The Circular Dichroism and Optical Rotatory Dispersion of Visual Pigments

  • Trevor I. Shaw
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 1)


The phenomenon of circular dichroism is well illustrated in an experiment first performed by the French physicist Cotton (1896). One looks through a strong solution of potassium chromium tartrate, prepared from optically active tartaric acid, introducing pieces of right and left circularly polarizing material between the light and the solution. It is seen that the fields presented by the two polarizers are not identical, differing in brightness if the light is monochromatic, and in hue if white light is used. The solution preferentially absorbs one of the two forms of circularly polarized light and is said to be circularly dichroic. Haidingee, (1847) had previously reported differences in absorption of the components of circularly polarized light by crystals of amethyst quartz but Cotton’s extensive quantitative studies on solutions of coloured tartrates revealed the principal features of the phenomenon.


Circular Dichroism Visual Pigment Electric Vector Cotton Effect Unpolarized Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arden, G. B.: Light sensitive pigment in the visual cells of the frog. J. Physiol. (Lond.) 123, 377–385 (1954).Google Scholar
  2. Bownds, D.: Site of attachment of retinal in rhodopsin. Nature (Lond.) 216, 1178–1181 (1967).CrossRefGoogle Scholar
  3. Cotton, A.: Recherches sur l’ahsorption et la dispersion de la lumière par les milieux doués du pouvoir rotatoire. Ann. Chim. Phys. 8, 347–432 (1896).Google Scholar
  4. Crabbé, P.: Optical rotatory dispersion and circular dichroism in organic chemistry. San Francisco: Holden Day 1965.Google Scholar
  5. Crescitelli, F.: The role of photopigments in vision. In: The Control of behaviour: Proceedings of the centennial year conference of the University of California, Univ. Calif., Irvine. London: Academic Press 1969 (in the press).Google Scholar
  6. Foster, R. F., Shaw, T. I.: The circular dichroism of suspensions of frog rod outer segments. J. Physiol. (Lond.) 202, 189–195 (1969).Google Scholar
  7. Mommaerts, W.F.H.M., Shaw, T. I.: Circular dichroism of visual pigments in the visible and ultra- violet spectral regions. Proc. natl. Acad. Sci. (Wash.) 56, 1729–1734 (1966).CrossRefGoogle Scholar
  8. — — Shaw, T. I.: The circular dichroism of visual pigments, particularly in the ultra-violet. J. Physiol. (Lond.) 189, 74–75P (1967).Google Scholar
  9. Shaw, T. I.: The circular dichroism of some visual pigments. J. Physiol. (Lond.) 175, 43–45P (1964).Google Scholar
  10. Dartnall, H. J. A.: Visual pigments before and after extraction from visual cells. Proc. roy. Soc. B, 154, 250–266 (1961).CrossRefGoogle Scholar
  11. Ditchburn, R. W.: Light. London: Blackie 1952.Google Scholar
  12. Djerassi, C.: Optical rotatory dispersion. New York: McGraw-Hill 1960.Google Scholar
  13. Fresnel, A. T.: Extrait d’un mémoire sur la double refraction particuliere que présente le cristal de roche dans la direction de son axe. Ann. Chim. Phys. 28. 147–161 (1825).Google Scholar
  14. Grosjean, M., Legrand, M.: Appareil de mesure du dichroisme circulaire dans le visible et l’ultraviolet. C. r. hebd. Séanc. Acad. Sci. (Paris) (1960).Google Scholar
  15. Haidinger, W.: Über den Pleochroismus des Amethysts. Ann. Phys. Chem. 70, 531–544 (1847).CrossRefGoogle Scholar
  16. Holzwarth, G., Doty, P.: The ultra-violet circular dichroism of polypeptides. J. Amer. chem. Soc. 87, 218–228 (1965).CrossRefGoogle Scholar
  17. Hubbard, R.: The molecular weight of rhodopsin and the nature of the rhodopsin-digitonin complex. J. gen. Physiol. 37, 381–399 (1954).PubMedCrossRefGoogle Scholar
  18. — Bleaching of rhodopsin by light and by heat. Nature (Lond.) 181, 1126 (1958).CrossRefGoogle Scholar
  19. Kito, Y., Azuma, M., Maeda, Y.: Circular dichroism of squid rhodopsin. Biochim. biophys. Acta (Amst.) 154, 352–359 (1968).Google Scholar
  20. Takezaki, M.: Optical rotation of irradiated rhodopsin solutions. Nature (Lond.) 211, 197–198 (1966).CrossRefGoogle Scholar
  21. Kuhn, W.: In: Stereochemie (K.Freudenberg, Ed.) Leipzig: Deuticke 1933.Google Scholar
  22. Lowry, T. M.: Optical rotatory power. London: Longmans, Green 1935. Reprint. New York, Dover.Google Scholar
  23. Matthews, R. G., Hubbard, R., Brown, P. K., Wald, G.: Tautomeric forms of metarhodopsin. J. gen. Physiol. 47, 215–240 (1963).PubMedCrossRefGoogle Scholar
  24. Mitchell, S.: The Cotton effect. London: Bell 1933.Google Scholar
  25. Moffit, W., Moscowitz, A.: Optical activity in absorbing media. J. Chim. Phys. 30, 648–660 (1959).Google Scholar
  26. Mommaerts, W. F. H. M.: Ultra-violet circular dichroism of myosin. J. molec. Biol. 15, 377–380 (1966).PubMedCrossRefGoogle Scholar
  27. Myhr, B. C., Foss, J. G.: Polyglutamic acid-acridine orange complexes. Cotton effects in the random coil region. Biopolymers 4, 949–952 (1966).PubMedCrossRefGoogle Scholar
  28. Poincelot, R. P., Millar, P. G., Kimbel, R. L., Abrahamson, E. W.: Lipid to protein transfer in the photolysis of visual pigments. Nature (Lond.) 221, 256–257 (1969).CrossRefGoogle Scholar
  29. Rushton, W. A. H.: Bleached rhodopsin and visual adaptation. J. Physiol. (Lond.) 181, 645–655 (1965).Google Scholar
  30. Sarkar, P. K., Doty, P.: The optical rotatory properties of the β configuration in polypeptides and proteins. Proc. nat. Acad. Sci. (Wash.) 55, 981–989 (1966).CrossRefGoogle Scholar
  31. Shaw, T. I.: Some aspects of the effects of light on visual pigments. Symp. zool. Soc. (Lond.) 23, 63–74 (1968).Google Scholar
  32. Shichi, H., Lewis, M. S., Irreverre, F.Stone, A. L.: Biochemistry of visual pigments 1. Purification and properties of bovine rhodopsin. J. biol. Chem. 244, 529–536 (1969).PubMedGoogle Scholar
  33. Sidman, C. L.: The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy. J. Biophys. biochem. Cytol. 3, 15–30 (1957).PubMedCrossRefGoogle Scholar
  34. Simmons, N. S., Cohen, C., Szent-Györgyi, A. G., Wetlaufer, D. B., Blout, E. R.: A conformation-dependent Cotton effect in α-helical polypeptides and proteins. J. Amer. chem. Soc. 83, 4766–4769 (1961).CrossRefGoogle Scholar
  35. Stryer, L., Blout, E. R.: Optical rotatory dispersion of dyes bound to macromolecules. Cationic dyes: poly-glutamic acid complexes. J. Amer. chem. Soc. 83, 1411–1418 (1961).CrossRefGoogle Scholar
  36. Takezaki, M., Kito, Y.: Circular dichroism of rhodopsin and isorhodopsin. Nature (Lond.) 215, 1197–1199 (1967).CrossRefGoogle Scholar
  37. Torchinskii, Y. M., Livanova, N. B., Pikhelgas, V. Y.: Circular dichroism and optical rotatory dispersion of muscle Phosphorylase b. Mol. Biol. 1, 23–28 (1967).Google Scholar
  38. Velluz, L., Legrand, M., Grosjean, M.: Optical circular dichroism. Principles, measurements and applications. London: Academic Press 1965.Google Scholar
  39. Wald, G.: In: Handbook of Physiology Section 1, Vol. 1. Washington D. C: Amer. Physiol. Soc. (1959).Google Scholar
  40. Brown, P. K.: The molar extinction of rhodopsin. J. gen. Physiol. 37, 189–200 (1953).PubMedCrossRefGoogle Scholar
  41. — — Gibbons, I.: The problem of visual excitation. J. Opt. Soc. Amer. 53, 20–35 (1963).CrossRefGoogle Scholar
  42. Williams, T. P.: Induced asymmetry in the prosthetic group of rhodopsin. Vision Res. 6, 293–300 (1966).CrossRefGoogle Scholar
  43. Yoshizawa, T., Wald, G.: Prelumirhodopsin and the bleaching of visual pigments. Nature (Lond.) 197, 1279–1286 (1963).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1972

Authors and Affiliations

  • Trevor I. Shaw
    • 1
  1. 1.LondonUK

Personalised recommendations