethylaminoethylcellulose. Biochemistry 6, 3043–3056 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Hall, R. H.: A general procedure for the isolation of “minor” nucleosides from ribonucleic acid hydrolysates. Biochemistry 4, 661–670 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz, J., Furth, J. J., Malamy, M., Alexander, M.: The role of deoxyribonucleic acid in ribonucleic acid synthesis, III The inhibition of the enzymatic synthesis of ribonucleic acid and deoxyribonucleic acid by actinomycin D and proflavin. Proc. nat. Acad. Sci. (Wash.) 48, 1222–1230 (1962).

    Article  CAS  Google Scholar 

  • Irvin, J. L., Irvin, E. M.: Spectrophotometric and potentiometric evaluation of apparent acid dissociation exponents of various 4-aminoquinolines. J. Amer. chem. Soc. 69, 1091–1099 (1947).

    Article  CAS  Google Scholar 

  • Ishida, T., Sueoka, N.: Rearrangement of the secondary structure of tryptophan sRNA in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 58, 1080–1087 (1967).

    Article  CAS  Google Scholar 

  • Ishida, T., Sueoka, N.: Effect of ambient conditions on conformations of tryptophan transfer ribonucleic acid of Escherichia coli. J. biol. Chem. 243, 5329–5336 (1968).

    PubMed  CAS  Google Scholar 

  • Lerman, L. S.: Structural considerations on the interaction of DNA and acridines. J. molec. Biol. 3, 18–30 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Lerman, L. S.: Acridine mutagens and DNA structure. J. cell. comp. Physiol. 64, (Suppl. 1), 1–18 (1964).

    Article  CAS  Google Scholar 

  • Levitt, M.: Detailed molecular model for transfer ribonucleic acid. Nature (Lond.) 224, 759–763 (1969).

    Article  CAS  Google Scholar 

  • Lindahl, T., Adams, A., Fresco, J. R.: Renaturation of transfer ribonucleic acids through site binding of magnesium. Proc. nat. Acad. Sci. (Wash.) 55, 941–948 (1966).

    Article  CAS  Google Scholar 

  • Lindahl, T., Adams, A., Fresco, J. R., Geroch, M., Fresco, J. R.: Selective recognition of the native conformation of transfer ribonucleic acids by enzymes. Proc. nat. Acad. Sci. (Wash.) 57, 178–185 (1967).

    Article  CAS  Google Scholar 

  • Lipsett, M. N., Doctor, B. P.: Studies on tyrosine transfer ribonucleic acid, a sulfur-rich species from Escherichia coli. J. biol. Chem. 242, 4072–4077 (1967).

    PubMed  CAS  Google Scholar 

  • Maxwell, I. H., Wimmer, E., Tener, G. M.: The isolation of yeast tyrosine and tryptophan transfer ribonucleic acids. Biochemistry 7, 2629–2634 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Muench, K. H.: Chloroquine-mediated conversion of transfer ribonucleic acid of Escherichia coli from an inactive to an active state. Cold Spr. Harb. Symp. quant. Biol. 31, 539–542 (1966).

    CAS  Google Scholar 

  • Muench, K. H., Berg, P.: (1) Resolution of aminoacyl transfer ribonucleic acid by hydroxylapatite chromatography. Biochemistry 5, 982–987 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Muench, K. H., Berg, P.: (2) Preparation of aminoacyl ribonucleic acid synthetases from Escherichia coli. In: Procedures in nucleic acid research, p. 375. New York: Harper and Row 1966.

    Google Scholar 

  • Muench, K. H., Safille, P. A.: Transfer ribonucleic acids in Escherichia coli Multiplicity and variation. Biochemistry 7, 2799–2808 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Muench, K. H., (1) Chloroquine and synthesis of aminoacyl transfer ribonucleic acids. Tryptophanyl transfer ribonucleic acid synthetase of Escherichia coli and tryptophanyladenosine triphosphate formation. Biochemistry 8, 4872–4879 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Muench, K. H., (2) Chloroquine and synthesis of transfer ribonucleic acids. Conformational changes in tryptophanyl and tryptophan transfer ribonucleic acids. Biochemistry 8, 4880–4888 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Muench, K. H., Safille, A., Lee, M., Joseph, D. R., Kesden, D., Pita, J. C., Jr.: Aminoacyl-tRNA synthetases of Escherichia coli and of man. In: Miami Winter Symposia, Vol. I. Amsterdam: North Holland 1970.

    Google Scholar 

  • O’Brien, R. L., Allison, J. L., Hahn, F. E.: Evidence for intercalation of chloroquine into DNA. Biochim. biophys. Acta (Amst.) 129, 622–624 (1966).

    Google Scholar 

  • O’Brien, R. L., Olenick, J. G., Hahn, F. E.: (2) Reactions of quinine, chloroquine, and quinacrine with DNA and their effects on the DNA and RNA polymerase reactions. Proc. nat. Acad. Sci. (Wash.) 55, 1511–1517 (1966).

    Article  Google Scholar 

  • Parker, F. S., Irvin, J. L.: The interaction of chloroquine with nucleic acids and nucleo- proteins. J. biol. Chem. 199, 897–909 (1952).

    PubMed  CAS  Google Scholar 

  • Roy, K. L., Soll, D.: Fractionation of Escherichia coli transfer RNA on benzoylated DEAE- cellulose. Biochim. biophys. Acta (Amst.) 161, 572–574 (1968).

    CAS  Google Scholar 

  • Scatchard, G.: The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 51, 660–672 (1949).

    Article  CAS  Google Scholar 

  • Sueoka, N., Hardy, J.: Deproteinization of cell extract with silicic acid. Arch. Biochem. 125, 558–566 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, J. C., Sutherland, B. M.: Energy transfer in the DNA-chloroquine complex. Biochim. biophys. Acta (Amst.) 190, 545–548 (1969).

    CAS  Google Scholar 

  • Waring, M. J.: Drugs which affect the structure and function of DNA. Nature (Lond.) 219, 1320–1325 (1968).

    Article  CAS  Google Scholar 

  • Webb, J. L.: Enzyme and metabolic inhibitors, Vol. I, p. 168. New York: Academic Press 1963.

    Google Scholar 

  • Werenne, J., Grosjean, H., Chantrenne, H.: Effect of proflavine on the binding of isoleucine to transfer RNA. Biochim. biophys. Acta (Amst.) 129, 585–593 (1966).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Muench, K.H., Deldin, M., Pita, J.C. (1971). Effects of Chloroquine and Some Related Compounds on Aminoacylation of Transfer Ribonucleic Acids. In: Hahn, F.E. (eds) Proceedings of the Research Symposium on Complexes of Biologically Active Substances with Nucleic Acids and Their Modes of Action. Progress in Molecular and Subcellular Biology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65141-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65141-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65143-4

  • Online ISBN: 978-3-642-65141-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics