Advertisement

Thermoelastic Stability of a Finitely Deformed Solid under Nonconservative Loads

  • S. Nemat-Nasser
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Abstract

Local stability of a finitely deformed solid with internal dissipation, subjected to followed type loads, has been studied by Nemat-Nasser [1], neglecting all thermal effects. On the other hand, thermoelastic stability under conservative loads was considered by Ericksen [2] and Koiter [3]. In the present paper, we combine the results in [1–3] to develop conditions for thermoelastic stability of solids subjected to nonconservative surface tractions. We ignore body forces, although they can easily be included.

Keywords

Entropy Production Helmholtz Free Energy Surface Traction Internal Dissipation Rectangular Cartesian Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nemat-Nasser, S.: Quart. Appl. Math. 26, 119 (1968).MATHGoogle Scholar
  2. 2.
    Ericksen, J. L.: Int. J. Solids Structures 2, 573 (1966).CrossRefGoogle Scholar
  3. 3.
    Koiter, W. T.: Rept. 360, Lab. Engng. Mech., Tech. Univ. Delft, April 1967.Google Scholar
  4. 4.
    Koiter, W. T.: Proc. Kon. Ned. Ak. Wet. B 68, 178, 190 (1965).Google Scholar
  5. 5.
    Sewell, M. J.: Arch. Rat. Mech. Anal. 23, 327 (1967).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Mikhlin, S. G.: Variational Methods in Mathematical Physics, Translation, New York: Pergamon Press 1964.Google Scholar
  7. 7.
    Mikhlin, S. G.: The Problem of the Minimum of a Quadratic Functional, Translation, London: Holden-Day 1965.Google Scholar
  8. 8.
    Knops, R. J., Wilkes, E. W.: Int. J. Engng. Sci. 4, 303 (1966).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Nemat-Nasser, S., Herrmann, G.: Ing.-Arch. 35, 17 (1966).MATHCrossRefGoogle Scholar
  10. 10.
    Zubov, V. I.: Methods of A. M. Lyapunov and Their Application, Transla-tion, Groningen: P. Noordhoff 1964.Google Scholar
  11. 11.
    Nemat-Nasser, S., Roorda, J.: Acta Mechanica 15, 296 (1967).CrossRefGoogle Scholar
  12. 12.
    Bolotin, V. Y.: Nonconservative Problems of the Theory of Elastic Stability, Translation, New York: Pergamon Press 1963.Google Scholar
  13. 13.
    Nemat-NASSER, S.: J. Appl. Mech. 34, 344 (1967).MATHCrossRefGoogle Scholar
  14. 14.
    Shieh, R. C., Masur, E. F.: J. Appl. Math. Phys. (ZAMP) 19, 927 (1968).MATHCrossRefGoogle Scholar
  15. 15.
    Hill, R.: J. Mech. Phys. Solids 14, 229 (1957).CrossRefGoogle Scholar
  16. 16.
    Pearson, C. E.: Quart. Appl. Math. 14, 133 (1956).MathSciNetMATHGoogle Scholar
  17. 17.
    Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics, Berlin/Heidelberg/New York: Springer 1965.Google Scholar
  18. 18.
    Hill, R.: J. Mech. Phys. Solids 15, 371 (1967).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin/Heidelberg 1971

Authors and Affiliations

  • S. Nemat-Nasser
    • 1
  1. 1.University of CaliforniaSan Diego, La JollaUSA

Personalised recommendations